
To appear in Telecommunication Systems, 2004

Coverage, Exploration and Deployment by a

Mobile Robot and Communication Network

Maxim A. Batalin and Gaurav S. Sukhatme

Robotic Embedded Systems Lab
Computer Science Department

Center for Robotics and Embedded Systems
University of Southern California

Los Angeles, CA 90089

Abstract. We consider the problem of coverage and exploration of an
unknown dynamic environment using a mobile robot. The environment
is assumed to be large enough such that constant motion by the robot is
needed to cover the environment. We present an efficient minimalist al-
gorithm which assumes that global information is not available (neither a
map, nor GPS). Our algorithm deploys a network of radio beacons which
assists the robot in coverage. The network is also used by the robot for
navigation. The deployed network can also be used for applications other
than coverage (such as multi-robot task allocation). Simulation experi-
ments are presented which show the collaboration between the deployed
network and mobile robot for the tasks of coverage/exploration, network
deployment and maintenance (repair), and mobile robot recovery (hom-
ing behavior). We discuss a theoretical basis for our algorithm on graphs
and show the results of the simulated scenario experiments.

1 Introduction

We consider two problems from traditionally different backgrounds. The first is
the exploration and coverage of a space by a mobile robot. The coverage
problem has been defined [1] as the maximization of the total area covered by
the robot’s sensors. There are many applications of coverage such as tracking un-
friendly targets (e.g military operations), demining or monitoring (e.g. security),
and urban search and rescue (USAR) in the aftermath of a natural or man-made
disaster (e.g. building rubble due to an earthquake or other causes). We require
the robot to cover all areas of the space, and to occasionally navigate to a desig-
nated target location in the space. The second problem is the deployment of

a sensor and communication network into an environment. Such a network
may be used for monitoring, or as an ad-hoc communication infrastructure. Our
claim is that these two problems are best solved together i.e. a combined solu-
tion exists which satisfies both objectives. The basic idea is simple - the robot
deploys the network into the environment as it explores, and the network guides
future robot exploration.

Coverage can be considered as a static or a dynamic problem. The static

coverage problem is addressed by algorithms [2–4]. The goal of these algorithms



is to converge to a static configuration (an equilibrium state), such that every
point in the environment is under the robots’ sensor shadow (i.e. covered) at
every instant of time. For complete static coverage of an environment the robot
team should have a certain critical number of robots (depending on environment
size, complexity, and robot sensor ranges). Determining the critical number is
difficult or impossible [2] if the environment is unknown a priori. Dynamic cov-
erage, on the other hand, is addressed by algorithms which explore and hence
’cover’ the environment with constant motion and neither settle to a particular
configuration [5], nor necessarily to a particular pattern of traversal. Coverage
of the environment can be accomplished over time with any number of robots.

In this paper we consider the case of a single robot in an environment that
is large enough that complete static coverage of the environment is not possible.
The robot must thus continually move in order to observe all points in the
environment frequently. In other words, we study the dynamic coverage problem
with a single robot. We briefly discuss various multi-robot extensions at the end
of the paper.

Single robot exploration of unknown environments has been studied be-
fore [6–8]. The frontier-based approach [6, 7] incrementally constructs a global
occupancy map of the environment. The map is analyzed to locate the ’frontiers’
between the free and unknown space. Exploration proceeds in the direction of
the closest ’frontier’. The multi-robot version of the same problem was addressed
in [9]. The problem of coverage was considered from the graph theoretic view-
point in [10, 11]. In both cases the authors study the problem of dynamic single
robot coverage on an environment consisting of nodes and edges (a graph). The
key result was that the ability to tag a limited number of nodes (in some cases
only one node) with unique markers dramatically improved the cover time. It
may be noted that both papers consider the coverage problem, but in the pro-
cess also create topological maps of the environment graph being explored. Using
markers for robot navigation has also been the subject of research in biologically-
inspired robotics where the markers form a trail [12] (inspired by the trail-laying
behavior of ants).

