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Abstract—The Art Gallery Problem consists in determining 

the minimum number of observers required to cover an 

environment such that each point is seen by at least one observer. 

This is a NP-Hard problem well known in the field of 

computational geometry. In the literature, several restrictions are 

applied to 2D and 3D environments to study and solve the 

problem in polynomial time, for example the use of simple 

polygons, orthogonal and planar environments, etc. In this paper 

we present an approximate and polynomial solution based on 

metaheuristic genetic algorithms that can be applied to general 

3D environments without any restriction and, therefore, 

applicable in shooter games and also real-world environments. 

The solution uses the techniques of (i) computer graphics to 

generate sample points in the environment, (ii) ray-mesh 

intersection test to generate a graph of visibility between the 

samples and (iii) genetic algorithms to find and optimize the 

minimum set of observers. The maps of the game Counter-Strike 

were used to analyze the placement of small groups of observers 

in complex environments with obstacles. The game engines Half-

Life and Irrlicht were used to apply the ray-mesh intersection 

test in 3D environments. A series of experiments were performed 

and the results show that our methodology is capable of 

obtaining a good coverage of space with a small number of agents 

observing. 

Keywords—art gallery problem; computational geometry; 

visibility; natural computation; computer graphics; shooter games 

I.  INTRODUCTION 

The Art Gallery Problem (AGP) was introduced in 1973 by 
Vitor Klee, when he asked how many stationary guards are 
needed to cover an art gallery room with n walls [1]. This 
visibility problem and its variations have been deeply studied 
([2, 3, 4]) and support a series of applications in the real world 
([5, 6, 7]), e.g., security cameras, military scout positioning, 
cellular antennas distribution, and optimizations. 

It was shown that determining an optimal minimum set of 
guards to cover a polygon is NP-Hard, even for simple 
polygons [8]. Some approximation algorithms with logarithmic 
approximation ratios [9, 10, 11] and genetic algorithms [12, 13] 
are applicable for restricted versions of the problem, 
positioning guards at vertices or at points of a discrete grid. 
Constant-factor approximations are known for guarding 1.5D 
terrains and monotone polygons [14, 15, 16], and exact 
methods are proposed for the special cases of rectangle and 
triangle visibility in 2D orthogonal polygons without holes [17, 

18]. In 3D environments there are studies about elevation maps 
restricted to planar terrains [6], and about orthogonal 
polyhedral environments [19], a type of constraint since it 
works only for orthogonal 3D polygons. In spite of these 
efforts, the unrestricted version of the optimization problem for 
2D and 3D environments remains open. 

In this scenario of unconstrained environments, we propose 
a methodology based on sampling techniques, ray-mesh 
intersection test and metaheuristic genetic algorithms to 
provide approximate solutions to the following problem: 

Given an arbitrary three-dimensional environment, what is 
the minimum number of observers we need to cover the whole 
environment and where should we place them?  

Answering this question, even approximately, is important 
for a large number of applications in the real world and also in 
the digital games field. There are several applications in games 
in which considering a minimum set of points able to monitor 
or cover a complex volume in the space is important, for 
example:  

 Strategic positioning of players to cover a map against 
enemies in multiplayer shooting games. 

 Effective positioning of light sources, which are limited 
in engines, to illuminate scenarios during the level 
design process. 

 Positioning of cameras in the environment for 
transmission or recording of matches in three-
dimensional games. 

This work focuses on the first game application example 
and uses the Counter-Strike 1.6 as the experimentation 
platform. Counter-Strike is a mod for the game Half-Life with 
a partially accessible code by the Half-Life SDK and Dynamic-
Link Libraries. The Counter-Strike is a widespread shooting 
game and has complex 3D maps that generate arbitrary 
polygons with holes and non planar visibility graphs. These 
characteristics were important for the choice of platform. 

The paper is organized as follows: Section 2 will address 
the basic concepts of the Art Gallery Problem and related 
subjects while the Section 3 will explain the methodology that 
we propose. The Section 4 presents a series of experiments 
performed and their results. Finally, Section 5 brings the 
conclusion and directions for future work. 
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II. PRELIMINARIES 

To support the understanding of the addressed problem, we 
introduce some necessary concepts and notations. 

The Art Gallery Problem is a NP-Hard optimization 
problem. Finding an exact solution and checking its optimality 
are problems with exponential complexity [8]. 

Both in the original definition of the problem in 1973 and 
in this work, a guard is a stationary point placed on the 
environment and has a range of visibility equals to 2, i.e. 360 
degrees [1]. 

The minimum set of guards needed to cover an 
environment, polygon or samples set is called Minimum 
Vertex Guard (MVG) [12]. Therefore, the MVG is the exact 
solution for AGP. For approximate solutions, we will use the 
nomenclature Approximate Minimum Vertex Guard (AMVG). 

