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ABSTRACT Energy recharging in wireless rechargeable sensor networks (WRSNs) has acquired much 

attention in recent years. In literature, many recharging path construction algorithms have been proposed. 

Most of them considered that all sensors are equally important and designed algorithms to increase the 

number of recharged sensors or decrease the path length of the mobile charger. However, different sensors 

have different coverage contributions. Recharging the sensors with larger coverage contribution can achieve 

better surveillance quality. The proposed recharging scheduling algorithm is divided into three phases, 

including the Initialization, Recharging Scheduling and Path Construction Phases. In the second phase, this 

paper proposed two recharging scheduling algorithms, namely the Cost-Effective (CE) algorithm and Cost-

Effective with Considerations of Coverage and Fairness (𝐶2𝐹) algorithm. The proposed two algorithms 

construct paths for the mobile charger and select the recharging sensors based on the higher weight in terms 

of larger coverage contribution and smaller path cost. Performance results show that the CE and 𝐶2𝐹 

algorithms yield better performance in terms of the fairness of recharging, recharging stability and coverage 

ratio, as compared with the existing studies. 

INDEX TERMS mobile charger, recharging, coverage, wireless sensor networks, ping-pong effect

I. INTRODUCTION 

Wireless sensor networks (WSNs) are used in numerous 

applications like border surveillance [1], smart homes [2], 

precision agriculture [3] and environmental monitoring [4]. In 

general, the WSNs can monitor the specified events and report 

the data if any event occurs in their location. Even though 

WSNs are broadly used, the finite energy of the sensors is still 

one of the major challenges, which need to be further 

improved. To solve the energy constraint issue in WSNs, 

many algorithms have been designed in the literature. These 

studies can be categorized into two classes: energy 

preservation [5]-[8] and energy replenishment [9]-[19] 

technologies.  

Studies [5]-[8] designed algorithms to reduce the energy 

consumption of the sensors in the network. Although these 

studies aimed to extend the lifetime of WSNs, they cannot 

recompense the energy exhaustion of sensors. On the other 

hand, energy replenishment technologies [9]-[19] can 

recharge the sensors based on the energy collected from 

environmental resources or radio-frequency energy 

transmission. These studies are further divided into two 

classes, including environmental energy [9]-[11] and mobile 

chargers [12] - [19].  

 In the first class, many algorithms were proposed by 

considering the environmental energy harvesting systems [9]- 

[11]. All of these studies assumed that the energy of sensors 

can be collected from environmental energy resources like 

solar, wind and thermal energies. Although the scale of 

environmental resources was extensive, they were 

unpredictable. These resources highly depended on various 

parameters such as time and weather, which indicated that 

environmental resources were unstable.  

To overcome the unpredictable and unstable issues, many 

algorithms considered radio-frequency energy transmission 

mechanisms [12]-[19], which are categorized into the second 

class. These studies assumed that the radio-frequency signals 

transmitted by mobile chargers would transmit the energy 

beacons to the sensors. Most of them considered the static 

sensors and assumed that the mobile charger will traverse the 

network aiming to recharge all sensors. In general, the energy 

of the mobile charger was also finite, thereby the sink was 

considered as the energy station, which supplied energy to the 
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mobile charger in the network. Therefore, the radio-frequency 

energy transmission algorithms can be applied to recharge the 

sensors in an efficient and balanced way compared to the 

environmental resources. However, given a set of sensors and 

a mobile charger, determining some recharging locations to 

construct an efficient path for the mobile charger is still a big 

challenge.  

This paper proposed two recharging scheduling algorithms, 

namely the CE and 𝐶2𝐹  algorithms. These algorithms 

construct paths for the mobile charger, aiming at maximizing 

the surveillance quality of the whole monitoring area. To 

avoid the ping-pong effect, the proposed 𝐶2𝐹  algorithm 

adopts the charging fairness policy, which locks the sensors 

that have been recharged recently. In addition, the proposed 

algorithm considers the chain-effect. Since recharging one 

sensor can increase the latency of energy recharging for the 

other waiting sensors. This can cause much energy 

consumption of the waiting sensors and might lead to energy 

exhaustion of these sensors, resulting in coverage loss. 

Therefore, the recharging schedule has a chain-effect, which 

impacts the monitoring quality. The proposed algorithm takes 

into account the chain-effect and calculates the coverage loss 

and benefits of each candidate charging location, aiming to 

maximize the monitoring quality. The following details the 

key contributions of the proposed algorithm.  

(1) Avoiding the ping-pong effect: This paper partitions 

the whole region into grids to decrease the complexity. 

The mobile charger always chooses the best grid for 

executing the recharging task. By considering the 

fairness of recharging the sensors, the previous 

charged time of the sensor is taken into account. 

Compared to the existing works [14-19], the proposed 

algorithms avoid the ping-pong effect caused by the 

movement of the mobile charger.  

(2)  Achieving better surveillance quality: Most existing 

studies considered that each sensor is equally 

important in the coverage contribution. The proposed 

energy-recharging algorithm calculates the 

contribution of each sensor and recharges the sensors 

with larger coverage contribution. This strategy 

achieves better surveillance quality, as compared with 

the existing studies [18] and [19].  

(3) Maintaining unlimited lifetime: The proposed 

energy-recharging algorithm can maintain the 

unlimited lifetime of the given sensor network. This 

can be achieved because that the sensor plays an 

important role in terms of coverage contribution will 

be recharged efficiently to prevent it from energy 

exhaustion, maintaining its perpetual lifetime.    

(4) Considering the impact of chain-effect on 

monitoring quality: Compared to the existing studies 

[17-19], the proposed algorithm considers the chain-

effect. The proposed 𝐶2𝐹  algorithm calculates the 

coverage loss and benefits of each sensor which is 

waiting for recharging and makes a recharging 

schedule, aiming to maximize the monitoring quality. 

    The remaining part of the paper is structured as follows. 

The existing studies of the mobile charger scheduling issue 

are reviewed in Section II. The preliminaries of the 

considered scenario and problem statement are detailed in 

Section III. Section IV presents the design of the proposed 

CE and 𝐶2𝐹  algorithms. Section V compares the 

performance results of CE and 𝐶2𝐹  with the existing 

algorithms. In the end, the conclusion is given in Section VI. 

II. RELATED WORK 

In this section, the literature of energy replenishment 

technology is presented. These studies are divided into two 

types: environmental energy [9]-[11] and mobile chargers [12] 

- [19]. The following subsections review the studies related to 

this work. 

A. ENERGY REPLENISHMENT FROM ENVIRONMENTAL 

ENERGY  

In this category, most of the existing studies [9]-[11] 

adopted the environmental energy harvesting technologies 

like solar, wind and thermal energies to maintain the perpetual 

lifetime of WSNs. Study [9] considered the solar energy 

harvesting system for a rechargeable WSN. The voltage is 

harvested from the sunlight by using solar panels. The solar 

panel converted light energy directly into electrical energy and 

recharged the battery. However, the environmental resources 

were unpredictable and depended on various parameters such 

as time and weather, which indicated that environmental 

resources were unstable.  

In the environmental energy resources, wind energy was 

also one of the supplementary energy systems, which have 

been widely used in past years. Peng et al. [10] proposed a 

fault detection method for wind turbine monitoring based on 

the WSN. Another study [11] utilized three kinds of wind, 

solar and thermal energy harvesters and combined them as 

electric power. Finally, the WSN nodes can be recharged 

using a super capacitor. However, the wind energy harvesting 

system cannot acquire enough energy and the size of the wind 

turbine generator might lead to deployment issues. On the 

other hand, the construction of the thermoelectric generator 

was complicated and it consumed more energy compared to 

the solar harvesting systems.  

B. ENERGY REPLENISHMENT FROM MOBILE 

CHARGERS 

The second category is the energy replenishment from 

mobile chargers. Many studies [12-19] were proposed in the 

past few years to optimize the charging algorithms, which can 

prolong the lifetime of WSNs. Study [12] proposed a novel 

clustering scheme, which elected few nodes as the cluster 

heads. The moving vehicle was assumed to recharge only the 

cluster heads as well as collect data from them. Thereby, the 

utility of the WSNs was maximized. However, they did not 

consider the finite energy of the moving vehicle. To address 
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this issue, Lyu et al. [13] designed an algorithm assuming the 

finite energy of mobile charger. In this study, the problem of 

periodic charging guaranteed that the energy of sensor nodes 

varied periodically, thus they can maintain the perpetual 

lifetime of these sensor nodes.  