The algorithm we propose (a variation of the Node Counting and Edge Count-

ing algorithms discussed in [13, 14]) differs from the above approaches in a num-
ber of ways. We use neither a map, nor localization in a shared frame of refer-
ence. Our algorithm is based on the deployment of a set of static nodes into the
environment by the robot. The nodes form a communication network. We term
every node in the network a marker. The markers we use act as a support infras-
tructure, which the mobile robot uses to solve the coverage problem efficiently.
The robot explores the environment, and based on certain local criteria, drops a
marker into the environment, from time to time. Each marker is equipped with
a small processor and a radio of limited range. Our algorithm performs the cov-
erage task successfully using only local sensing and local interactions between
the robot and markers. The approach builds on our prior work [5], and strives
to maintain connectivity in the network.



(a) (b) (c) (d)

Fig. 1. A schematic of a) Initial Environment (before the experiment); b) Environ-
ment after changes with deployed network(beginning of experiment); c) Some of the
nodes require replacement (malfunctioned, damaged, etc.); d) Another alteration to
environment and a robot that has to return to marker H;

Our key contribution is an algorithm for robot exploration and coverage
that relies on the deployment of a communication network. Once deployed the
network is used by the robot for efficient exploration and navigation. We note
that our approach for navigation is similar to [15], which uses potential fields
whereas we use value iteration.

Analysis of the deployed network as a graph shows that our algorithm is
complete i.e. it covers every vertex of the graph and efficient (cover time linear
in the size of the network graph). We discuss data from one long term continuous
experiment which includes a dynamic environment and exhibits the major func-
tionalities of our approach: the ability to provide full coverage/exploration of the
environment, robustness to changes in the environment, ability to replace dam-
aged markers, navigation and extensions to multi-robot applications utilizing the
deployed network.

2 Experimental Scenario

Imagine a scenario where the environment changes dramatically in a short time-
span; for example a collapsing building. In such a situation a mobile robot, or a
group of robots, could be sent into the building to search for people. Our system
allows a mobile robot to explore (and completely cover) the environment without
access to a prior map, by deploying markers into the environment. Subsequently,
the robot is able to ’home’ to a given location using the same set of markers.

Figure 1a shows the floor plan of the environment prior to changes. Con-
ventional approaches to covering this environment and exploring it, could use a
map-based technique (such as the ones in [6, 7]). Suppose however that due to a



(a)

Broadcast Device
Inbox

Deployed?

Y

Controller

N
...

T C E

T C ET C E

T C E

Advisor

Broadcast Device
Outbox

(b)

Fig. 2. a) System Architecture showing Robot Behaviors; b) Beacon Architecture

catastrophic event (e.g. earthquake, fire) debris is introduced into the environ-
ment, thereby altering it (Figure 1b). Even though the map of the environment
might be available initially, an altered environment would be difficult or impos-
sible to cover and explore, with approaches relying on metric/topological map
usage. The experimental work reported in this paper starts at this point. A robot
is introduced into the environment of Figure 1b. The robot explores the envi-
ronment by populating it with markers that form a network. Figure 1c shows
a schematic of the network with some of the nodes removed (malfunctioned,
destroyed, etc.). Using our algorithm, the robot repairs the gap in the network
by deploying new nodes. The last step of the scenario is depicted in Figure 1d.
The environment was altered again so that extra space in the environment is
uncovered. The robot is now required to explore and cover the extra space by
deploying markers. In addition, the robot is required to use deployed network
for homing - returning to a special marker (H on Figure 1d).

3 Architecture

Our algorithm uses two entities: the markers and the mobile robot. The task
of each marker is to recommend a locally preferred direction of movement for
the robot within its communication range. Thus each marker acts as a local
signpost telling the robot which direction to explore next. The robot treats this
information as a recommendation, and combines it with local range sensing (to
avoid obstacles) to make a decision about which direction to actually pursue.