In computational geometry, the visibility graph is a graph 
of intervisible locations made for a set of points and obstacles 
in n-dimensional Euclidean spaces. Each vertex of the graph 
represents a point, and each edge represents a visible link 
between two of them. 

A. Notation used in our aprouch 

Given an undirected visibility graph G = {V, E}, generated 
from the samples V of a three-dimensional environment, we 
must find the set AMVG, identified as S, so that S  V. Each 
edge eij indicates that vi and vj are visible samples to each other. 

Whereas vi ∈ V, si ∈ S and eij ∈ E, we can say that S is the 
set with the smallest cardinality K = |S| such that, for all vi 
there is an edge eij between vi and sj or vi = sj. 

Therefore, we are searching for the subset S with the 
smallest possible cardinality K that covers all vertices of the set 
of samples V. 

III. PROBLEM MODELING AND METHODOLOGY 

In this paper we propose a methodology for finding 
approximate solutions to the AGP in arbitrary environments, 
whether two-dimensional or three-dimensional. This process 
includes three distinct stages, each one with flexible use of 
computational techniques. 

Given an arbitrary environment, we first generate a set of 
sample points belonging to the area or volume that we want to 
cover. Then we construct a visibility graph, where the samples 
represent the vertices and an edge represents visibility between 
two of them. Finally, we apply genetic algorithms to search for 
the AMVG on this graph. 

A. Generating Samples in an Environment 

The first step we perform in our model is the mapping of 
sample points in an environment. There are several strategies in 
computer graphics to generate sample points on surfaces, each 
with its advantages and disadvantages depending upon the 
application.  

Among the sampling techniques we can highlight: 
Uniform, Random, Stratified, Latin Hypercube, Poisson-Disk 

and Best Candidate Samplings. These are generally applied in 
two-dimensional surfaces, but can be adapted to three-
dimensional environments [20]. Other possibilities include 
more advanced Hammersley and Halton samplings for 3D 
geometry [21]. 

It should be emphasized that the mapping of samples is 
limited to the volume defined by the geometric walls and 
obstacles in the environment. Depending upon the application, 
we can further reduce this volume to areas of interest. For 
example, generating samples only in areas where it will be 
necessary to monitor, which does not always encompasses the 
entire environment. 

For Counter-Strike game, we utilize the bots (computer-
controlled players) navigation waypoints as mapping samples. 
The waypoints are vertices of the path finding graphs, a well-
known artificial intelligence technique applied in continuous 
three-dimensional environments for games [22]. The waypoints 
of Counter-Strike maps are generated from real players moving 
around the space during several matches. After that it is 
possible to make improvements manually. In Counter-Strike, 
each waypoint has a lot of useful information for intelligence 
decision of bots (see Fig. 1), e.g., where to camp, where to 
plant bombs, mobility possibilities, etc.  

The region we want to monitor is the same one in which 
real players and bots are moving. For this reason we decided to 
take advantage of these waypoints for the visibility graph. 

 
Fig. 1. Waypoint information in Counter-Strike. Inside the game the 
waypoints are shown as vertical bars. 

Another alternative technique that we used for generating 
samples in the game was the uniform distribution over the 
volume.  We applied it in regions of interest. Regions of 
interest which we call green zones are regions that a character 
can occupy in the environment while moving. Thus, to boost 
the efficiency of the process, we do not need to monitor 
volumes outside the green zones. The green zones are defined 
by the geometry of the environment and their obstacles are 
called red zones. The uniform distribution over the volume is a 
simple sampling technique and consists in generating equally 
spaced samples in the three-dimensional environment [20]. 

To extract sample waypoints of the game, we created a 
command console for Counter-Strike that accesses information 
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from running maps and saves them to an external file. For 
generating a uniform mapping, we loaded the game map in the 
Irrlicht1 graphics engine, created routines to generate the 
uniform samples and validate some of them inside the green 
regions defined manually with the support of the software 
Autodesk 3D Max.  

It is important to consider that our manual step to create 
green zones is optional, but can provide considerable gains in 
efficiency depending on the number of reduced samples. 

B. Making the Visibility Graph  

The second step of the methodology is the construction of a 
visibility graph using the technique of ray-mesh intersection 
test. For each pair of vertices we trace a ray starting from the 
first to the second, and if that ray does not collide with the 
geometry of the scenario we created an edge. Thus, each edge 
indicates that there is visibility between its two vertices. 

Here we use the term ray-mesh intersection test generically, 
because in game development field there are a lot of names for 
the same technique to test the visibility between two points in 
three dimensional spaces (e.g. trace line test, hit test, check ray 
intersection, collision point from ray, etc…). All of them use a 
mathematical method to test whether a ray between two points 
intersects triangles of the given object. It is a variation of the 
ray casting algorithm, the most basic of many computer 
graphics rendering algorithms that use the geometric algorithm 
of ray tracing. [20].  