Study [14] proposed a joint charging and scheduling 

algorithm by using a mobile charger. This study investigated 

two issues, the first one was deciding the charging sensors and 

their charging time while the second one was scheduling the 

sensors based on their received energy. Another study [15] 

proposed a partial charging algorithm, aiming to recharge the 

sensors partially in the network. They also investigated the 

scheduling problem of the mobile charger.  Study [16] 

proposed a recharging algorithm, aiming to design an energy-

efficient traveling path for multiple mobile chargers. In this 

study, the whole network was divided into many sub-regions 

to maximize the benefit of multiple mobile chargers. Then the 

charging radius based nearest neighbor approach was applied 

to find the charging points, which improved the charging 

efficiency. However, they ignored that different sensors have 

different contributions in terms of the monitoring quality. 

Similar to the study [16], another study [17] partitioned the 

network aiming to equally distribute the workload to each 

mobile charger. Then fuzzy logic was applied to determine the 

charging schedule of the mobile chargers. Besides, this study 

considered the adaptive threshold for charging requests, 

aiming to recharge the nodes with different energy 

consumption rates. 

The Spatial Dependent Task Scheduler (SDT) algorithm 

[18] focused on the different energy consumption rates of 

sensors, aiming to increase the number of nodes alive for 

monitoring purposes. Study [19] proposed an algorithm, 

called HSA-DFWA, for recharging the multi-node using a 

mobile charger in WRSNs. This study assumed the real 

scenarios of the mobile charger and proposed three models of 

charging plans and algorithms.  

Although the mechanisms proposed in [12-19] improved the 

charging strategy of the mobile charger in different ways, they 

did not consider the coverage contribution of sensors. Table 1 

summarizes the comparison of the proposed and related studies. 

This paper proposed a recharging scheduling algorithm based 

on radio-frequency energy transmission technology. The 

objective of this study is to maximize the accumulated 

monitoring quality of all sensors in the given network. The 

proposed CE and 𝐶2𝐹  algorithms construct paths for the 

mobile charger, aiming at maximizing the surveillance quality 

of the whole monitoring area. The proposed CE algorithm 

considers the maximal lifetime policy while the 𝐶2𝐹 algorithm 

considers the fairness recharging policy. Both the proposed CE 

and 𝐶2𝐹 algorithms avoid the ping-pong effect caused by the 

movement of the mobile charger.

TABLE I. 

COMPARISON OF THE PROPOSED AND RELATED WORKS. 

Related work 
Considering 

coverage 

contribution 

Dynamic scheduling 

 

Charging stability 
Avoiding the ping-

pong effect 
 

[ 9 ]      

[10]      

[11]      

[12]   〇   

[13]   〇   

[14]   〇   

[15]   〇   

[16]  〇 〇   

[17] 〇 〇 〇   

[18]  〇 〇   

[19] 〇  〇   

The proposed algorithm 〇 〇 〇 〇  

 

III. NETWORK MODEL AND PROBLEM FORMULATION 

The following subsections will firstly introduce the 

considered environment of the proposed algorithm. Then the 

problem formulation and the objective function are proposed.    

A. NETWORK MODEL 

Assume that a given WSN comprises a set of 𝑛 sensors 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} deployed in a region 𝐴.  The energy of all 

sensors is limited and their energy consumption rates are 

different.  

 

It is assumed that a single mobile charger 𝑀 traverses in 𝐴 

with constant speed 𝑣. Let 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑡𝑜𝑡𝑎𝑙  represent the total energy 

of 𝑀. Let 𝐿𝑚𝑎𝑥  represent the path length of 𝑀. In the total 

observing time T, the  𝑀 can only move 𝐿𝑚𝑎𝑥  to perform the 

charging task. Based on these assumptions, this paper 

develops a scheduling algorithm for 𝑀  to determine some 

recharging locations, aiming to recharge the sensors such that 

the monitoring quality Q of the whole network can be 

maximized. 
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B. PROBLEM FORMULATION 

Let the total observing time T is separated into 𝑚  time 

slots T={𝑡1, 𝑡2, … 𝑡𝑗, … 𝑡𝑚} . Let 𝜏 denote the time slot length. 

Let 𝑎𝑖  denote the sensing area of the sensor  𝑠𝑖 . Let 𝑄𝑗  

represent the monitoring quality at time slot 𝑡𝑗, which is the 

size of the covered area by sensor set S in a time slot 𝑡𝑗. Let 𝑟𝑐𝑟𝑔 denote the charging range of each sensor. The sensor 𝑠𝑖 
can be charged by 𝑀 only if 𝑀 is located in the 𝑟𝑐𝑟𝑔  of the 

sensor 𝑠𝑖. Let  𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and  𝑙𝑖  denote the current location of M 

and the location of the sensor 𝑠𝑖 , respectively. Let 𝑑(𝑙𝑖 , 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡) represent the distance between 𝑠𝑖  and  𝑀 . Let 𝜑𝑖,𝑗𝑐  be a Boolean variable indicating either 𝑀 is located in the 𝑟𝑐𝑟𝑔 of the sensor s𝑖 at time slot 𝑡𝑗.  𝜑𝑖,𝑗𝑐 = {1 𝑑(𝑙𝑖 , 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 𝑟𝑐𝑟𝑔0 𝑑(𝑙𝑖 , 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡) > 𝑟𝑐𝑟𝑔   (1) 

Let 𝐸𝑖𝑐𝑟𝑔
 represent the energy of the sensor s𝑖 charged by 𝑀. Let 𝑃𝑐𝑟𝑔𝑡𝑥  represents the transmission power of 𝑀 and 𝑧𝑐𝑟𝑔𝑡𝑥  

and 𝑧𝑐𝑟𝑔𝑟𝑥  are the transmitter and receiver antenna gains, 

respectively. The Friis transmission equation [20] is adopted 

to calculate the recharged energy 𝐸𝑖𝑐𝑟𝑔
 obtained by receiver s𝑖 

as shown in Exp. (2). 

𝐸𝑖𝑐𝑟𝑔 = 𝑃𝑐𝑟𝑔𝑡𝑥 × ( 𝜆𝑐𝑟𝑔4𝜋(𝑑(𝑙𝑖 , 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) + 𝛽𝑐𝑟𝑔))2 × 𝑧𝑐𝑟𝑔𝑡𝑥 × 𝑧𝑐𝑟𝑔𝑟𝑥 × 𝜎𝑐𝑟𝑔
𝑐𝑟𝑔  (2) 

 The notation 𝜆𝑐𝑟𝑔  denotes the wavelength of the radio-

frequency wave and 𝜎𝑐𝑟𝑔  denotes the rectifier efficiency. 

Finally,𝑐𝑟𝑔  denotes the polarization loss. Let 𝑖,𝑗 𝑐𝑟𝑔
 be the 

Boolean variable indicating whether or not the sensor 𝑠𝑖  is 

charged by 𝑀 at time slot 𝑡𝑗. 

𝑖,𝑗 𝑐𝑟𝑔  = {1 𝑖𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑖  𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑎𝑡 𝑡𝑗  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                (3) 

 

Let 𝐸𝑖,𝑗𝑐𝑟𝑔
 represent the charged energy of the sensor 𝑠𝑖 at time 

slot 𝑡𝑗. Exp. (4) gives the derivation of  𝐸𝑖,𝑗𝑐𝑟𝑔
. 

𝐸𝑖,𝑗𝑐𝑟𝑔 = ∫ 𝜑𝑖,𝑗𝑐 ×𝐸𝑖𝑐𝑟𝑔dt𝜏0   ∀ 𝑡𝑗 ∈ 𝑇, 𝑠𝑖 ∈ S (4) 

Let 𝐸𝑖𝑐𝑜𝑛 represent the energy consumed by the sensor 𝑠𝑖 
for executing sensing and communication tasks. Let 𝐸𝑖,𝑗𝑟𝑒𝑚 

represent the remaining energy of the sensor 𝑠𝑖 at time slot 𝑡𝑗. 