As shown in Figure 2(b), each marker has a state associated with four cardinal
directions (South, East, North, West). The choice of four directions is arbitrary.
It implies that each marker is equipped with a 2 bit compass. For each direction,
the marker maintains a binary state (T ), a counter (C) and block E which
might be used for additional information. The state T can be either OPEN or



EXPLORED, signifying whether the particular direction was explored by the robot
previously. The counter C associated with each direction stores the time since
that particular direction was last explored.

When deployed, a marker emits two data packets with different signal strengths.
The packet with the lower signal strength is called the MIN -packet and the one
with the higher signal strength is called the MAX -packet. The MAX -packet is
used for data propagation within the deployed network. We discuss it in sec-
tion 5.2. The MIN -packet contains two pieces of information: a) the suggested
direction the robot should take for coverage/exploration and b) the suggested
direction the robot should take for homing. This implies that the robot’s com-
pass and the marker’s compass agree locally on their measurement of direction.
Given the coarse coding of direction we have chosen, this is not a problem in
realistic settings. The algorithm used by the markers to compute the suggested
direction for exploration/coverage is a ’least recently visited direction’ policy.
All OPEN directions are recommended first (in order from South to West), fol-
lowed by the EXPLORED directions with largest last update value (largest value
of C). Note that this algorithm does not use inter-marker communication. The
computation of the suggested direction for homing is discussed in a later section
(section 5.1).

The robot uses a behavior-based approach [16] with arbitration [17] for be-
havior coordination. Priorities are assigned to every behavior a priori. As shown
in Figure 2(a), the robot executes four behaviors: ObstacleAvoidance, AtBeacon,
DeployBeacon and SearchBeacon. In addition to priority, every behavior has an
activation level, which decides, given the sensory input, whether the behavior
should be in an active or passive state (1 or 0 respectively). Each behavior com-
putes the product of its activation level and corresponding priority and sends
the result to the Controller, which picks the maximum value, and assigns the
corresponding behavior to command the Motor Controller for the next command
cycle.

During motion, the robot maintains the notion of a current marker (Fig-
ure 3a). This is the node whose MIN -packets are received by the robot most
frequently. When the robot moves to the vicinity of a new marker, the AtBeacon

behavior is triggered and the robot’s current marker is updated (Figure 3b). At-

Beacon analyzes the MIN -packets received from the current marker and orients
the robot along the suggested direction contained in those packets. In addi-
tion, the robot sends an update message to the marker telling it to mark the
direction from which the robot approached it as EXPLORED. This ensures that
the direction of recent approach will not be recommended soon. We term this
the last-neighbor-update. After the robot has been oriented in a new direction,
it checks its range sensor for obstacles. If the scan does not return any obsta-
cles, the robot proceeds in the suggested direction (Figure 3c), while sending a
message to its current marker updating the state of the suggested direction to
EXPLORED (the marker also resets the corresponding C value). If, however, the
suggested direction is obstructed, the AtBeacon behavior updates the marker
with this information and requests a new suggested direction (Figure 3d). The



C

1 2

3

(a) Current
Beacon is 1

C

1 2

3

(b) Current
Beacon is 2

C

1 2

3

(c) Choice of
direction (no
obstacles)

C

1 2

3

(d) Choice
of direc-
tion (with
obstacles)

Fig. 3. Behavior Switching. a) The robot is executing SearchBeacon behavior travers-
ing suggested direction; b) The robot is executing AtBeacon behavior, analyzing sensor
readings; c) The robot is executing SearchBeacon behavior, supposing the beacon sug-
gests direction UP and there are no obstacles detected in the sensor data; d) The robot
is executing SearchBeacon behavior traversing in direction, not originally suggested by
the marker.

Obstacle Avoidance behavior is triggered if an obstacle is detected in front of
the robot, in which case an avoidance maneuver takes place.

Once the robot is oriented in a new direction (whether as a result of taking
the advice of the marker, or as a result of avoiding an obstacle), the SearchBeacon

behavior is triggered. SearchBeacon causes the robot to travel a predetermined
distance without a change in heading (assuming there are no obstacles in the
way). The DeployBeacon behavior is triggered if the robot does not receive a
MIN -packet from any marker after a certain timeout value. In this case the robot
deploys a new marker into the environment.