We decided to use this technique because it is 
computationally cheap and one of the simplest ways to check if 
two points are visible between themselves in 3D spaces. The 
ray-mesh intersection test is widely used to ballistics in shooter 
games and it is present in most of the game engines. 

In Counter-Strike we access the method called 
TRACE_LINE through the Half-Life engine and create a new 
command in the game console to generate a visibility graph 
between the waypoints of each map during the execution of the 
matches. 

To generate visibility graphs out of the game, we used the 
method called getSceneNodeAndCollisionPointFromRay from 
Irrlicht engine. So, loading the Counter-Strike maps in Irrlicht 
and generating valid samples, it is possible to create the 
corresponding visibility graph between them. 

C. Finding the Minimum Vertex Guard or an Aproximation 

The third step of our methodology involves finding the 
minimum set of guards to cover the visibility graph. This is the 
Minimum Set Cover (MSC) optimization problem, also NP-
Hard. We have developed two algorithms, one exact based on 
the backtracking paradigm and another based on metaheuristic 
genetic algorithms to compare some results. 

As this stage is the most computationally complex of the 
three of our methodology, we did the analysis of time 
complexity of the proposed algorithms. The algorithms we 
used to find the MVG and AMVG provides the complexity 
asymptotic upper bound of our methodology. 

1) An Exact Algorithm Based on Backtracking 
The exact algorithm (see Algorithm 1) is sensitive to the 

size of the MSC and has exponential complexity of time, so it 
is not efficient for graphs whose MSC sets are large. The 
analysis of time complexity of this algorithm is given in (1), 
where N is the number of samples, K is the size of exact MSC 
and C is the size of the set cover for testing per iteration. The 
MSC solution is the same for MVG in a graph. 

The Algorithm 1 can run several iterations. The first one 
generates all the possibilities of sets with size one and tests 
whether each set covers all samples (Algorithm 2). The second 
iteration generates all sets with size two and so on. In this way, 
when we found one or more sets with size K that covers all 
samples, the Algorithm 1 ends and we found out the optimal 
solution, the MSC or MVG. 

 𝑁! 𝑁 − 𝐶 !   𝐶!

𝐾𝐶=1
 𝐶𝑁   for 1 ≤  𝐾 ≤  𝑁 

 

 

(1) 

For the worst case, when K = N, the time complexity is 
given by the following equation:  

𝑂  2𝑁 − 1 𝑁2  
 

(2) 

 

1 Irrlicht Engine is an open source high performance realtime 3D engine 
written in C++. Website: http://irrlicht.sourceforge.net/ 

Algorithm 1: Exact Algorithm 
Input: adjMatrix, |V| // Adjacency matrix and number of vertices 
 
1:   for i ← 0 to i < |V| do 
2:      if |MSC_solutions| != 0 then 
3:         break // algorithm stop condition 
4:      end if 
5:      K ← i + 1 // number of elements in candidate set 
6:      candidate.push(i) // candidate solution 
7:      for j ← 0 to j < i do 
8:         candidate[j] ← j 
9:      end for 
10:    if checkFullCoverage(adjMatrix, candidate) = true then 
11:       MSC_solutions.push(candidate) 
12:    end if 
13:    flag ← false 
14:    pivot ← K-1 
15:    while flag = false do 
16:       while positions[pivot] = (pivot + N - K ) do 
17:          if pivot = 0 then 
18:             flag ← true 
19:             break 
20:          else 
21:             pivot ← pivot - 1 
22:          end if 
23:          if flag = false then 
24:             candidate[pivot] ←  candidate[pivot] + 1 
25:             for m ← pivot + 1 to m < K do 
26:                candidate[m] ← candidate[m-1] + 1 
27:                if checkFullCoverage(adjMatrix, candidate) = true then 
28:                   MSC_solutions.push(candidate) 
29:                   pivo ← K-1 
30:                end if 
31:             end for 
32:          end if 
33:       end while 
34:    end while 
35: end for 
36: print MSC_solutions 
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2) An Aproximate Algorithm Based on Genetic Algorithms 
Due to the high computational complexity of this 

optimization problem, we look for solutions through a 
metaheuristic genetic algorithm. A genetic algorithm (GA) is a 
search technique used to find approximate solutions for 
optimization problems and uses techniques inspired by 
evolutionary biology such as inheritance, mutation, natural 
selection and recombination (e.g. crossing over). 

Genetic algorithms are implemented as a computer 
simulation in which a population of abstract representations of 
selected solution is used to find better solutions. The evolution 
starts from a set of solutions randomly created and is 
performed through generations. In each generation, the 
adaptation of each solution in the population is evaluated by a 
fitness function. Then, some individuals are selected via 
tournament for the next generation and recombined by crossing 
over or mutated to generate a new population. The new 
population is then used as input to the next iteration of the 
algorithm until the stopping condition is reached (see 
Algorithm 3). 