The notation  𝐸𝑖,𝑗𝑟𝑒𝑚 is evaluated by applying Exp. (5).  𝐸𝑖,𝑗𝑟𝑒𝑚 = 𝐸𝑖,𝑗−1𝑟𝑒𝑚 + 𝐸𝑖,𝑗𝑐𝑟𝑔 ∗  𝑖,𝑗 𝑐𝑟𝑔 − 𝐸𝑖𝑐𝑜𝑛 (5) 

Let 𝜁 denote the reserved energy required for fundamental 

operations of each sensor, including the energy for waking up 

and initializing the recharging circuit. In other words, each 

sensor will stay in working state only if 𝐸𝑖,𝑗𝑟𝑒𝑚 is greater than 𝜁 . Let notation 𝜇𝑖𝑗  denote the Boolean variable indicating 

whether or not the sensor 𝑠𝑖  has enough remaining energy 𝐸𝑖,𝑗𝑟𝑒𝑚 for executing sensing task at a time slot 𝑡𝑗. That is, 𝜇𝑖𝑗 = {1 𝑖𝑓 𝐸𝑖,𝑗𝑟𝑒𝑚  ≥  𝜁0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (6) 

The monitoring quality at the time slot 𝑡𝑗 is evaluated as 

shown in Exp. (7). 𝑄𝑗 = ⋃ 𝜇𝑖𝑗𝑖=𝑛
𝑖=1 × 𝑎𝑖 (7) 

The accumulated monitoring quality for time period 𝑇 =[𝑡1, 𝑡𝑗]  is represented by 𝛷𝑗 as shown in Exp. (8). 𝛷𝑗 = ∑ 𝑄𝑖𝑗
𝑖=1  

(8) 

Recall that T={𝑡1, 𝑡2, … 𝑡𝑗, … 𝑡𝑚}  is divided into 𝑚  time 

slots. Let 𝛷𝑚 denote the accumulated monitoring quality from 

time period 𝑡1  to 𝑡𝑚 . Recall that 𝐴  denotes the monitoring 

region. The goal of the proposed algorithm is to maximize the 

accumulated monitoring quality of all sensors in T over the 

whole monitoring region. 

Objective function: 𝑀𝑎𝑥 (𝛷𝑚 = ∑ 𝑄𝑗𝑚𝑗=1𝐴 ∗ 𝑚 ) (9) 

Several constraints should be satisfied when achieving the 

goal given in Exp. (9). These constraints are related to energy 

recharging and consumption. Let 𝐵 represent the maximum 

battery capacity of each sensor. Recall that 𝜁  denotes the 

reserved energy required for fundamental operations of each 

sensor. The following constraint indicates that 𝐸𝑖,𝑗𝑟𝑒𝑚 of each 

sensor cannot be smaller than 𝜁  and greater than 𝐵.  

(1) Sensor Battery Constraint: 𝜁  𝐸𝑖,𝑗𝑟𝑒𝑚 𝐵, ∀𝑡𝑗 ∈ 𝑇, ∀𝑠𝑖 ∈ 𝑆 (10) 

The second constraint is the charging time constraint, 

which restricts the charging time of each sensor. Let 𝑇𝒋𝑐𝑟𝑔
 

denote the time duration required for sensor 𝑠𝑗  to be fully 

charged.  

(2) Charging Time Constraint: 

0 ≤ 𝑇𝒋𝑐𝑟𝑔 ≤ 𝑚𝑖𝑛(𝐵 − 𝜁, 𝐵 − 𝐸𝑖,𝑗𝑟𝑒𝑚)𝐸𝑖𝑐𝑟𝑔  (11) 

In case  𝑀 is located in the charging range of the sensor 𝑠𝑖 
which is fully recharged by M, the charged energy equals to 𝐵 − 𝐸𝑖,𝑗𝑟𝑒𝑚 . On the contrary, if  𝑀 is far away from the sensor 𝑠𝑖 , sensor 𝑠𝑖  cannot be recharged. Therefore, the additional 

energy of the sensor 𝑠𝑖 obtained from 𝑀 cannot be larger than 
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𝑚𝑖𝑛(𝐵 − 𝜁, 𝐵 − 𝐸𝑖,𝑗𝑟𝑒𝑚).  Thus the charging time constraint 

should be satisfied. 

The final constraint is the path length constraint. The total 

path length that 𝑀  can move is limited. Recall that 𝐿𝑚𝑎𝑥  

denote the maximal path length that 𝑀 can move during time 

period T. Let 𝛼  denote the energy consumption rate of 𝑀 

during its movement. The maximal time length for the 

movement of 𝑀  is 
𝐿𝑚𝑎𝑥 𝑣⁄ . Let 𝐸𝑚𝑜𝑣𝑒  represent the total 

energy consumption of 𝑀 moving with length 𝐿𝑚𝑎𝑥 . Exp. (12) 

calculates the value of 𝐸𝑚𝑜𝑣𝑒 . 𝐸𝑚𝑜𝑣𝑒 = 𝛼 × 𝐿𝑚𝑎𝑥𝑣  (12) 

Recall 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑡𝑜𝑡𝑎𝑙  denote the total energy of 𝑀. Let 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑐𝑜𝑛  

represent the energy consumption of 𝑀  for moving and 

recharging during time period T. The value of  𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑐𝑜𝑛  can 

be obtained as shown in Exp. (13). 

𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑐𝑜𝑛 = ∫ 𝑃𝑐𝑟𝑔𝑡𝑥𝐿𝑚𝑎𝑥 𝑣⁄
0 𝑑𝑡 (13) 

Finally, the following path length constraint should be 

satisfied. 

(3) Path Length Constraint: 

𝐿𝑚𝑎𝑥  ≤ 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑡𝑜𝑡𝑎𝑙 −  𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑐𝑜𝑛  (14) 

IV. THE PROPOSED RECHARGING ALGORITHM 

This section details the proposed recharging algorithm, 

which aims to maximize 𝛷𝑗 of all the sensors in T. The main 

idea of this algorithm is that 𝑀  will charge the requested 

sensors which have the maximal coverage contribution and 

minimal path cost. The proposed algorithm is divided into 

three phases: Initialization Phase, Recharging Scheduling 

Phase and Path Construction Phase. The first phase partitions 

the whole region into equal-sized grids. Then it calculates the 

sensing and recharging set for each grid 𝑔𝑥,𝑦. These sets will 

be used in the later phases. The second phase aims to select 

and schedule the sensors, which have sent the charging 

requests to  𝑀. Finally, the third phase constructs a path for 𝑀 

based on the schedule of sensors in the second phase. Each 

phase will be detailed in the following subsections.  

A. INITIALIZATION PHASE 

This phase divides the whole region into several grids. A 

grid labeled with coordinates (𝑥, 𝑦)  represents the grid 𝑔𝑥,𝑦. 

As depicted in Fig. 1, there are 𝑛  sensor nodes randomly 

deployed in 𝐴. Let 𝑐𝑖𝑠𝑒𝑛  denote the sensing coverage of the 

sensor 𝑠𝑖. Let recharging coverage, denoted by 𝑐𝑖𝑟𝑐𝑔
 represent 

the area where M can recharge sensor 𝑠𝑖. 

 
FIGURE 1. The scenario of the considered network environment. 

 

Let 𝑟𝑠𝑒𝑛 represent the sensing range of each sensor. Recall 

that 𝑟𝑐𝑟𝑔  denote the charging range. In general, the sensing 

range of each sensor is larger than the charging range as shown 

in Fig. 2. 

 
FIGURE 2. The sensing and charging ranges of the sensor 𝒔𝒊. 
 

A grid g is said to be recharging or sensing covered by the 

sensor 𝑠𝑖 if the recharging or sensing ranges of 𝑠𝑖 cover more 

than the half area of  𝑔𝑥,𝑦  , respectively. Let 𝑆𝑥,𝑦𝑟𝑐𝑔
 denote 

recharging coverage set whose recharging range covers  𝑔𝑥,𝑦. 