During its exploration of the environment, the robot builds a transition
graph. We call this deployed network graph. The vertices of the graph repre-
sent the deployed markers. A directed edge from vertex A to B is labelled with
the probability of arriving at node B from node A by proceeding in a particular
direction. In section 5 we discuss the use of this graph for computing probabilis-
tic paths through the environment between any two nodes, and thus, using the
marker network for probabilistic navigation.

4 Graph Model

For purposes of analysis, consider an open environment (no obstacles). Given our
marker deployment strategy described in the previous section, we can model the
steady state spatial configuration of the markers as a regular square lattice. In
fact, the analysis applies to any graph of degree 4 isomorphic to a regular lattice.
Without loss of generality we ignore the boundary of the graph in the analysis.



0 20 40 60 80 100
0

500

1000

1500

Number of Nodes

DFS
RW
Our Algorithm

C
o

ve
r 

T
im

e

Fig. 4. A comparison between DFS, RW and our algorithm.

In the general case the deployed network graph would be a regular graph of
degree 4. The cover time [18], is the time it takes a robot to cover (visit) every
node in the graph and can be computed as the number of actions taken by the
robot to visit every node of the graph. The problem of coverage on the graph is
to minimize the average cover time, considering every vertex of the graph as a
starting point.

We assert that our algorithm covers the environment completely i.e. the robot
visits every node of the graph. In the most simple case where the environment is
unknown, and localization cannot be used, and there are no markers available,
the problem of coverage can be solved by a random walk (RW). It has been
shown [18] that the cover time of a random walk on a regular graph of n nodes
is bounded below by n ln n and above by 2n2. If we assume that passive markers
can be used, and the graph G = (V, E) is known (a topological map is available)
and the robot has markers of three independent colors, then the problem of
coverage can be solved optimally by applying depth first search (DFS) which
is linear in n. DFS assumes that all resources are available - markers, map,
localization and perfect navigation.

We conducted experiments running RW, DFS and our algorithm on graphs
with n = 25, 49 and 100 nodes. For every experiment each grid point was tried
as the starting point. We conducted 50 experiments per starting point, such
that as soon as robot covers all nodes, the nodes become uncovered and the
coverage task starts from the node where the robot finished its last coverage.
Then the next starting point is considered and so on. The average cover time
over all experiments was computed. The results of this experiment are shown in



0 1 a b c n-1 nd e

0.25

0.45

0.3

0

0

b

c

d

k

e

a

Fig. 5. An example of a discrete probability distribution of vertex (marker) k for
direction (action) ”East”(i.e. right).

Figure 4; our algorithm and DFS both perform asymptotically better than the
RW.

Note that in order to determine the color of neighboring vertices and nav-
igate from one vertex to another, DFS assumes that a topological map of the
environment is available and the robot is localized. Our algorithm, on the other
hand, does not have access to global information and the robot does not localize
itself. The markers used in our algorithm are more complicated than those used
in DFS, and the cover times are asymptotically somewhat larger than the cover
times of DFS.

5 Connectivity Map and Probabilistic Navigation

In order for the robot to be able to navigate through the environment from point
A to point B, assuming neither map nor GPS are available, the robot should be
able to recognize that it has arrived at the goal (B), be able to measure progress
and be able to choose an action that maximizes its chances of getting to its goal.

5.1 Value Iteration

We assume finite set of vertices S in the deployed network graph and a finite
set of actions A the robot can take at each node (marker). Given a subset of
actions A(s) ⊆ A, for every two vertices in the deployed network graph s, s′ ∈ S
and a ∈ A(s) the robot should determine the transitional probability P (s′|s, a)
(probability of arriving at vertex s′ given that the robot started at vertex s and
commanded an action a). In our algorithm four actions are possible at every
vertex (marker) - East, West, South and North. Thus, for every action ai at
a given vertex s ∈ S and all other vertices s′ ∈ S − s the robot computes the
probability P (s′|s, ai) as the ratio of the number of transitions from s to s′ with
action ai to the number of times ai was commanded at vertex s. This ratio is
normalized to ensure that

∑
ai

P (s′|s, ai) = 1. Figure 5 shows a typical discrete
probability distribution for a vertex (marker) per action (direction). Note that
in practice the probability mass is distributed around neighboring nodes and
zero otherwise.