 

Being a stochastic method, the experimental evaluation of 
the genetic algorithm should be performed with repetitions so 
that the results should be reported according to the average 
value and its standard deviation ().  

To design a genetic algorithm it is necessary to define 
certain characteristics and parameters, such as: 

a) Representation of individuals: An individual (i.e. a 
candidate solution) in our GA is represented by a binary string 
of the size of our sample points set. The bit value of 1 means 
that this is a point guard and belongs to AMVG. Otherwise 
this sample should be covered by another vertex (see Fig 2). 

 
0 1 0 0 0 1 0 … 0 0 0 0 0 1 

Fig. 2. Representation of individuals in genetic algorithms. 

b) Method of selection: In all of our experiments, we 
used the tournament method with two individuals. Elitism is 
also applied, preserving the best individual to the next 
generation. 

c) Fitness evaluation: In the evaluation of a candidate 
solution we consider the size of the  cover set and the amount 
of samples it covers. Smaller sets with greater coverage get the 
best fitness. The maximum fitness value in our algorithm is 
100. 

d) Population size: This parameter should be a 
sufficient value to generate a population diversity able to 
avoid the premature converge of solutions.  

e) Number of generations: This parameter depends on 
the behavior of the algorithm with respect to the convergence 
of the results. After the experiment, if we observe that the 
fitness did not converge (high standard deviation), we increase 
the number of generations and repeat the experiment. After 
running some experiments, we observed that seting the 
number of generations equal or greater than the number of 
vertices of the visibility graph, the genetic algorithm generates 
better results. So, we keeped it close to the number of vertices. 

f) Probabilities of crossing over and mutation: These 
parameters are calibrated by analysing the standard deviation 
of the Average of Average Fitness (AAF) in final results of the 
calibration algorithm (see Algorithm 4). Smaller standard 
deviations indicates better convergence and better set of 
parameters for GA. In our experiments we used the random 
point method for the crossing over and mutation operators.  

More details about GA parameters control can be seen at 
the reference [23]. 

The analysis of time complexity of our genetic algorithm is 
given in (3), where N is the number of samples, E is the 
number of edges in the visibility graph, P is the population 
size, G is the number of generations and R the number of 
repetitions.  

                     

O( 𝑅𝐺𝑃(𝑁 + 𝐸) ) 

 

     (3) 
 

 

Algorithm 2: CheckFullCoverage 
Input: adjMatrix, S, |V| // Adjacency matrix, solution and number of vertices 
 
1:   if |S| > |V| then 
2:      return false 
3:   end if 
4:   for j ← 0 to j < |V| do 
5:      Covered[j] ← false // vector to mark coverage 
6:   end for 
7:   count ← 0 
8:   for i ← 0 to i < |S| do 
9:      if Covered[S[i]] = false then 
10:       Covered[S[i]] ← true 
11:       count ← count + 1 
12:       for j ← 0 to j < |V| do 
13:          if adjMatrix[S[i]][j] = true AND Covered[j] = false then 
14:             Covered[j] ←  true 
15:             count ←  count + 1 
16:          end if 
17:       end for 
18:    end if 
19: end for 
20: if count != N then 
21:    return false 
22: end if 
23: return true 

Algorithm 3: Genetic Algorithm 

1.   for r ← 1 to 30 do // number of repetitions 
2.      g ← 0 // generation 
3.      Initialize the random population, P(g) 
4.      while target generation g not met do 
5.         Fitness Evaluation of P(g) 
6.         Selection by tournament on P(g) 
7.         Crossing Over P(g) 
8.         Mutate P(g) 
9.         g ← g +1 
10.       Generate P(g) from P(g −1) 
11.    end while 

12. end for 
13. return Best Solution 
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IV. EXPERIMENTS AND RESULTS 

To explore our methodology for AGP in arbitrary three-
dimensional environments, we performed a series of 
experiments and analyzed their results. 

A. Genetic and Exact Algorithms applied to Sparse Graphs 
with Known Minimum Vertex Guard 

Initially we developed a generator of sparse graphs, 
specifically Minimum Spanning Trees (MST), with known 
MVG sets to compare the results and time performance of our 
exact and genetic algorithms. This experiment focuses only on 
step three of our methodology. 

Minimum Spanning Trees are the worst cases of connected 
visibility graphs. In a complete graph, for example, the MVG 
has one element that can be any vertex of the graph. 

The parameters used for the genetic algorithm were: 
repetitions = 30, initial population = 250, mutation probability 
= 10% and crossover probability = 90%. For graphs with 100 
vertices we performed 200 generations, for graphs with 500 
vertices we run 600 generations and for graphs with 1000 
vertices, 1100 generations. The results are shown in Table 1. 