That is, 𝑆𝑥,𝑦𝑟𝑐𝑔 = {𝑠𝑖|𝑔𝑥,𝑦 𝑖𝑠 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑖𝑟𝑐𝑔} (15) 

Let 𝑆𝑥,𝑦𝑠𝑒𝑛 denote the set of sensors whose sensing ranges 

cover 𝑔𝑥,𝑦. That is, 𝑆𝑥,𝑦𝑠𝑒𝑛 = {𝑠𝑖|𝑔𝑥,𝑦 𝑖𝑠 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑖𝑠𝑒𝑛} (16) 

Fig. 3 illustrates an example of relationships of  𝑆𝑥,𝑦𝑟𝑐𝑔
,𝑆𝑥,𝑦𝑠𝑒𝑛 

and 𝑔𝑥,𝑦 . As shown in Fig. 3, both the charging ranges of 

sensors 𝑠1  and 𝑠2  cover the half area of 𝑔2,1. Therefore, we 

have 𝑆2,1𝑟𝑐𝑔
={𝑠1, 𝑠2}. Similarly, the sensing ranges of sensors 𝑠1, 𝑠2  and 𝑠3  cover the half area of 𝑔2,1 . Therefore, we 

have 𝑆2,1𝑠𝑒𝑛 = {𝑠1, 𝑠2, 𝑠3}. 
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FIGURE 3. An example to illustrate 𝑺𝟐,𝟏𝒓𝒄𝒈

 and  𝑺𝟐,𝟏𝒔𝒆𝒏 of grid 𝒈𝟐,𝟏. 

B. RECHARGING SCHEDULING PHASE 

This phase aims to choose a few sensors, which have sent 

the recharging requests to 𝑀  to be recharged. Then the 

selected sensors will be scheduled for recharging. Two 

algorithms are proposed in this phase. The first one is the Cost-

Effective (CE) algorithm while the second one is Cost-

Effective with Consideration of Coverage and Fairness (𝐶2𝐹) 

algorithm. 

1) COST-EFFECTIVE (CE) ALGORITHM 

The CE algorithm considers 𝐸𝑖,𝑗𝑟𝑒𝑚 of individual sensor and 

the movement cost of 𝑀. This algorithm aims to choose the 

best grid for 𝑀 to execute the recharging operation. Let 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  

represent the best grid, which is the next visited location for 𝑀. Let 𝐺𝑐𝑜𝑣𝑒𝑟  represent the set of grids that are covered by at 

least one sensor 𝑠𝑖. For each 𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 , the next task aims 

to determine the benefit of 𝑔𝑥,𝑦  if 𝑀  moves to 𝑔𝑥,𝑦  for 

executing the recharging operation. 

Let 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  represent the sensor 𝑠𝑖 with the least 𝐸𝑖,𝑗𝑟𝑒𝑚  in  𝑆𝑥,𝑦𝑟𝑐𝑔
. Recall that 𝑆𝑥,𝑦𝑟𝑐𝑔

 represent the recharging coverage set 

whose recharging range covers  𝑔𝑥,𝑦. That is, 

      𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔 𝐸𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑟𝑒𝑚                             (17) 

The Cost-Effective algorithm aims to identify k sensors 

with the least 𝐸𝑖,𝑗𝑟𝑒𝑚 .  Let 𝑚𝑖𝑛𝑘  denote the function, which 

returns the top-k lowest remaining energy. Let 𝑆𝑙𝑜𝑤𝑒𝑠𝑡  denote 

the set of sensors with the lowest remaining energy in all the 

grids. The 𝑆𝑙𝑜𝑤𝑒𝑠𝑡   can be calculated as shown in Exp. (18).  𝑆𝑙𝑜𝑤𝑒𝑠𝑡 = {𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡|𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘1≤𝑖≤𝑛 𝐸𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑟𝑒𝑚 }𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 (18)        

For each sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 ∈  𝑆𝑙𝑜𝑤𝑒𝑠𝑡  , the following 

operations are executed. Let 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔
 denote the time length 

required for sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  to be fully recharged by 𝑀 at 𝑡𝑗 . 

The value of 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔
 can be evaluated by applying Exp. (19).  𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔 = 𝐵−𝐸𝑖,𝑗𝑟𝑒𝑚𝐸𝑖𝑐𝑟𝑔   (19) 

It is noticed that sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  continuously consumes 

energy during the movement of  𝑀  from 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡   to  𝑔𝑥,𝑦 . 

This occurs because that sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  continues to execute 

the sensing task. Let 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒  represent the time length that 𝑀 moves from 𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡   to 𝑔𝑥,𝑦. Recall that the speed of 𝑀 is 𝑣. Exp. (20) can be applied to derive the value of 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 .  

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 = 𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑙𝑔𝑥,𝑦)𝑣   
(20) 

Herein, it should be noticed that sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  

continuously consumes energy during  𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 . Thus, the 

total required energy of  𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  should be considered 

including  𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 . Let 𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔
 represent the time length 

required to completely charge 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  by considering the 

consumed energy during 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 . The value of 𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔
 

can be calculated by applying Exp. (21). 𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔 = 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔 + 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 ∗𝐸𝑖𝑐𝑜𝑛𝐸𝑖𝑐𝑟𝑔   (21) 

If 𝑀 moves to 𝑔𝑥,𝑦, the energies of all the sensors 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
 

will be increased. Besides, the sensors 𝑠𝑘 ∉ 𝑆𝑥,𝑦𝑟𝑐𝑔
 will 

continuously consume their energies for performing the 

sensing operation during  𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔
. To determine the cost for 

executing the recharging operation in  𝑔𝑥,𝑦  , the remaining 

lifetime of the sensors 𝑠𝑘 ∉ 𝑆𝑥,𝑦𝑟𝑐𝑔
 is calculated. Let 𝑇𝑘𝑙𝑖𝑓𝑒

 

represent the remaining lifetime of sensors 𝑠𝑘∉ 𝑆𝑥,𝑦𝑟𝑐𝑔
 starting 

from the current time point. The value of 𝑇𝑘𝑙𝑖𝑓𝑒
 can be 

calculated by Exp. (22).  𝑇𝑘𝑙𝑖𝑓𝑒 = 𝐸𝑖,𝑗𝑟𝑒𝑚𝐸𝑖𝑐𝑜𝑛   
(22) 

That is to say, the value of 𝑇𝑘𝑙𝑖𝑓𝑒
 is calculated based on the 

remaining lifetime of the sensor 𝑠𝑘. Let Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
  represent the 

weight of 𝑔𝑥,𝑦  , including the remaining lifetime of 

sensors  𝑠𝑘 ∉ 𝑆𝑥,𝑦𝑟𝑐𝑔
. Exp. (23) presents the calculation of Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡

 in terms of 𝑇𝑘𝑙𝑖𝑓𝑒
. 

Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡 = ∑ 𝑇𝑘𝑙𝑖𝑓𝑒𝑠𝑘∉𝑆𝑥,𝑦𝑟𝑐𝑔  
(23) 

Let 𝑚𝑎𝑥𝑘 denote the function returning the top-k highest 

weights. The recharging strategy is that 𝑀 moves to the best 

top-k grids 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  such that all sensors 𝑠𝑘 ∉ 𝑆𝑥,𝑦𝑟𝑐𝑔
 have a 

maximal lifetime.  

Top-k Maximal Lifetime Policy: 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 𝛷𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 (24) 

Let grid 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  denote the top-k best grids which have the 
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maximal weight and will be used to construct the charging 

path. Exp. (25) reflects the recharging policy.   𝐺𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡
 

(25) 

Let the set of top-k best grids be represented by the ordered 

list. That is, 𝐺𝑏𝑒𝑠𝑡 = (𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 ). 

Then 𝑀 will construct a path passing through each grid in 𝐺𝑏𝑒𝑠𝑡  according to the list order 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 . The 

last charged time of the sensor should be taken into account. 

By considering the fairness of recharging the sensors, if the 

sensor 𝑠𝑖  is charged in 𝑡𝑗, the same sensor 𝑠𝑖   should not be 

charged again in 𝑡𝑗. The simulation results of the fairness of 

recharging are discussed in section V. This strategy helps to 

avoid the ping-pong effect which is raised by the movement 

of 𝑀. Let 𝑇𝑖,𝑗,𝑥,𝑦𝑙𝑜𝑐𝑘  represent the time length that 𝑀 cannot visit  𝑔𝑥,𝑦 which has been already recharged in 𝑡𝑗.  

