
Coverage in Arbitrary 3D Environments
The Art Gallery Problem in Shooter Games

Eduardo Penha Castro Fantini, Luiz Chaimowicz
Computer Science Department

Federal University of Minas Gerais
Belo Horizonte, Brazil

{fantini, chaimo}@dcc.ufmg.br

Abstract—The Art Gallery Problem consists in determining

the minimum number of observers required to cover an

environment such that each point is seen by at least one observer.

This is a NP-Hard problem well known in the field of

computational geometry. In the literature, several restrictions are

applied to 2D and 3D environments to study and solve the

problem in polynomial time, for example the use of simple

polygons, orthogonal and planar environments, etc. In this paper

we present an approximate and polynomial solution based on

metaheuristic genetic algorithms that can be applied to general

3D environments without any restriction and, therefore,

applicable in shooter games and also real-world environments.

The solution uses the techniques of (i) computer graphics to

generate sample points in the environment, (ii) ray-mesh

intersection test to generate a graph of visibility between the

samples and (iii) genetic algorithms to find and optimize the

minimum set of observers. The maps of the game Counter-Strike

were used to analyze the placement of small groups of observers

in complex environments with obstacles. The game engines Half-

Life and Irrlicht were used to apply the ray-mesh intersection

test in 3D environments. A series of experiments were performed

and the results show that our methodology is capable of

obtaining a good coverage of space with a small number of agents

observing.

Keywords—art gallery problem; computational geometry;

visibility; natural computation; computer graphics; shooter games

I. INTRODUCTION

The Art Gallery Problem (AGP) was introduced in 1973 by
Vitor Klee, when he asked how many stationary guards are
needed to cover an art gallery room with n walls [1]. This
visibility problem and its variations have been deeply studied
([2, 3, 4]) and support a series of applications in the real world
([5, 6, 7]), e.g., security cameras, military scout positioning,
cellular antennas distribution, and optimizations.

It was shown that determining an optimal minimum set of
guards to cover a polygon is NP-Hard, even for simple
polygons [8]. Some approximation algorithms with logarithmic
approximation ratios [9, 10, 11] and genetic algorithms [12, 13]
are applicable for restricted versions of the problem,
positioning guards at vertices or at points of a discrete grid.
Constant-factor approximations are known for guarding 1.5D
terrains and monotone polygons [14, 15, 16], and exact
methods are proposed for the special cases of rectangle and
triangle visibility in 2D orthogonal polygons without holes [17,

18]. In 3D environments there are studies about elevation maps
restricted to planar terrains [6], and about orthogonal
polyhedral environments [19], a type of constraint since it
works only for orthogonal 3D polygons. In spite of these
efforts, the unrestricted version of the optimization problem for
2D and 3D environments remains open.

In this scenario of unconstrained environments, we propose
a methodology based on sampling techniques, ray-mesh
intersection test and metaheuristic genetic algorithms to
provide approximate solutions to the following problem:

Given an arbitrary three-dimensional environment, what is
the minimum number of observers we need to cover the whole
environment and where should we place them?

Answering this question, even approximately, is important
for a large number of applications in the real world and also in
the digital games field. There are several applications in games
in which considering a minimum set of points able to monitor
or cover a complex volume in the space is important, for
example:

 Strategic positioning of players to cover a map against
enemies in multiplayer shooting games.

 Effective positioning of light sources, which are limited
in engines, to illuminate scenarios during the level
design process.

 Positioning of cameras in the environment for
transmission or recording of matches in three-
dimensional games.

This work focuses on the first game application example
and uses the Counter-Strike 1.6 as the experimentation
platform. Counter-Strike is a mod for the game Half-Life with
a partially accessible code by the Half-Life SDK and Dynamic-
Link Libraries. The Counter-Strike is a widespread shooting
game and has complex 3D maps that generate arbitrary
polygons with holes and non planar visibility graphs. These
characteristics were important for the choice of platform.

The paper is organized as follows: Section 2 will address
the basic concepts of the Art Gallery Problem and related
subjects while the Section 3 will explain the methodology that
we propose. The Section 4 presents a series of experiments
performed and their results. Finally, Section 5 brings the
conclusion and directions for future work.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 146

II. PRELIMINARIES

To support the understanding of the addressed problem, we
introduce some necessary concepts and notations.

The Art Gallery Problem is a NP-Hard optimization
problem. Finding an exact solution and checking its optimality
are problems with exponential complexity [8].