TABLE I.  EXACT VERSUS GENETIC ALGORITHMS RESULTS  

Input Graph Exact Algorithm Genetic Algorithm 

Vertexes MVG MVG 
Time  

(s) 
AMVG 

a
 

 

Time  

(s) 

100 1 1 0.00 1  0.137 181.26 

100 2 2 0.07 2  0.132 186.21 

100 3 3 2.69 3  0.135 186.78 

100 4 4 77.68 4  0.121 151.91 

500 1 1 0.04 1  0.101 1.83e+003 

500 2 2 10.45 2  0.050 1.81e+003 

500 3 3 2.2e+003 3  0.061 1.23e+003 

500 4 4 1.71e+005 4  0.045 0.93e+003 

1000 1 1 0.23 1  0.101 4.48e+003 

1000 2 2 141.17 2  0.069 4.39e+003 

1000 3 3 3.90e+004 3  0.045 3.74e+003 

a. Standard deviation from average of average fitness.  

We can observe that the time consumption behavior of the 
exact algorithm is exponential, while the genetic algorithm 
practically does not changes over graphs with similar vertex 
quantity. We also verified that genetic algorithms found 
optimal solutions for this experiment with satisfactory 
convergence of population. 

A MST graph with 200 vertices and a MVG with size 4 
was used to calibrate the parameters of our genetic algorithm. 
The Table 2 shows the sets of parameters that gave better 
convergence results. The tested parameters were: population 
size P, number of generations G, crossover probability Pcross 
and mutation probability Pmut. We are looking for sets that 
results in average of average fitness AAF near 100 with 
smallest standard deviation . Therefore, the Set 4 was the best. 

TABLE II.  GENETIC ALGORITHMS CALIBRATION: SOME PARAMETER 

SET RESULTS  

Parameter set P G Pcross Pmut AAF a 

Set 1 100 100 0.60 0.01 99.99  0.0008 

Set 2 150 200 0.60 0.05 99.99  0.0008 

Set 3 150 100 0.75 0.01 99.97  0.0033 

Set 4 150 200 0.90 0.10 99.99  0.0000 

Set 5 100 100 0.60 0.01 99.99  0,0008 
a. Standard deviation from average of average fitness.  

. 

B. Genetic Algorithms applied in Counter-Strike Waypoints 

In order to simplify the sampling in the first stage of our 
methodology, we take the vertices of the navigation graph of 
bots from the Counter-Strike maps, the waypoints. Over the 
years, these waypoints were improved by the community and 
developers, which made them an interesting basis of 
information for many types of research (see Fig. 3 and Fig. 4). 

After collecting waypoints from each map, we create the 
visibility graph via ray-mesh intersection test within the game 
itself, saving them to external files. This is the second stage of 
our methodology (see Fig. 5). 

Finally, in the third stage, we apply the genetic algorithm to 
find the AMVG for these samples (see Fig 6 and Fig. 7). 

 
Fig. 3. Waypoints (black points) in Cs_italy map. 

Algorithm 4: Genetic Algorithm Calibration 

1:   for generations ←  100 to 200 do 
2:     for population ←  100 to 200 do 
3:       for pCross ←  0.6 to 0.9 do 
4:         for pMutation ←  0.01 to 0.10 do 
5:           for s ←  0 to 30 do 
6:             GA(graph, generations, population, pCross, pMutation, seed[s]) 
7:           end for 
8:           pMutation ←  pMutation + 0.05 
9:         end for 
10:       pCross ←  pCross + 0.15 
11:     end for 
12:     population ←  population + 50 
13:   end for 

14:   generations ←  generations + 100 
15: end for 
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Fig. 4. Waypoints extraction from Cs_italy map. 

 
Fig. 5. Visibility graph generated by ray-mesh intersection test for Cs_italy 
map samples. 

 
Fig. 6. Aproximate Minimum Vertex Guard for Cs_italy map samples. 

 
Fig. 7. Approximate Minimum Vertex Guard points inside Cs_italy map. 

Waypoints can provide useful information for bots. This is 
an artificial intelligence technique used in games where bots 
collects data on the environment. For comparative purposes, 
we used a type of existing information, i.e. the points the camp. 
Camp points are waypoints with information indicative for bots 
stay lying in wait, monitoring the environment to surprise the 
opponent. These points are usually occupied by snipers in the 
game. We compared the number of this known camp points 
from Counter-Strike maps with the AMVG found by the 
genetic algorithm. We also analyzed the percentage of samples 
coverage of camp points and AMVG (see Table 3). 

The parameters used for the genetic algorithm were: 
repetitions = 30, initial population = 250, number of 
generations = 700, mutation probability = 10% and crossover 
probability = 90%.  

In the previous experiment, the maps Cs_747, Cs_havana, 
De_chateau and De_torn presented sets of camp points smaller 
than AMVG, but with different coverage. So, we modified the 
fitness of the genetic algorithm to find the AMVG with 
coverage near of 60%, 70%, 80% and 90%. Our goal was to 
explore different percentages of coverage and analyze their 
impact on the size of AMVG. We also included other maps in 
this experiment, which have variations in numbers of vertices 
and edges. They are: Cs_italy, Cs_militia, De_cbble, De_dust 
and De_prodigy. The results are shown in Table 4. 