Let  
𝐵𝑬𝒊𝒄𝒐𝒏  represent the lifetime of each sensor 𝑠𝑖 covering  𝑔𝑥,𝑦 . Let |𝑆𝑥,𝑦𝑟𝑐𝑔| denote the number of sensors covering  𝑔𝑥,𝑦 

and 𝜀 is a parameter that calculates the waiting time of 𝑔𝑥,𝑦 

for next visit. Exp. (26) calculates the value of 𝑇𝑖,𝑗,𝑥,𝑦𝑙𝑜𝑐𝑘 . 

𝑇𝑖,𝑗,𝑥,𝑦𝑙𝑜𝑐𝑘 = 1|𝑆𝑥,𝑦𝑟𝑐𝑔| ∑ 𝐵𝐸𝑖𝑐𝑜𝑛𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔 /𝜀 
(26) 

Based on the abovementioned Top-k Maximal Lifetime 

policy, 𝑀 will select top-k best grids to construct the charging 

path and perform the charging task along the path. Then  𝑀 

will go to the first grid in the constructed path and update 𝐸𝑖,𝑗𝑟𝑒𝑚  of all sensors  𝑠𝑖𝑆 . During the execution of the 

recharging task, 𝑀  might receive more recharging requests 

from other sensors. It will again calculate the next k-best 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  

aiming to recharge the following 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡. The calculations of 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 , 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 , 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔
, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒   as well as 𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔

will be 

considered as the operations of each round.  

Fig. 4 illustrates the procedure of executing the proposed 

CE algorithm. According to the example shown in Fig. 4, five 

sensors S= {s1, s2, s3, s4, s5}  are randomly deployed in the 

given region. Assume that the remaining energy of the five 

sensors are 𝑠1 =70, s2 =100, 𝑠3 =100, s4 =85 and s5 =80. 

The grids 𝑔4,5, 𝑔6,4 and 𝑔7,6 are the three candidates to play 

the role of 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  . These three grids are the best locations to be 

visited by 𝑀. Assume that the distances between 𝑀 and the 

grids 𝑔4,5, 𝑔6,4 and 𝑔7,6 are 1, 2 and 3, respectively. Assume 

that 𝐸𝑖𝑐𝑜𝑛=1 and 𝑣 =1. Furthermore, assume that 𝐸𝑖,𝑗𝑐𝑟𝑔 = 1 for 

all sensor 𝑠𝑖 . As shown in Fig. 4, it is obvious that 𝑆6,4𝑟𝑐𝑔 ={𝑠1, 𝑠2, 𝑠3}, 𝑆4,5𝑟𝑐𝑔 = {𝑠3, 𝑠5} and 𝑆7,6𝑟𝑐𝑔 = {𝑠2, 𝑠4}. The first step 

is to identify the sensor 𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡  in each 𝑆𝑥,𝑦𝑟𝑐𝑔
. 

 
FIGURE 4. According to the CE algorithm, 𝑴 finds the next visited location. 

In this example, we have 𝑠𝑖,6,4𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑠1 in  𝑆6,4𝑟𝑐𝑔
, 𝑠𝑖,4,5𝑙𝑜𝑤𝑒𝑠𝑡 =𝑠5  in  𝑆4,5𝑟𝑐𝑔

and 𝑠𝑖,7,6𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑠4  in  𝑆7,6𝑟𝑐𝑔
 . Next, 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔

 for each 

candidate grid 𝑔𝑥,𝑦 should be calculated. The following takes 

the grid 𝑔6,4 as an example to derive the charging location.  

First, we have 𝑇1,𝑗,6,4𝑐𝑟𝑔 = 𝐵−𝐸1,𝑗𝑟𝑒𝑚𝐸1𝑐𝑟𝑔 = 100−701 = 30. 

Next, we have 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,6,4𝑚𝑜𝑣𝑒 = 𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑙𝑔6,4)𝑣 = 21 = 2. 

Therefore, we have 𝑇1,𝑗,6,4𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔 = 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔 + 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,6,4𝑚𝑜𝑣𝑒 ∗𝐸1𝑐𝑜𝑛𝐸1𝑟𝑐𝑔 = 30 + 2∗11  =32 

According to the fact of { 𝑠𝑘 ∉ 𝑆6,4𝑟𝑐𝑔
}={ 𝑠4, 𝑠5 }, the 

following further calculates the remaining lifetime of 𝑠4  and 𝑠5 . 𝑇4𝑙𝑖𝑓𝑒 = 72 and 𝑇5𝑙𝑖𝑓𝑒 = 60 

Finally, it is obtained that the weight of the grid 𝑔6,4 is 132. 

Similarly, the weights of the grids 𝑔4,5 and 𝑔7,6 are 189 and 

187, respectively. According to Exp. (24), the best recharging 

location is 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 = 𝑔4,5 

This implies that 𝑀  will go to grid 𝑔4,5  to charge the 

sensors 𝑠3 and 𝑠5 . According to Exp. (25), 𝑀 constructs the 

charging path. The procedure of the CE Algorithm is detailed 

below. 

Procedure: CE Algorithm 

Inputs: 

1.  𝑆 = {𝑠1, 𝑠2, … 𝑠𝑖 , … 𝑠𝑛}. 

2.  𝐵, 𝐸𝑖𝑐𝑜𝑛, 𝐸𝑖,𝑗𝑟𝑒𝑚, 𝑐𝑖𝑠𝑒𝑛 and 𝑐𝑖𝑟𝑐𝑔
 of  sensor 𝑠𝑖. 

3.  The total observing time is T={𝑡1, 𝑡2, … 𝑡𝑗 , … 𝑡𝑚}. 
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Outputs: 

1. The monitoring quality Q by all sensors during T. 

1.  𝑡𝑗=𝑡1; 

2.  Repeat { 

3.  𝑆𝑥,𝑦𝑟𝑐𝑔 = {𝑠𝑖|𝑔𝑥,𝑦 𝑖𝑠 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑖𝑟𝑐𝑔}; 

4.  𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔 𝐸𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑟𝑒𝑚 ； 

5.  𝑆𝑙𝑜𝑤𝑒𝑠𝑡 ={𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡|𝑠𝑖,𝑥,𝑦𝑙𝑜𝑤𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘1≤𝑖≤𝑛 𝐸𝑖,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑟𝑒𝑚 }𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟; 

6.  𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔 = 𝐵−𝐸𝑖,𝑗𝑟𝑒𝑚𝐸𝑖𝑐𝑟𝑔 ; 

7.  𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 = 𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑙𝑔𝑥,𝑦)𝑣 ; 

8.  𝑇𝑖,𝑗,𝑥,𝑦𝑡𝑜𝑡𝑎𝑙_𝑐𝑟𝑔 = 𝑇𝑖,𝑗,𝑥,𝑦𝑐𝑟𝑔 + 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑥,𝑦𝑚𝑜𝑣𝑒 ∗𝐸𝑖𝑐𝑜𝑛𝐸𝑖𝑐𝑟𝑔 ; 

9.  𝑇𝑘𝑙𝑖𝑓𝑒 = 𝐸𝑖,𝑗𝑟𝑒𝑚𝐸𝑖𝑐𝑜𝑛 ; 
10.  𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 𝛷𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡

; 

11.  The 𝑀 will go to the grid 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 to charge 

12.  𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡= =𝑙𝑔𝑥,𝑦; 

13.  Update 𝐸𝑖,𝑗𝑟𝑒𝑚 of 𝑠𝑖𝑆 ; 
14.  Until (𝑡𝑗= =𝑡𝑚) } 

15.  Compute 𝑄 in 𝑇 according to Exp. (7); 

16. Return 𝑄; 
2) COST-EFFECTIVE WITH CONSIDERATION OF 
COVERAGE AND FAIRNESS (𝐶2𝐹) ALGORITHM 

The 𝐶2𝐹 algorithm further considers the obtained loss and 

benefits before the calculation of every possible recharging 

location. Let 𝑔𝑥,𝑦 represent the candidate recharging location 

where 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
 will be charged. The 𝐶2𝐹 algorithm considers 

two benefits when 𝑀 goes to 𝑔𝑥,𝑦  to execute the recharging 

operation. The first benefit is considering the chain-effect 

while the second one is calculating the coverage loss and 

benefits of each candidate charging location.  