Our model for the proposed system is Markovian - the state the robot transi-
tions to depends only on the current state and action. We model the navigation
problem as a Markov Decision Process [19]. To compute the best action at a
given vertex we use the Value Iteration [20] algorithm on the set of vertices
S − sg, where sg is the goal state. The general idea behind Value Iteration is to
compute the utilities for every state and then pick the actions that yield a path
towards the goal with maximum expected utility. The utility is incrementally
computed:

Ut+1(s) = C(s, a) + max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × Ut(s
′) (1)

where C(s, a) is the cost associated with moving to the next vertex. Usually
the cost is chosen to be a negative number which is smaller than −1/k where k
is the number of vertices. The rationale is that the robot should ’pay’ for taking
an action (otherwise any path that the robot might take would have the same
utility), however, the cost should not be to big (otherwise the robot might prefer
to stay at the same state). Initially the utility of the goal state is set to 1 and of
the other states to 0. Given the utilities, an action policy is computed for every
state s as follows:

π(s) = arg max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × U(s′) (2)

The robot maintains a probabilistic transition model for the deployed network
graph, and can compute the action policy at each node for any destination point.
In practice however, this is limiting, since it requires the robot to traverse the
network many times over to learn the transition model. Further, another robot
deployed into the same environment would need to first traverse the deployed
network before it can navigate between any two points optimally.

One solution is for the robot to compute the action policy as above, and
while traversing the network record the optimal action for the current marker
as it passes by. Each marker can store this action and can emit it as part of the
direction suggestion packet (see Section 3). This would help other robots (which
may not yet have explored the entire space) use the information for navigation.
However, this solution is inefficient, since it is slow to adapt if the navigation
goal is changed.

5.2 Distributed computation and In-network Processing

A much more attractive solution is to compute the action policy distributively
in the deployed network. The idea is that every node in the network updates its
utility and computes the optimal navigation action (for a robot in its vicinity)
on its own. While traversing the deployed network the robot stores the transition
probabilities P (s′|s, a) on the corresponding markers. Then, if a robot wants to
navigate to a point in the environment it injects a Start Computation packet
into the network containing the target marker’s id. Every marker redirects this



packet to its neighbors using flooding. Markers that receive the Start Compu-

tation packet initialize utilities and the cost values depending on whether this
particular marker specified as a target or not. Every marker updates the utili-
ties according to equation 1. Note that the utilities of neighboring markers are
needed as well, hence, the marker queries its neighbors for corresponding utili-
ties. Since computation of some markers can proceed faster than of the others,
every marker stores computed utilities in a list, so that even if it’s being queried
by its neighbors for a utility several steps prior to the current one, the list is
accessed and the corresponding utility is sent.

After the utilities are computed, every marker computes an optimal policy
for itself according to equation 2. Neighboring markers are queried once again
for the final utility values. The computed optimal action is stored at each marker
and is emitted as part of the MIN-packet (refer to section 3) for homing to the
goal.

This technique allows the robot to navigate through the environment between
any two nodes of the deployed network. Note that the action policy computation
is done only once, and does not need to be recomputed, unless the goal changes.
Also, note that utility update equations have to be executed until the desired
accuracy is achieved. For practical reasons the accuracy in our algorithm is set
to 10−3, which requires a reasonable number of executions of the utility update
equation per state and thus, the list of utilities that every marker needs to store is
small. Since the computation and memory requirements are small it is possible
to implement this approach on the real marker device that we are using (the
Mote [21]).