We can observe a significant reduction in size of the 
AMVG for smaller coverings percentage. For maps Cs_747, 
Cs_havana, De_chateau and De_torn, the AMVG are smaller 
than the set of camp points with the same range of coverage. 

The parameters used for the genetic algorithm were: 
repetitions = 30, initial population = 250, number of 
generations = 700, mutation probability = 10% and crossover 
probability = 90%. 

 

 

 

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 151



TABLE III.  GENETIC ALGORITHMS IN COUNTER-STRIKE MAPS  

Input Map Genetic Algorithm 

Name Vertexes Edges 

Camp 

Points 

/ % 

Cover
a
 

AMVG 

/ % 

Cover 
b

 

As_oilrig 487 6313 39 / 70.2 32 / 100  0.006 

Cs_747 388 6210 24 / 79.1 33 / 100  0.014 

Cs_assault 470 17782 50 / 94.9 18 / 100  0.006 

Cs_backalley 375 4592 44 / 66.7 2 / 100  0.112 

Cs_estate 399 9350 52 / 97.7 23 / 100  0.009 

Cs_havana 396 3883 30 / 69.9 34 / 100  0.010 

Cs_italy 391 5116 72 / 97.4 31 / 100  0.008 

Cs_militia 603 12194 63 / 90.7 29 / 100  0.011 

Cs_office 386 4968 52 / 96.6 3 / 100  0.057 

Cs_siege 557 12845 51 / 74.9 30 / 100  0.006 

De_airstrip 521 7596 45 / 63.7 39 / 100  0.004 

De_aztec 521 11495 61 / 81.0 31 / 100  0.004 

De_cbble 631 14106 67 / 82.6 40 / 100  0.004 

De_chateau 540 6627 22 / 53.5 42 / 100  0.005 

De_dust 476 9619 43 / 81.3 26 / 100  0.006 

De_dust2 433 7572 54 / 96.5 26 / 100  0.007 

De_inferno 440 5206 49 / 83.2 25 / 100  0.009 

De_nuke 618 12325 41 / 69.6 16 / 100  0.002 

De_piranesi 572 8531 75 / 77.3 47 / 100  0.003 

De_prodigy 337 2878 40 / 79.2 34 / 100  0.015 

De_storm 492 10095 41 / 75.6 26 / 100  0.011 

De_survivor 513 10121 46 / 81.7 4 / 100  0.048 

De_torn 418 4645 33 / 58.6 36 / 100  0.005 

De_train 521 11667 42 / 89.4 15 / 100  0.007 

De_vertigo 383 4529 51 / 88.3 36 / 100  0.006 

a. Number of map camp points and your respective waypoints samples coverage.  

b. Standard deviation from average of average fitness.  

TABLE IV.  GENETIC ALGORITHMS IN COUNTER-STRIKE MAPS: AMVG 

RESULTS FOR DIFFERENT COVERING PERCENTAGE TARGETS 

Input Map 
Cover Set Size / % Cover 

Target 

60% 

Target 

70% 

Target 

80% 

Target 

90% 

Target 

100% 

Cs_747 5 / 60.6 7 / 71.1 10 / 80.7 15 / 90.5 33 / 100 

Cs_havana 5 / 60.1 8 / 72.0 12 / 80.8 19 / 90.1 34 / 100 

Cs_italy 6 / 62.1 9 / 70.3 13 / 80.1 19 / 90.0 31 / 100 

Cs_militia 6 / 59.5 7 / 70.1 7 / 79.6 12 / 89.4 29 / 100 

De_cbble 6 / 60.4 9 / 70.5 14 / 80.0 22 / 90.0 40 / 100 

De_chateau 10 / 60.0  13 / 70.4 17 / 80.4 24 / 90.0 42 / 100 

De_dust 5 / 60.3 6 / 71.6 9 / 81.9 12 / 90.3 26 / 100 

De_prodigy 7 / 60.2 10 / 71.2 15 / 80.4 20 / 90.5 34 / 100 

De_torn 8 / 60.8  11 / 71.3 14 / 80.4 19 / 90.2 36 / 100 

C. Exact Algorithm applied in Counter-Strike Waypoints 

Analyzing the Table 3, we found some results of the 
genetic algorithm with reduced AMVG. It allows us to run the 
exact algorithm to check how close these results are of the 
MVG. For maps Cs_backalley, Cs_office and De_survivor we 
performed the exact algorithm, obtaining the results given in 
Table 5. As can be seen in these results, the genetic algorithm 
obtained solutions near or equal to the MVG. 