The following will discuss the benefit and weight of 

recharging each sensor 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
. Let Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡

  denote the 

benefit obtained from recharging 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
. The value of Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡

 can be measured by Exp. (27). 

 Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝐸𝑖𝑐𝑟𝑔 × ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔 |𝑠𝑥,𝑦𝑟𝑐𝑔|  (27) 

As shown in Exp. (27), two benefits, including the total 

recharged energy and the coverage contribution, are obtained 

by recharging the sensors 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
 at grid 𝑔𝑥,𝑦 . Since the Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡

denotes the average benefit obtained from 𝑠𝑖𝑆𝑥,𝑦𝑟𝑐𝑔
, 

the total benefit is divided by |𝑆𝑥,𝑦𝑟𝑐𝑔|. 
The distance between the current location of 𝑀 and 𝑔𝑥,𝑦 is 

considered as the cost if 𝑀 moves to 𝑔𝑥,𝑦. Recall that 𝑑(𝑙𝑎 , 𝑙𝑏) 

represents the distance between 𝑙𝑎  and 𝑙𝑏 .  The Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 of 

grid 𝑔𝑥,𝑦 is the average benefit, which is divided by  𝑑(𝑙𝑎 , 𝑙𝑏), 

as shown in Exp. (28).  

Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡 = Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡/ 𝑑(𝑙𝑎, 𝑙𝑏) (28) 

Let grid 𝐺𝑏𝑒𝑠𝑡 denote the set of top-k best grids which have 

the maximal weight and will be used to construct the charging 

path. Exp. (29) reflects the recharging policy.           𝐺𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 𝛷𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 

(29) 

Let the set of top-k best grids be represented by the ordered 

list. We have,  𝐺𝑏𝑒𝑠𝑡 = (𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 ). 

Then 𝑀  will construct a path passing through each grid in 𝐺𝑏𝑒𝑠𝑡  according to the list order 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 . To 

maintain the fairness of recharging the sensors, all the 

recharged sensors will be locked 𝑇𝑖,𝑗,𝑥,𝑦𝑙𝑜𝑐𝑘  as shown in Exp. (26). 

This policy helps 𝑀 to avoid the ping-pong effect, which is 

caused by the movement of 𝑀 . The following presents the 

recharging policy.  

Fairness Recharging Policy: 

Assume that 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡  is considered as the recharging 

location at 𝑡𝑗 . Then 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡  will be locked for 𝑇𝑖,𝑗,𝑥1,𝑦1𝑙𝑜𝑐𝑘  and 𝑀 

will visit 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡  only after 𝑡𝑗 + 𝑇𝑖,𝑗,𝑥1,𝑦1𝑙𝑜𝑐𝑘 . 

Based on the abovementioned Top-k Charging Fairness 

policy, 𝑀 will select top-k best grids to construct the charging 

path and perform the charging task along the path. The path 

construction issue will be discussed in the next subsection. 

Then 𝑀 will go to the first grid in the constructed path and 

update 𝐸𝑖,𝑗𝑟𝑒𝑚  of all sensors 𝑠𝑖𝑆. During the execution of the 

recharging task, 𝑀  might receive more recharging requests 

from other sensors. Therefore, it will again calculate the next 

k-best 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  grids, aiming to visit the next 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 . The 

calculations of Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡
 , Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡

 as well as  𝐺𝑏𝑒𝑠𝑡   will be 

executed in each round. 

Fig. 5 illustrates the procedure of executing the proposed 𝐶2𝐹  algorithm. According to the example shown in Fig. 5, 

there are five sensors S= {s1, s2, s3, s4, s5}  deployed in the 

monitoring region. The grids 𝑔4,5, 𝑔6,4 and 𝑔7,6 are the three 

candidates to play the role of 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡  . These three grids are the 

best locations to be visited by 𝑀. Assume that the distances 

between 𝑀 and the grids 𝑔4,5, 𝑔6,4 , and 𝑔7,6 are 1, 2 and 3, 

respectively. Therefore, we  𝑆6,4𝑟𝑐𝑔 = {𝑠1, 𝑠2, 𝑠3} , 𝑆4,5𝑟𝑐𝑔 = {𝑠3, 𝑠5}  and 𝑆7,6𝑟𝑐𝑔 = {𝑠2, 𝑠4} 

Assume that we have, 

 ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆6,4𝑟𝑐𝑔 = 3.5,  ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆4,5𝑟𝑐𝑔 = 3 and 

 ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆7,6𝑟𝑐𝑔 = 3 

Also, assume that we have 
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⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆6,4𝑟𝑐𝑔 = 100, ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆4,5𝑟𝑐𝑔 = 80,  ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆7,6𝑟𝑐𝑔 = 80 

 Therefore, Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡
 for each 𝑔4,5, 𝑔6,4  and 𝑔7,6  can be 

calculated by: Φ6,4𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆6,4𝑟𝑐𝑔 × ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆6,4𝑟𝑐𝑔|𝑆6,4𝑟𝑐𝑔| = 3.5 × 1003 = 116.67 

Φ4,5𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆4,5𝑟𝑐𝑔 × ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆4,5𝑟𝑐𝑔|𝑆4,5𝑟𝑐𝑔| = 3 × 802 = 120 

𝛷7,6𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝐸𝑖𝑐𝑟𝑔𝑠𝑖∈𝑆7,6𝑟𝑐𝑔 × ⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆7,6𝑟𝑐𝑔|𝑆7,6𝑟𝑐𝑔| = 3 × 802 = 120 

Next, the Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 for each 𝑔4,5 , 𝑔6,4  and 𝑔7,6  can be 

calculated by: Φ6,4𝑤𝑒𝑖𝑔ℎ𝑡 = Φ6,4𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑙6,4) = 116.672 = 58.3 

Φ4,5𝑤𝑒𝑖𝑔ℎ𝑡 = Φ4,5𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑙4,5) = 1201 = 120 

Φ7,6𝑤𝑒𝑖𝑔ℎ𝑡 = Φ7,6𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑑(𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑙7,6) = 1203 = 40 

Assume that k=1. According to Exp. (29), the top-1 best 

recharging location is 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 = 𝑔4,5. 

 

FIGURE 5. According to the 𝐂𝟐𝐅 
algorithm, 𝑴 chooses the next 𝒈𝒙,𝒚𝒃𝒆𝒔𝒕. 

This implies that 𝑀 will go to the grid 𝑔4,5  to charge the 

sensors 𝑠3 and 𝑠5. After completing the charging task, 𝑀 will 

not charge the same sensors 𝑠3  and 𝑠5  at the grid 𝑔4,5  for a 

time length of 100/ 𝜀. The following summarizes the proposed 𝐶2𝐹  algorithm.   

 

Procedure: 𝑪𝟐𝑭 
 Algorithm  

Inputs: 

1.  𝑆 = {𝑠1, 𝑠2, … 𝑠𝑖 , … 𝑠𝑛}. 

2.  𝐵, 𝐸𝑖𝑐𝑜𝑛, 𝐸𝑖,𝑗𝑟𝑒𝑚, 𝑐𝑖𝑠𝑒𝑛 and 𝑐𝑖𝑟𝑐𝑔
 of  sensor 𝑠𝑖. 