Both in the original definition of the problem in 1973 and
in this work, a guard is a stationary point placed on the
environment and has a range of visibility equals to 2, i.e. 360
degrees [1].

The minimum set of guards needed to cover an
environment, polygon or samples set is called Minimum
Vertex Guard (MVG) [12]. Therefore, the MVG is the exact
solution for AGP. For approximate solutions, we will use the
nomenclature Approximate Minimum Vertex Guard (AMVG).

In computational geometry, the visibility graph is a graph
of intervisible locations made for a set of points and obstacles
in n-dimensional Euclidean spaces. Each vertex of the graph
represents a point, and each edge represents a visible link
between two of them.

A. Notation used in our aprouch

Given an undirected visibility graph G = {V, E}, generated
from the samples V of a three-dimensional environment, we
must find the set AMVG, identified as S, so that S V. Each
edge eij indicates that vi and vj are visible samples to each other.

Whereas vi ∈ V, si ∈ S and eij ∈ E, we can say that S is the
set with the smallest cardinality K = |S| such that, for all vi
there is an edge eij between vi and sj or vi = sj.

Therefore, we are searching for the subset S with the
smallest possible cardinality K that covers all vertices of the set
of samples V.

III. PROBLEM MODELING AND METHODOLOGY

In this paper we propose a methodology for finding
approximate solutions to the AGP in arbitrary environments,
whether two-dimensional or three-dimensional. This process
includes three distinct stages, each one with flexible use of
computational techniques.

Given an arbitrary environment, we first generate a set of
sample points belonging to the area or volume that we want to
cover. Then we construct a visibility graph, where the samples
represent the vertices and an edge represents visibility between
two of them. Finally, we apply genetic algorithms to search for
the AMVG on this graph.

A. Generating Samples in an Environment

The first step we perform in our model is the mapping of
sample points in an environment. There are several strategies in
computer graphics to generate sample points on surfaces, each
with its advantages and disadvantages depending upon the
application.

Among the sampling techniques we can highlight:
Uniform, Random, Stratified, Latin Hypercube, Poisson-Disk

and Best Candidate Samplings. These are generally applied in
two-dimensional surfaces, but can be adapted to three-
dimensional environments [20]. Other possibilities include
more advanced Hammersley and Halton samplings for 3D
geometry [21].

It should be emphasized that the mapping of samples is
limited to the volume defined by the geometric walls and
obstacles in the environment. Depending upon the application,
we can further reduce this volume to areas of interest. For
example, generating samples only in areas where it will be
necessary to monitor, which does not always encompasses the
entire environment.

For Counter-Strike game, we utilize the bots (computer-
controlled players) navigation waypoints as mapping samples.
The waypoints are vertices of the path finding graphs, a well-
known artificial intelligence technique applied in continuous
three-dimensional environments for games [22]. The waypoints
of Counter-Strike maps are generated from real players moving
around the space during several matches. After that it is
possible to make improvements manually. In Counter-Strike,
each waypoint has a lot of useful information for intelligence
decision of bots (see Fig. 1), e.g., where to camp, where to
plant bombs, mobility possibilities, etc.

The region we want to monitor is the same one in which
real players and bots are moving. For this reason we decided to
take advantage of these waypoints for the visibility graph.

Fig. 1. Waypoint information in Counter-Strike. Inside the game the
waypoints are shown as vertical bars.

Another alternative technique that we used for generating
samples in the game was the uniform distribution over the
volume. We applied it in regions of interest. Regions of
interest which we call green zones are regions that a character
can occupy in the environment while moving. Thus, to boost
the efficiency of the process, we do not need to monitor
volumes outside the green zones. The green zones are defined
by the geometry of the environment and their obstacles are
called red zones. The uniform distribution over the volume is a
simple sampling technique and consists in generating equally
spaced samples in the three-dimensional environment [20].

To extract sample waypoints of the game, we created a
command console for Counter-Strike that accesses information

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 147

from running maps and saves them to an external file. For
generating a uniform mapping, we loaded the game map in the
Irrlicht1 graphics engine, created routines to generate the
uniform samples and validate some of them inside the green
regions defined manually with the support of the software
Autodesk 3D Max.

It is important to consider that our manual step to create
green zones is optional, but can provide considerable gains in
efficiency depending on the number of reduced samples.

B. Making the Visibility Graph

The second step of the methodology is the construction of a
visibility graph using the technique of ray-mesh intersection
test. For each pair of vertices we trace a ray starting from the
first to the second, and if that ray does not collide with the
geometry of the scenario we created an edge. Thus, each edge
indicates that there is visibility between its two vertices.