TABLE V.  EXACT AND GENETIC ALGORITHMS IN COUNTER-STRIKE 

MAPS: TIME AND MVG RESULTS  

Input Map Exact Algorithm Genetic Algorithm 

Name MVG 
Time 

(s) 
AMVG a

 
Time 

(s) 

Cs_backalley 2 2.92 2  0.112 1.52e+003 

Cs_office 3 436.11 3  0.057 1.96e+003 

De_survivor 3 1.41e+003 4  0.048 1.76e+003 

a. Standard deviation from average of average fitness.  
 

D. Genetic Algorithms applied in Counter-Strike Samples 
Points 

Another type of mapping samples was tested in a Counter-
Strike map. Instead of take advantage of the waypoints, we did 
a 3D uniform sampling in the first stage of the methodology.  

We selected the map Cs_assault containing many 
interesting geometrical elements, such as large open areas, 
indoor areas, tunnels, ramps, obstacles and high areas. 

In the first stage we created green zones and red zones. 
Green zones are the volumes of interest, i.e. the valid space 
where a character can be positioned on the map. The red zones 
are obstacles and were created to serve as subtractive volumes 
to green zones. These areas were manually created in Autodesk 
3D Max, represented by rectangles, prisms and spheres (see 
Fig. 8 and Fig. 9). The combination of these primitives allows 
the creation of arbitrary geometries. 

When we started the process of uniform sampling, we 
observed that some green zones had excessive samples and 
others had samples shortage. This is due to the method of 
uniform sampling, because the spacing between samples 
sometimes does not match the volume we need to fill (e.g. 
narrow tunnels) and thus it was necessary to further subdivide 
the samples. For this experiment, we subdivided the samples 
until all the green zones were filled. 

To validate each sample, we performed geometric 
calculations to test whether the point is inside a 3D polygon of 
interest and out of obstacles. See Fig. 10 and Fig. 11. 

In the second stage we performed the ray-mesh intersection 
test using the Irrlicht graphics engine, generating the 
corresponding visibility graph. The graphs generated by 
samples of waypoints and the uniform samples are significantly 
different, as can be seen in Fig. 12 and Fig. 13.  

For the last stage we applied the genetic algorithm in 
visibility graph to find the AMVG. The parameters used for the 
genetic algorithm with uniform samples were: repetitions = 30, 
initial population = 200, number of generations = 2000, 
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mutation probability = 10% and crossover probability = 90%. 
The comparative results are shown in Table 6. 

TABLE VI.  WAYPOINT VERSUS UNIFORM SAMPLING METHODS 

Cs_assault Map Genetic Algorithm 

Sampling 

Method 
Vertex Edges 

AMVG 

/ % Cover 
a

 
Time 

(s) 

Waypoints 487 6313 18 / 100  0.006 0.18+e004 

Uniform 8184 4110026 48 / 100  0.001 1.17+e008 

a. Standard deviation from average of average fitness.  

 
The uniform sampling provides a more efficient three-

dimensional coverage of the sampling waypoints (see Fig. 14 
and Fig. 15), because it requires that the genetic algorithm 
covers a larger number of samples better distributed in the 
environment. However, the time to process a huge number of 
samples is higher. 

 
Fig. 8. Cs_assault map geometry. 

 
Fig. 9. Green zones and red zones from Cs_assault map. 

 
Fig. 10.   Uniform three-dimensional sampling in Cs_assault map. 

 
Fig. 11.   Valid samples for Cs_assault map (inside green zones). 

 
Fig. 12.   Visibility graph using waypoint samples of Cs_assault map. 
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Fig. 13.  Visibility graph using uniform sampling for Cs_assault map. 

 
Fig. 14.  Approximate Vertex Guard for waypoint samples of Cs_assault map. 

 
Fig. 15.  Approximate Vertex Guard for uniform sampling of Cs_assault map. 

 

All the implementations were done in C/C++ (for Microsoft 
Visual Studio 2010). The above described methods were tested 
on a PC featuring an Intel(R) Core(TM) i7 CPU 860 at 2.80 
GHz and 4 GB of RAM. 

V. CONCLUSIONS AND FUTURE WORK 

We can conclude that the proposed methodology for the Art 
Gallery Problem in arbitrary three-dimensional environments 
obtains satisfactory solutions of Approximate Minimum Vertex 
Guard close to optimal results in some experiments.  

We demonstrate that our methodology is able to cover all 
samples of a visibility graph and converge to small coverage 
sets. So, no matter if we are working with simple or arbitrary 
polygons from the environment, the most important is to make 
good mapping of samples based on our interest of monitoring. 

In Counter-Strike game we found approximate solutions 
that cover all samples of the environment, and also sets of 
guard points smaller and most efficient than the set of camp 
points known for the maps. 

We can affirm that sampling is a stage that requires careful 
in our approach, because it interferes directly in the quality of 
the results. Starting with good sampling sets it is possible to 
obtain satisfactory results using our methodology. So, this 
study given significant progress for Art Gallery Problems 
applied in unrestricted environments, enabling new research 
possibilities. 