3.  The total observing time is T={𝑡1, 𝑡2, … 𝑡𝑗 , … 𝑡𝑚}. 

Outputs: 

1. The monitoring quality Q by all sensors during T. 

1.  𝑡𝑗=𝑡1; 

2.  Repeat { 

3.  𝑆𝑥,𝑦𝑟𝑐𝑔 = {𝑠𝑖|𝑔𝑥,𝑦 𝑖𝑠 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑐𝑖𝑟𝑐𝑔}; 

4.  𝛷𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = ∑ 𝑬𝒊𝒄𝒓𝒈×⋃ 𝑐𝑖𝑠𝑒𝑛𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔𝑠𝑖∈𝑆𝑥,𝑦𝑟𝑐𝑔 |𝑆𝑥,𝑦𝑟𝑐𝑔| ； Φ𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡 = Φ𝑥,𝑦𝑏𝑒𝑛𝑒𝑓𝑖𝑡/ 𝑑(𝑙𝑎 , 𝑙𝑏)    𝐺𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑘𝑔𝑥,𝑦𝐺𝑐𝑜𝑣𝑒𝑟 𝛷𝑥,𝑦𝑤𝑒𝑖𝑔ℎ𝑡
 

5.  The 𝑀 will go to the grid 𝑔𝑥,𝑦𝑏𝑒𝑠𝑡 to charge 

6.  𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡= =𝑙𝑔𝑥,𝑦; 
7.  Update 𝐸𝑖,𝑗𝑟𝑒𝑚 of 𝑠𝑖𝑆 ; 
8.  Until (𝑡𝑗= =𝑡𝑚) } 

9.  Compute 𝑄 in 𝑇 according to Exp. (7); 
10. Return 𝑄; 

C. PATH CONSTRUCTION PHASE 

In this phase, 𝑀 will construct a recharging path according 

to the schedule of sensors in the second phase. Recall that 

Exps. (24) and (29) return top-k best grids to be visited by 𝑀. 

Let the set of top-k best grids be an ordered list 𝐺𝑏𝑒𝑠𝑡 =(𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 ). The 𝑀 will construct a path  𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = (𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡 , 𝑔𝑥2,𝑦2𝑏𝑒𝑠𝑡 , … 𝑔𝑥𝑘,𝑦𝑘𝑏𝑒𝑠𝑡 ) 

which passes through each 𝑔𝑥𝑖,𝑦𝑖𝑏𝑒𝑠𝑡  of 𝐺𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . According to 

the visited order, 𝑀 will move from  𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the first best 

grid 𝑔𝑥1,𝑦1𝑏𝑒𝑠𝑡  and then recharge those sensors 𝑠𝑖𝑆𝑥1,𝑦1𝑟𝑐𝑔
. During 

the execution of this recharging task, some other sensors 

might send recharging requests to 𝑀. Then 𝑀 will consider 

these requests and execute the proposed algorithms as shown 

in Phase 2. Then it will construct a new path by applying the 

Path Construction Phase as proposed in this subsection. The 

flow chart of the proposed algorithms is shown in Fig. 6. 

 
FIGURE 6. The flowchart of the proposed CE and 𝐂𝟐𝐅 

algorithms. 
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V. PERFORMANCE EVALUATION 

The performance of the proposed CE and 𝐶2𝐹  against the 
existing SDT and HSA-DFWA algorithms is evaluated in this 
section. Existing study [18] proposed an algorithm SDT which 
investigated the scheduling issue and aimed to maximize the 
average coverage ratio of WSNs. Another existing study [19] 
proposed an energy recharging algorithm HSA-DFWA by 
considering the charging time of sensor nodes. 

A. SIMULATION SETTINGS 

The MATLAB platform is used in the simulation. The 

number of sensors ranges from 300 to 700. A random 

deployment of sensors is considered in the monitoring region 

of size 700m x 700m. The grid size is set at 4m, 7m, 12m, 15m 

and 18m. The sensing radius of each sensor varies ranging 

from 5m to 25m. The total energy 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑡𝑜𝑡𝑎𝑙  of the mobile 

charger  is set at 2000J and the speed 𝑣 of the mobile charger 

is set at 5m/s. The total energy consumption 𝐸𝑚𝑜𝑣𝑒  of mobile 

charger for moving is set at 0.1J/m. The transmission power 𝑃𝑐𝑟𝑔𝑡𝑥   of the mobile charger is 100J. The initial energy of each 

sensor is set at 100J.The simulation parameters are listed in 

Table 2. 
TABLE II 

SIMULATION PARAMETERS 

Parameters Values 

Tool Matlab 

         Deployment type Random 

Area size 700m x 700m 

Number of sensors 300 - 700 

Grid size 4m,7m,12m,15m,18m 

Sensing range of sensors 5m−25m 

Total energy of mobile charger  2000J 

Speed of mobile charger 5m/s 

Total energy consumption for 

movement of mobile charger 

Transmission power  

Initial energy of sensor 

0.1J/m 

 

100J 

100J 

B. SIMULATION RESULTS  

Fig. 7 illustrates the recharging path constructed by the 

mobile charger adopting the CE and 𝐶2𝐹  
algorithms. As 

shown in Fig. 7 (a), the size of monitoring region is set at 

700m x 700m. In this simulation, the number of deployed 

sensors is set at 150. The sensing and charging ranges of 

each sensor are set at 20m and 10m, respectively. The 

energy of sensors is set at four levels. The red colour 

sensors represent the sensors with 25% of the remaining 

energy. Similarly, the yellow, blue and green colour 

sensors represent the sensors with 50%, 75% and 100% of 

remaining energies, respectively. Initially, the proposed 

CE algorithm identifies the grids with the sensors, which 

have the lowest remaining energy. Based on the weight of 

the grid the best recharging location is determined. 

According to the simulation shown in Fig. 7 (a), the weight 

of the grid  𝑔7,3 is larger. Thus, the mobile charger travels 

to grid 𝑔7,3 for recharging the sensors in the charging range 

of grid 𝑔7,3  and all the other grids are visited accordingly. 

The simulation settings of Fig. 7 (b) are similar to Fig. 7 

(a). Similar to the CE algorithm, the proposed 𝐶2𝐹 

algorithm identifies the coverage loss and benefit of 

visiting each grid, which is covered by those waiting 

recharging sensors. The proposed 𝐶2𝐹  algorithm 

determines the benefit of each recharging location. 

According to the simulation shown in Fig. 7 (b), the benefit 

of the grid 𝑔4,4   is larger. Therefore, the mobile charger 

moves to the grid 𝑔4,4 to recharge the sensors and all the 

other grids are visited accordingly. Finally, the constructed 

path of the CE algorithm is longer as compared to the 𝐶2𝐹 

algorithm.  

(a) The recharging path constructed by mobile charger 

adopting the CE algorithm 

 

(b) The recharging path constructed by mobile charger 

adopting the 𝐶2𝐹 
algorithm 

FIGURE 7. An experiment illustrating the recharging path construction of 
CE and 𝐂𝟐𝐅 

algorithms. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3088524, IEEE Access

 

11 
VOLUME XX, 2020 

Fig. 8 compares the surveillance qualities of 𝐶2𝐹, CE, 

HSA-DFWA and SDT algorithms by changing the number 

of sensors and the sensing range. In this simulation, the 

number of deployed sensors is set at 300 to 700 and the 

sensing range is adjusted between 5m and 25m. Fig. 8 

depicts that, the surveillance quality of all the algorithms 

increases with the number of deployed sensors. This occurs 

because if the deployed sensors are more, more sensors 

have the opportunity to monitor the region. Consequently, 

it leads to higher surveillance quality. A sensor with a 

larger sensing radius can cover a larger area, therefore the 

surveillance qualities of all algorithms increase with 

sensing radius. The 𝐶2𝐹  yields the best performance as 

compared to the other three algorithms. This is because the  𝐶2𝐹 selects the sensors which have larger contributions, 

leading to a higher surveillance quality. Besides, the 

existing SDT algorithm has lower results compared to 𝐶2𝐹, 

CE, HSA-DFWA. This occurs because the SDT algorithm 

divides the sensors into different clusters and charges each 

cluster separately. The major policy of the SDT algorithm 

is recharging all the sensors in one cluster. It considers the 

distance between each sensor in the cluster. However, there 

might be sensors located very closer. Therefore, this policy 

leads to lower surveillance quality. 

 
FIGURE 8. Performance comparison of surveillance quality for 𝐂𝟐𝐅 

, CE, HSA-DFWA and SDT algorithms.  

Fig. 9 depicts the effect of grid size and sensing range 

on the surveillance quality. The sensing range and grid size 

are set from 5m to 25m and 4m to 18m, respectively. As 

shown in Fig. 9, the surveillance qualities decrease with 

grid size and increase with the sensing range. This is 

because more sensors can effectively cover a smaller grid 

size.  In comparison, the proposed 𝐶2𝐹 outperforms the CE, 
HSA-DFWA and SDT algorithms. The 𝐶2𝐹  algorithm 

adopts the charging fairness policy and determines the 

obtained loss and benefits of each charging location. 

Consequently, the larger sensing range and the smaller grid 

size result in higher surveillance quality. 