Here we use the term ray-mesh intersection test generically,
because in game development field there are a lot of names for
the same technique to test the visibility between two points in
three dimensional spaces (e.g. trace line test, hit test, check ray
intersection, collision point from ray, etc…). All of them use a
mathematical method to test whether a ray between two points
intersects triangles of the given object. It is a variation of the
ray casting algorithm, the most basic of many computer
graphics rendering algorithms that use the geometric algorithm
of ray tracing. [20].

We decided to use this technique because it is
computationally cheap and one of the simplest ways to check if
two points are visible between themselves in 3D spaces. The
ray-mesh intersection test is widely used to ballistics in shooter
games and it is present in most of the game engines.

In Counter-Strike we access the method called
TRACE_LINE through the Half-Life engine and create a new
command in the game console to generate a visibility graph
between the waypoints of each map during the execution of the
matches.

To generate visibility graphs out of the game, we used the
method called getSceneNodeAndCollisionPointFromRay from
Irrlicht engine. So, loading the Counter-Strike maps in Irrlicht
and generating valid samples, it is possible to create the
corresponding visibility graph between them.

C. Finding the Minimum Vertex Guard or an Aproximation

The third step of our methodology involves finding the
minimum set of guards to cover the visibility graph. This is the
Minimum Set Cover (MSC) optimization problem, also NP-
Hard. We have developed two algorithms, one exact based on
the backtracking paradigm and another based on metaheuristic
genetic algorithms to compare some results.

As this stage is the most computationally complex of the
three of our methodology, we did the analysis of time
complexity of the proposed algorithms. The algorithms we
used to find the MVG and AMVG provides the complexity
asymptotic upper bound of our methodology.

1) An Exact Algorithm Based on Backtracking
The exact algorithm (see Algorithm 1) is sensitive to the

size of the MSC and has exponential complexity of time, so it
is not efficient for graphs whose MSC sets are large. The
analysis of time complexity of this algorithm is given in (1),
where N is the number of samples, K is the size of exact MSC
and C is the size of the set cover for testing per iteration. The
MSC solution is the same for MVG in a graph.

The Algorithm 1 can run several iterations. The first one
generates all the possibilities of sets with size one and tests
whether each set covers all samples (Algorithm 2). The second
iteration generates all sets with size two and so on. In this way,
when we found one or more sets with size K that covers all
samples, the Algorithm 1 ends and we found out the optimal
solution, the MSC or MVG.

 𝑁! 𝑁 − 𝐶 ! 𝐶!

𝐾𝐶=1
 𝐶𝑁 for 1 ≤ 𝐾 ≤ 𝑁

(1)

For the worst case, when K = N, the time complexity is
given by the following equation:

𝑂 2𝑁 − 1 𝑁2

(2)

1 Irrlicht Engine is an open source high performance realtime 3D engine
written in C++. Website: http://irrlicht.sourceforge.net/

Algorithm 1: Exact Algorithm
Input: adjMatrix, |V| // Adjacency matrix and number of vertices

1: for i ← 0 to i < |V| do
2: if |MSC_solutions| != 0 then
3: break // algorithm stop condition
4: end if
5: K ← i + 1 // number of elements in candidate set
6: candidate.push(i) // candidate solution
7: for j ← 0 to j < i do
8: candidate[j] ← j
9: end for
10: if checkFullCoverage(adjMatrix, candidate) = true then
11: MSC_solutions.push(candidate)
12: end if
13: flag ← false
14: pivot ← K-1
15: while flag = false do
16: while positions[pivot] = (pivot + N - K) do
17: if pivot = 0 then
18: flag ← true
19: break
20: else
21: pivot ← pivot - 1
22: end if
23: if flag = false then
24: candidate[pivot] ← candidate[pivot] + 1
25: for m ← pivot + 1 to m < K do
26: candidate[m] ← candidate[m-1] + 1
27: if checkFullCoverage(adjMatrix, candidate) = true then
28: MSC_solutions.push(candidate)
29: pivo ← K-1
30: end if
31: end for
32: end if
33: end while
34: end while
35: end for
36: print MSC_solutions

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 148

2) An Aproximate Algorithm Based on Genetic Algorithms
Due to the high computational complexity of this

optimization problem, we look for solutions through a
metaheuristic genetic algorithm. A genetic algorithm (GA) is a
search technique used to find approximate solutions for
optimization problems and uses techniques inspired by
evolutionary biology such as inheritance, mutation, natural
selection and recombination (e.g. crossing over).