As future work, we intend to explore other techniques of 
genetic algorithms to increase the diversity of individuals 
trying to find better solutions. We also want to investigate 
others sampling methods, taking advantage of the concept of 
green zones, already implemented in this work, to optimize the 
process. 

Another experiment we want to perform is the cameras 
placement, where we restrict the positions of observers and 
apply a reduced angle of visibility to them. It would be 
interesting to use for recording or live streaming of shooting 
games. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the partial support 
of CAPES, CNPq and Fapemig in the development of this 
work. 

REFERENCES 

 
[1] R. Honsberger, Mathematical Gems II, Mathematical Association of 

America (1976), 104-110. 

[2] J. O'Rourke. Art gallery theorems and algorithms. Oxford University 
Press, New York, 1987. 

[3] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. 
Urrutia, editors, Handbook of Computational Geometry. North-Holland, 
2000. 

[4] T. S. Michael. How to guard an art gallery and other discrete 
mathematicaladventures. Johns Hopkins Press, 2009. 

[5] Görkem Safak. The Art-Gallery Problem: A Survey and an Extension. 
Master’s thesis, School of Computer Science and Engineering Royal 
Institute of Technology, Sweden, 2009. 

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 154



[6] Marengoni, Maurício, Draper, Bruce A., Hanson, Allen R. and 
Sitaraman, R.. "A system to place observers on a polyhedral terrain in 
polynomial time.." Image Vision Comput. 18 , no. 10 (2000): 773-780. 

[7]  .   chter, H. Surmann, and J. Hertzberg, "Planning robot motion for 
3d digitalization of indoor environments," in Proc. of the 11th 
International Conference on Advanced Robotics (ICAR), 2003. 

[8] D. T. Lee and A. K. Lin. Computational complexity of art gallery 
problems. IEEE Trans. Inform. Theory, 32(2):276-282, 1986. 

[9] A. Efrat and S. Har-Peled. Guarding galleries and terrains. Information 
Processing Letters, 2006. 

[10] S. K. Ghosh. Approximation algorithms for art gallery problems. Proc. 
of the Canadian Information Processing Society Congress, pages 429-
434, 1987. 

[11] H. Gonzállez-Banos and and J-C. Latombe. A randomized art-gallery 
algorithm for sensor placement. In Proc. 17th Annu. ACM Sympos. 
Comput. Geom., pages 232-240, 2001. 

[12] A.L. Bajuelos, S. Canales, G.  ern nde , A.M. Martins: Optimizing the 
Minimum Vertex Guard Set on Simple Polygons via a Genetic 
Algorithm, in WSEAS Transactions in Information Science and 
Applications 5 (11), 1584-1596 (2008). 

[13] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Minimum 
vertex guard problem for orthogonal polygons: a genetic approach. In 
Proc. 10th WSEAS International Conference on Mathematical Methods, 
Computational Techniques and Intelligent Systems (MAMECTIS'08), 
pages 78-84, 2008. 

[14] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor 
approximation algorithm for optimal terrain guarding. In Proc. 16th 
ACM-SIAM Symposium on Discrete Algorithms, pages 515-524, 2005. 

[15] J. King. A 4-approximation algorithm for guarding 1.5-dimensional 
terrains. In Proc. 7th Latin American Sympos. on Theoretical 
Informatics, vol. 3887 of Lecture Notes Comput. Sci., pages 629-640, 
Springer-Verlag, 2006. 

[16] B. J. Nilsson. Approximate guarding of monotone and rectilinear 
polygons. In Proc. 32nd Internat. Colloq. Automata Lang. Prog., vol. 
3580 of Lecture Notes Comput. Sci., pages 1362-1373, Springer-Verlag, 
2005. 

[17] C. Worman and M. Keil. Polygon decomposition and the orthogonal art 
gallery problem. Internat. J. Comput. Geom. Appl., 2006. 

[18] Couto, M. C., de Souza, C. C., and de Rezende, P. J. 2008. Experimental 
evaluation of an exact algorithm for the orthogonal art gallery problem. 
In Proceedings of the 7th International Conference on Experimental 
Algorithms (WEA'08). Springer-Verlag, Berlin, 101-113. 

[19] G. Viglietta. Guarding and searching polyhedra. Ph.D. Thesis, 
University of Pisa, 2012. 

[20] Kevin Suffern. Ray Tracing from the Ground Up. A K Peters, Ltd., 1 
edition, 2007. ISBN 978-1-56881-272-4. 

[21] T. T. Wong, W. S. Luk, and P. A. Heng, "Sampling with Hammersley 
and Halton points," Graphics tools: The jgt editors' choice, 2005. 

[22] I. Millington. Artificial Intelligence for Games. Morgan Kaufmann, 
2006. 

[23] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in 
Evolutionary Algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 
(1999).

 

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 155