Fig. 10 evaluates the surveillance qualities by using 

different deployment policies such as centralized, random 

and uniform. The number of deployed sensors is set 

ranging from 300 to 700. As shown in Fig. 10, the uniform 

policy outperforms the other two policies. 

 

FIGURE 9. Performance comparison of surveillance quality for 𝐂𝟐𝐅 
, CE, HSA-DFWA and SDT algorithms. 

In fact, the uniform deployment of sensors performs 

their task uniformly, which is impractical in the real world. 

Besides, the 𝐶2𝐹 algorithm yields the best performance 

compared to CE, HSA-DFWA and SDT algorithms 

specifically for random policy. The two benefits are taken 

into account by the 𝐶2𝐹 algorithm. The increased energy 

of each sensor and the coverage contribution. This policy 

helps 𝐶2𝐹 algorithm yield the best performance.  

 
FIGURE 10. Performance comparison of surveillance quality for 𝐂𝟐𝐅 

, 

CE, HSA-DFWA and SDT algorithms. 

Fig. 11 further investigates the fairness index of 

recharging for 𝐶2𝐹, CE, HSA-DFWA and SDT algorithms 

by varying the grid size. The grid size is adjusted from 4m 

to 18m and the number of deployed sensors is set at 700 

and 600. In this experiment, the energy of each sensor is 

set at 15000 units. The recharging fairness index is 

calculated according to Exp. (30).  
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𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 = (∑ 𝑥𝑖𝑛𝑖=1 )2𝑛 ∗ ∑ 𝑥𝑖2𝑛𝑖=1  (30) 

where 𝑥𝑖  denotes the recharged energy of the sensor 

node 𝑠𝑖 . Fig. 11 depicts that 𝐶2𝐹 and CE algorithms yield 

better performance than HSA-DFWA and SDT algorithms. 

This is because that 𝐶2𝐹  algorithm determines coverage 

contribution of the individual sensor. Besides, both 𝐶2𝐹, 

CE algorithms avoid the ping-pong effect caused by the 

movement of 𝑀 . This policy helps 𝑀  to recharge more 

sensors, which improves the fairness index value.  

Fig. 12 evaluates the data quality of the recharged 

sensors. Since the deployed sensors are more and 

recharging each sensor is time-consuming, a mobile 

charger is usually unable to recharge all sensors. In this 

case, the recharged sensors are expected to be distributed 

all over the area. Herein, the data quality represents the 

degree that the collected data of sensors can represent the 

data of the whole monitoring region. 

 

FIGURE 11. Performance comparison of fairness index of recharging 

for 𝐂𝟐𝐅 
, CE, HSA-DFWA and SDT algorithms by varying the grid size.  

 

FIGURE 12. Performance comparison of ADQ of recharged sensors by 
varying the charging rate and the battery size. 

Let 𝑆̂={𝑠̂1, 𝑠̂2, … 𝑠̂𝑖 , … 𝑠̂𝑥} denote the set of x recharged 

sensors in each round. If the x sensors can be equally 

distributed over the whole monitoring region, their 

Voronoi cells will have a similar size. In the other case, if 

the x sensors are closely located to each other, their 

Voronoi cells will have different sizes. The area size of the 

Voronoi cell of the sensor 𝑠̂𝑖  indicates that the 

environmental data occurred in that cell area can be 

represented by the data collected by the sensor 𝑠̂𝑖 . 

Therefore, a small cell size indicates that the collected data 

can better represent the corresponding cell region. That is 

to say, if all cell sizes are similar, the maximal cell size can 

be minimized. This also implies that the data collected by 

the x sensors have higher data quality. Let the Voronoi cells 

in the monitoring region be denoted by 𝐶 ={𝐶1, 𝐶2, … . . 𝐶𝑥} . 

Let  𝑖  be the cell size of 𝐶𝑖 . The Average Data Quality 

(ADQ) of the recharged sensors is calculated by applying 

Exp. (31). 

𝐴𝐷𝑄 = (∑ 𝑖𝑥𝑖=1 )2𝑥 ∗ ∑ 𝑖2𝑥𝑖=1  (31) 

Fig. 12 compares the data quality of 𝐶2𝐹, CE, HSA-

DFWA and SDT algorithms in terms of charging rate and 

battery size. The charging rate and the battery size varied 

from 30 to 70 units and 80 to 100, respectively. Fig. 12 

illustrates that the data quality of 𝐶2𝐹, CE, HSA-DFWA 

and SDT algorithms increase with the charging rate. This 

occurs because mobile charger can recharge more sensors. 

Consequently, it leads to the higher data quality of 

recharged sensors. Besides, the data quality of the four 

algorithms decreases with battery size. This occurs because 

the sensors need to be recharged for a long time when the 

battery size is enlarged. In comparison, 𝐶2𝐹 and CE 

algorithms outperform the HSA-DFWA and SDT 

algorithms. This occurs because 𝐶2𝐹  and CE algorithms 

avoid the ping-pong effect. This strategy helps recharge a 

larger number of sensors without incurring many detours, 

leading to higher data quality. 

Fig. 13 investigates the performance of recharging 

stability for 𝐶2𝐹, CE, HSA-DFWA and SDT algorithms. To 

conduct this experiment, nine random locations are 

observed in the monitoring region. The considered 

monitoring region size is 700m * 700m and the number of 

sensors is 2000. The sensing range of each sensor is set at 

20m. The proposed 𝐶2𝐹  algorithm achieves the best 

recharging stability compared to the HSA-DFWA and SDT 

algorithms. The 𝐶2𝐹 algorithm determines the benefit of 

each grid before every charging decision. It also adopts the 

charging fairness policy, which helps 𝑀 to avoid the ping-

pong effect.  

Fig. 14 compares the coverage ratio of four algorithms 

in terms of deployed sensors and sensing range. The 

number of deployed sensors is varied ranging from 300 to 

700 and the sensing range is adjusted between 5m and 25m. 

As shown in Fig. 14, the coverage ratio grows with both 

the deployed sensors and the sensing range. This occurs 

because that more sensors can enlarge the coverage area 

and hence have a larger coverage contribution. Besides, 

sensors with a large sensing range can cover larger region.  
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Therefore, the quality of the monitoring region is 

increased, leading to a higher coverage ratio. In 

comparison, 𝐶2𝐹  outperforms CE, HSA-DFWA and SDT 

algorithms. This occurs because that the proposed 𝐶2𝐹 

selects the sensors based on the coverage contribution. 

 
FIGURE 13. Comparison of recharging stability of 𝐂𝟐𝐅 

, CE, HSA-DFWA 
and SDT algorithms. 

 
FIGURE 14. Performance comparison of coverage ratio for 𝐂𝟐𝐅 

, CE,  
HSA-DFWA and SDT algorithms. 

VI. CONCLUSIONS 

This paper proposed an energy-recharging algorithm 

aiming to maximize the accumulated monitoring quality of 

all the sensors in the given region. The proposed algorithm 

consists of three phases: Initialization Phase, Recharging 

Scheduling Phase and Path Construction Phase. The first 

phase calculates 𝑆𝑥,𝑦𝑟𝑐𝑔
 and 𝑆𝑥,𝑦𝑠𝑒𝑛 of each 𝑔𝑥,𝑦 . After that, the 

second phase aims to select some sensors, which have sent 

the recharging requests to 𝑀  to be recharged. Finally, the 

third phase constructs a charging path according to the 

schedule of sensors in the second phase. This paper proposed 

two recharging algorithms, including the CE and  𝐶2𝐹 . 

Firstly, the CE algorithm determines the cost of each 

recharging operation executed by 𝑀 and considers the Top-

k Maximal Lifetime policy. The 𝐶2𝐹  algorithm further 

considers both the obtained loss and benefits before the 

calculation of every recharging location. Performance 

evaluation shows that the proposed CE and 𝐶2𝐹 algorithms 

outperform the existing HSA-DFWA and SDT algorithm in 

terms of fairness index of recharging, recharging stability 

and coverage ratio. 

The issue of multiple mobile chargers and their 

cooperation such as task partitioning will be considered as 

the future work of this study. Furthermore, we would like 

to relax the constraints of this paper. 
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