Genetic algorithms are implemented as a computer
simulation in which a population of abstract representations of
selected solution is used to find better solutions. The evolution
starts from a set of solutions randomly created and is
performed through generations. In each generation, the
adaptation of each solution in the population is evaluated by a
fitness function. Then, some individuals are selected via
tournament for the next generation and recombined by crossing
over or mutated to generate a new population. The new
population is then used as input to the next iteration of the
algorithm until the stopping condition is reached (see
Algorithm 3).

Being a stochastic method, the experimental evaluation of
the genetic algorithm should be performed with repetitions so
that the results should be reported according to the average
value and its standard deviation ().

To design a genetic algorithm it is necessary to define
certain characteristics and parameters, such as:

a) Representation of individuals: An individual (i.e. a
candidate solution) in our GA is represented by a binary string
of the size of our sample points set. The bit value of 1 means
that this is a point guard and belongs to AMVG. Otherwise
this sample should be covered by another vertex (see Fig 2).

0 1 0 0 0 1 0 … 0 0 0 0 0 1

Fig. 2. Representation of individuals in genetic algorithms.

b) Method of selection: In all of our experiments, we
used the tournament method with two individuals. Elitism is
also applied, preserving the best individual to the next
generation.

c) Fitness evaluation: In the evaluation of a candidate
solution we consider the size of the cover set and the amount
of samples it covers. Smaller sets with greater coverage get the
best fitness. The maximum fitness value in our algorithm is
100.

d) Population size: This parameter should be a
sufficient value to generate a population diversity able to
avoid the premature converge of solutions.

e) Number of generations: This parameter depends on
the behavior of the algorithm with respect to the convergence
of the results. After the experiment, if we observe that the
fitness did not converge (high standard deviation), we increase
the number of generations and repeat the experiment. After
running some experiments, we observed that seting the
number of generations equal or greater than the number of
vertices of the visibility graph, the genetic algorithm generates
better results. So, we keeped it close to the number of vertices.

f) Probabilities of crossing over and mutation: These
parameters are calibrated by analysing the standard deviation
of the Average of Average Fitness (AAF) in final results of the
calibration algorithm (see Algorithm 4). Smaller standard
deviations indicates better convergence and better set of
parameters for GA. In our experiments we used the random
point method for the crossing over and mutation operators.

More details about GA parameters control can be seen at
the reference [23].

The analysis of time complexity of our genetic algorithm is
given in (3), where N is the number of samples, E is the
number of edges in the visibility graph, P is the population
size, G is the number of generations and R the number of
repetitions.

O(𝑅𝐺𝑃(𝑁 + 𝐸))

 (3)

Algorithm 2: CheckFullCoverage
Input: adjMatrix, S, |V| // Adjacency matrix, solution and number of vertices

1: if |S| > |V| then
2: return false
3: end if
4: for j ← 0 to j < |V| do
5: Covered[j] ← false // vector to mark coverage
6: end for
7: count ← 0
8: for i ← 0 to i < |S| do
9: if Covered[S[i]] = false then
10: Covered[S[i]] ← true
11: count ← count + 1
12: for j ← 0 to j < |V| do
13: if adjMatrix[S[i]][j] = true AND Covered[j] = false then
14: Covered[j] ← true
15: count ← count + 1
16: end if
17: end for
18: end if
19: end for
20: if count != N then
21: return false
22: end if
23: return true

Algorithm 3: Genetic Algorithm

1. for r ← 1 to 30 do // number of repetitions
2. g ← 0 // generation
3. Initialize the random population, P(g)
4. while target generation g not met do
5. Fitness Evaluation of P(g)
6. Selection by tournament on P(g)
7. Crossing Over P(g)
8. Mutate P(g)
9. g ← g +1
10. Generate P(g) from P(g −1)
11. end while

12. end for
13. return Best Solution

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 149

IV. EXPERIMENTS AND RESULTS

To explore our methodology for AGP in arbitrary three-
dimensional environments, we performed a series of
experiments and analyzed their results.

A. Genetic and Exact Algorithms applied to Sparse Graphs
with Known Minimum Vertex Guard

Initially we developed a generator of sparse graphs,
specifically Minimum Spanning Trees (MST), with known
MVG sets to compare the results and time performance of our
exact and genetic algorithms. This experiment focuses only on
step three of our methodology.

Minimum Spanning Trees are the worst cases of connected
visibility graphs. In a complete graph, for example, the MVG
has one element that can be any vertex of the graph.