6 Simulation Experiment

We conducted a continuous experiment that tests the algorithm for reliability
and robustness to environmental changes, problems in the network and shows
the ability to deploy and maintain a network and use it for coverage/exploration
and navigation. Thus, the scenario consists of four phases. In Phase 1 the robot’s
task is to deploy a network and cover/explore the environment completely. In
Phase 2 we assume that certain nodes in the network failed and require replace-
ment, thus, the goal of the algorithm is to find the gap in the network and replace
the damaged nodes, while covering the environment. Phase 3 distorts the envi-
ronment further, by introducing an extra space - a ”hidden room” which also has
to be covered. Then, the robot computes the transition probabilities and stores
the appropriate constants at every marker. In Phase 4, we assume that another
robot appears on the scene, which does not have any prior knowledge about
environment and the deployed sensor network. It executes the same algorithm
as the robot-deployer, but in this case the part of data packet containing action
policy for homing is preferred and used as a suggested direction of the marker.
Note that even though the algorithm is robust against loss of some data packets
or imprecise compass readings, in simulations we assume that the compass and
radio properties are ideal.



(a) (b) (c) (d)

Fig. 6. Sequential deployment of network.

6.1 First Phase

As shown in Figure 1b, the environment has been altered so that an initial map
of the environment would not be useful in coverage. Assuming that a mobile
robot with a set of markers have been introduced into the environment (thrown
in, dropped by an air vehicle, etc.). The robot starts deployment and cover-
age/exploration process at the same time. While deploying markers, the robot
updates its connectivity map. The deployment of the sensor network for this
stage of the scenario is presented on Figure 6 in sequence.

As shown on the above figure, the robot deployed the network over the whole
environment, while at the same time accomplishing coverage. Figure 9 represents
coverage values over the first three phases of the experiment.

6.2 Second Phase

As shown in Figure 7a, several nodes of the sensor network were removed (nodes
in the upper part of the figure are assumed to be malfunctioned or damaged). As
seen in the Figure 7, the gap in the network has been detected by the robot and
repaired. Note that the robot continued coverage of the environment(Figure 9)
and was not affected by the problems in the network.

6.3 Third Phase

In this phase of the experiment, we assume that certain perturbations occurred
in the environment so that the robot starts with the environment shown in
Figure 8a. Figure 8bc show expansion of the network by deployment of additional
markers into new open space by the robot. Note, that the problem of coverage
was not abandoned by the robot under the circumstances depicted in last three



(a) (b) (c)

Fig. 7. Network repair. NR - area requiring repair

(a) (b) (c)

Fig. 8. Deployment of additional markers into the discovered open space.

phases. A unified view of cover time for three phases is shown in Figure 9. In
addition, the robot injects a Start Computation packet and the navigation field

is computed.

6.4 Fourth Phase

In the fourth, last phase, the trapped robot discovered a deployed sensor network.
The task is to use the navigational constant and to drive to the home area marked
with H (Figure 10a). Figure 10b shows the navigational field that was produced



0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

Data Set

C
ov

er
 T

im
e 

(s
ec

on
ds

)

Fig. 9. Coverage over the three stages of the experiment.

(a) Before Navi-
gation

(b) Navigation
Field

(c) One path
taken by the
robot

Fig. 10. Robot navigation through the environment

by distributive computation of the optimal policy by the deployed network. The
path that the robot traverses is shown on Figure 10c.

7 Multi-robot extensions

Thus far we have discussed the applicability of our system to coverage, deploy-
ment, exploration and navigation. However, the deployed sensor network has the
potential to be used as a task-manager in the multi-robot domain. The ability
of the deployed network to respond to queries by different robots (executing
different tasks) allows it to serve as a multi purpose infrastructure. This could



(a) One goal (b) Three goals; A
1, A

2

and A
3

Fig. 11. Examples of Navigation Field computed by DINTA.

enable, for example, solutions to problems requiring heterogeneous groups of
robots. Imagine a scenario on a construction site which requires cooperation of
two groups of robots - transporters and builders. Transporters concentrate on
delivering the materials to several piles while builders choose the type of material
they need at the moment from a corresponding pile and continue construction.
Thus, a transporter robot might use the network to find the shortest path to-
wards the material storage or towards the pile that requires certain material the
most. While the builder robot would be directed towards a pile with required
material or towards another builder needing assistance. In other words, the net-
work can be used as a distributed multi-functional manager, which can also be
used for task coordination.