The parameters used for the genetic algorithm were:
repetitions = 30, initial population = 250, mutation probability
= 10% and crossover probability = 90%. For graphs with 100
vertices we performed 200 generations, for graphs with 500
vertices we run 600 generations and for graphs with 1000
vertices, 1100 generations. The results are shown in Table 1.

TABLE I. EXACT VERSUS GENETIC ALGORITHMS RESULTS

Input Graph Exact Algorithm Genetic Algorithm

Vertexes MVG MVG
Time

(s)
AMVG

a

Time

(s)

100 1 1 0.00 1 0.137 181.26

100 2 2 0.07 2 0.132 186.21

100 3 3 2.69 3 0.135 186.78

100 4 4 77.68 4 0.121 151.91

500 1 1 0.04 1 0.101 1.83e+003

500 2 2 10.45 2 0.050 1.81e+003

500 3 3 2.2e+003 3 0.061 1.23e+003

500 4 4 1.71e+005 4 0.045 0.93e+003

1000 1 1 0.23 1 0.101 4.48e+003

1000 2 2 141.17 2 0.069 4.39e+003

1000 3 3 3.90e+004 3 0.045 3.74e+003

a. Standard deviation from average of average fitness.

We can observe that the time consumption behavior of the
exact algorithm is exponential, while the genetic algorithm
practically does not changes over graphs with similar vertex
quantity. We also verified that genetic algorithms found
optimal solutions for this experiment with satisfactory
convergence of population.

A MST graph with 200 vertices and a MVG with size 4
was used to calibrate the parameters of our genetic algorithm.
The Table 2 shows the sets of parameters that gave better
convergence results. The tested parameters were: population
size P, number of generations G, crossover probability Pcross
and mutation probability Pmut. We are looking for sets that
results in average of average fitness AAF near 100 with
smallest standard deviation . Therefore, the Set 4 was the best.

TABLE II. GENETIC ALGORITHMS CALIBRATION: SOME PARAMETER

SET RESULTS

Parameter set P G Pcross Pmut AAF a

Set 1 100 100 0.60 0.01 99.99 0.0008

Set 2 150 200 0.60 0.05 99.99 0.0008

Set 3 150 100 0.75 0.01 99.97 0.0033

Set 4 150 200 0.90 0.10 99.99 0.0000

Set 5 100 100 0.60 0.01 99.99 0,0008
a. Standard deviation from average of average fitness.

.

B. Genetic Algorithms applied in Counter-Strike Waypoints

In order to simplify the sampling in the first stage of our
methodology, we take the vertices of the navigation graph of
bots from the Counter-Strike maps, the waypoints. Over the
years, these waypoints were improved by the community and
developers, which made them an interesting basis of
information for many types of research (see Fig. 3 and Fig. 4).

After collecting waypoints from each map, we create the
visibility graph via ray-mesh intersection test within the game
itself, saving them to external files. This is the second stage of
our methodology (see Fig. 5).

Finally, in the third stage, we apply the genetic algorithm to
find the AMVG for these samples (see Fig 6 and Fig. 7).

Fig. 3. Waypoints (black points) in Cs_italy map.

Algorithm 4: Genetic Algorithm Calibration

1: for generations ← 100 to 200 do
2: for population ← 100 to 200 do
3: for pCross ← 0.6 to 0.9 do
4: for pMutation ← 0.01 to 0.10 do
5: for s ← 0 to 30 do
6: GA(graph, generations, population, pCross, pMutation, seed[s])
7: end for
8: pMutation ← pMutation + 0.05
9: end for
10: pCross ← pCross + 0.15
11: end for
12: population ← population + 50
13: end for

14: generations ← generations + 100
15: end for

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 150

Fig. 4. Waypoints extraction from Cs_italy map.

Fig. 5. Visibility graph generated by ray-mesh intersection test for Cs_italy
map samples.

Fig. 6. Aproximate Minimum Vertex Guard for Cs_italy map samples.

Fig. 7. Approximate Minimum Vertex Guard points inside Cs_italy map.

Waypoints can provide useful information for bots. This is
an artificial intelligence technique used in games where bots
collects data on the environment. For comparative purposes,
we used a type of existing information, i.e. the points the camp.
Camp points are waypoints with information indicative for bots
stay lying in wait, monitoring the environment to surprise the
opponent. These points are usually occupied by snipers in the
game. We compared the number of this known camp points
from Counter-Strike maps with the AMVG found by the
genetic algorithm. We also analyzed the percentage of samples
coverage of camp points and AMVG (see Table 3).