The above application is illustrative of the general online task allocation

problem. Suppose there are several different tasks that the robots should carry
out (transport or build, for example), moreover these tasks arrive in real time.
The problem is to allocate resources (robots) to tasks in an efficient manner.
In recent work [22] we proposed an approach to solve this problem: Distributed
In-Network Task Allocation (DINTA). The core idea of the approach is that
given n goals (tasks) in the environment with different importance (i.e. weight,
priority, etc.), every node decides which goal it should compute direction to based
on its distance to the goal (measured in hop counts) and the importance that
the goal has. As a result, the network computes distributively the navigational
field, comprised of n different subfields as shown on Figure 11. Robots then are
implicitly assigned to the goals based on the particular subfield they are located
at. For the multi-robot case, the performance of DINTA [22] is an improvement
over the exploration approach discussed in this paper.

We are presently working on an extension of DINTA, where every node com-
putes direction (task assignment) to every goal in the environment and the net-



work explicitly assign each goal to a specific robot. Early simulation results
show that as the number of robots increase in the system, this variant of DINTA
outperforms the original algorithm, and does not waste resources by assigning
different robots to the same goal.

8 Conclusions and Future Work

We presented an algorithm for robot coverage, exploration, and navigation through
the utilization of a deployed network. Several capabilities of the algorithm were
demonstrated - network deployment and repair, probabilistic navigation, cover-
age and exploration, and robustness to environmental and network changes. An
experimental scenario was executed which tested the above mentioned capabil-
ities. Throughout the execution of the scenario cover time was measured. The
cover time shows that despite perturbations to the environment and network,
the robot was able to maintain coverage. As mentioned in the previous section,
the presented approach is extendable to multi-robot applications, in which the
network can be thought of as a multi-purpose task manager.

A scheme for probabilistic navigation is also presented, however, not yet
extensively tested. In this instance, the network assists the robot in navigation
by the fact that the robot is always localized within the sensor network, and
therefore there is no need for feature detection or prior knowledge of a map.
Note, however, that the probabilistic navigation was not incorporated to assist
the coverage task itself. A possible extension is for the robot to navigate from an
explored subset of nodes to an unexplored subset, which would essentially reduce
the problem of coverage to that of search. The proposed probabilistic navigation
scheme is distributed, which improves performance and allows robots that do
not have prior information about the deployed network to navigate between any
two markers in the environment.

The major motivation for our approach is that a static deployed network can
be used in collaboration with mobile robots. This allows us to design a minimalist
algorithm for robot navigation which does not require a map of the environment
or GPS. In addition, metric localization does not take place. The tradeoff is the
assumption that the number of available markers is large and that markers are
not a scarce resource, a reasonable assumption nowadays [21].

The results presented in this work were conducted in simulation. Figure 12
shows some of the screen shots of a preliminary experiment using hardware.
Experiments are in progress using a Pioneer 2DX mobile robot equipped with
180◦ laser range finder, compass and wireless ethernet and a set of motes (as
markers) equipped with CPU, RAM and radio of adjustable signal strength.
Experiments and extensions to the multi-robot case are also in progress.

9 Acknowledgment

This work is supported in part by NSF grants ANI-0082498, IIS-0133947, CCR-
0120778, and EIA-0121141.



Fig. 12. Screen shots of a preliminary physical experiment.

References

1. Gage, D.W.: Command and control for many-robot systems. In: the Nineteenth
Annual AUVS Technical Symposium, Huntsville, Alabama, USA (1992) 22–24

2. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,
New York (1987)

3. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem.
In: Proc. of 6th International Symposium on Distributed Autonomous Robotic
Systems, Fukuoka, Japan (2002) 299–308

4. Batalin, M.A., Sukhatme, G.S.: Spreading out: A local approach to multi-robot
coverage. In: Proc. of 6th International Symposium on Distributed Autonomous
Robotic Systems, Fukuoka, Japan (2002) 373–382

5. Batalin, M.A., Sukhatme, G.S.: Sensor coverage using mobile robots and stationary
nodes. In: SPIE2002. Volume 4868. (2002) 269–276

6. Yamauchi, B.: Frontier-based approach for autonomous exploration. In: In Pro-
ceedings of the IEEE International Symposium on Computational Intelligence,
Robotics and Automation. (1997) 146–151

7. Yamauchi, B., Schultz, A., Adams, W.: Mobile robot exploration and map-building
with continuous localization. In: In Proceedings of the 1998 IEEE/RSJ Interna-
tional Conference on Robotics and Automation. Volume 4. (1998) 3175–3720

8. Zelinsky, A.: A mobile robot exploration algorithm. In: IEEE Transactions on
Robotics and Automation. Volume 8. (1992) 707–717

9. Burgard, W., Fox, D., Moors, M., Simmons, R., Thrun, S.: Collaborative mul-
tirobot exploration. In: Proc. of IEEE International Conferenceon Robotics and
Automation (ICRA). Volume 1. (2000) 476–481

10. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph con-
struction. In: IEEE Transactions on Robotics and Automation, 7-6. (1991) 859–865

11. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: Exploring and mapping directed graphs. In: Annual ACM Symposium on
Theory of Computing (STOC ’98). (1998)

12. Vaughan, R., Stoy, K., Sukhatme, G.S., Matarić, M.J.: Lost: Localization-space
trails for robot teams. IEEE Transactions on Robotics and Automation, Special
Issue on Multi-robot Systems 18 (2002) 796–812

13. Koenig, S., Simmons, R.: Easy and hard testbeds for real-time search algorithms.
In: Proccedings of National Conference on Artificial Intelligence. (1996) 279–285



14. Szymanski, B., Koenig, S.: The complexity of node counting on undirected graphs.
Technical report, Computer Science Department, Rensselaer Technical Institute,
Troy(New York) (1998)

15. Li, Q., DeRosa, M., Rus, D.: Distributed algorithms for guiding navigation across
a sensor network. Technical Report TR2002-435, Dartmouth, Computer Science
Technical Report (2002)

16. Mataric, M.J.: Behavior-based control: Examples from navigation, learning, and
group behavior. Journal of Experimental and Theoretical Artificial Intelligence,
special issue on Software Architectures for Physical Agents 9 (1997) 323–336

17. Pirjanian, P.: Behavior coordination mechanisms - state-of-the-art. Technical
Report IRIS-99-375, Institute for Robotics and Intelligent Systems, University of
Southern California (1999)

18. Lovasz, L. In: Random Walks on Graphs: A Survey. Volume 2 of Combinatorics,
Paul Erdos is Eighty., Keszthely, Hungary (1993) 1–46

19. White, D.J.: Markov Decision Process. John Wiley & Sons, West Sussex, England
(1993)

20. Koenig, S., Simmons, R.G.: Complexity analysis of real-time reinforcement learn-
ing applied to finding shortest paths in deterministic domains. Technical Re-
port CMU-CS-93-106, Carnegie Mellon University, School of Computer Science,
Carnegie Mellon University, Pittsburg, PA 15213 (1992)

21. Pister, K.S.J., Kahn, J.M., Boser, B.E.: Smart dust: Wireless networks of
millimeter-scale sensor nodes. Electronics Research Laboratory Research Sum-
mary (1999)

22. Batalin, M.A., Sukhatme, G.S.: Sensor network-based multi-robot task allocation.
In: To appear in Proc. of IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems
(IROS’03), Las Vegas, Nevada (2003)