The parameters used for the genetic algorithm were:
repetitions = 30, initial population = 250, number of
generations = 700, mutation probability = 10% and crossover
probability = 90%.

In the previous experiment, the maps Cs_747, Cs_havana,
De_chateau and De_torn presented sets of camp points smaller
than AMVG, but with different coverage. So, we modified the
fitness of the genetic algorithm to find the AMVG with
coverage near of 60%, 70%, 80% and 90%. Our goal was to
explore different percentages of coverage and analyze their
impact on the size of AMVG. We also included other maps in
this experiment, which have variations in numbers of vertices
and edges. They are: Cs_italy, Cs_militia, De_cbble, De_dust
and De_prodigy. The results are shown in Table 4.

We can observe a significant reduction in size of the
AMVG for smaller coverings percentage. For maps Cs_747,
Cs_havana, De_chateau and De_torn, the AMVG are smaller
than the set of camp points with the same range of coverage.

The parameters used for the genetic algorithm were:
repetitions = 30, initial population = 250, number of
generations = 700, mutation probability = 10% and crossover
probability = 90%.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 151

TABLE III. GENETIC ALGORITHMS IN COUNTER-STRIKE MAPS

Input Map Genetic Algorithm

Name Vertexes Edges

Camp

Points

/ %

Cover
a

AMVG

/ %

Cover
b

As_oilrig 487 6313 39 / 70.2 32 / 100 0.006

Cs_747 388 6210 24 / 79.1 33 / 100 0.014

Cs_assault 470 17782 50 / 94.9 18 / 100 0.006

Cs_backalley 375 4592 44 / 66.7 2 / 100 0.112

Cs_estate 399 9350 52 / 97.7 23 / 100 0.009

Cs_havana 396 3883 30 / 69.9 34 / 100 0.010

Cs_italy 391 5116 72 / 97.4 31 / 100 0.008

Cs_militia 603 12194 63 / 90.7 29 / 100 0.011

Cs_office 386 4968 52 / 96.6 3 / 100 0.057

Cs_siege 557 12845 51 / 74.9 30 / 100 0.006

De_airstrip 521 7596 45 / 63.7 39 / 100 0.004

De_aztec 521 11495 61 / 81.0 31 / 100 0.004

De_cbble 631 14106 67 / 82.6 40 / 100 0.004

De_chateau 540 6627 22 / 53.5 42 / 100 0.005

De_dust 476 9619 43 / 81.3 26 / 100 0.006

De_dust2 433 7572 54 / 96.5 26 / 100 0.007

De_inferno 440 5206 49 / 83.2 25 / 100 0.009

De_nuke 618 12325 41 / 69.6 16 / 100 0.002

De_piranesi 572 8531 75 / 77.3 47 / 100 0.003

De_prodigy 337 2878 40 / 79.2 34 / 100 0.015

De_storm 492 10095 41 / 75.6 26 / 100 0.011

De_survivor 513 10121 46 / 81.7 4 / 100 0.048

De_torn 418 4645 33 / 58.6 36 / 100 0.005

De_train 521 11667 42 / 89.4 15 / 100 0.007

De_vertigo 383 4529 51 / 88.3 36 / 100 0.006

a. Number of map camp points and your respective waypoints samples coverage.

b. Standard deviation from average of average fitness.

TABLE IV. GENETIC ALGORITHMS IN COUNTER-STRIKE MAPS: AMVG

RESULTS FOR DIFFERENT COVERING PERCENTAGE TARGETS

Input Map
Cover Set Size / % Cover

Target

60%

Target

70%

Target

80%

Target

90%

Target

100%

Cs_747 5 / 60.6 7 / 71.1 10 / 80.7 15 / 90.5 33 / 100

Cs_havana 5 / 60.1 8 / 72.0 12 / 80.8 19 / 90.1 34 / 100

Cs_italy 6 / 62.1 9 / 70.3 13 / 80.1 19 / 90.0 31 / 100

Cs_militia 6 / 59.5 7 / 70.1 7 / 79.6 12 / 89.4 29 / 100

De_cbble 6 / 60.4 9 / 70.5 14 / 80.0 22 / 90.0 40 / 100

De_chateau 10 / 60.0 13 / 70.4 17 / 80.4 24 / 90.0 42 / 100

De_dust 5 / 60.3 6 / 71.6 9 / 81.9 12 / 90.3 26 / 100

De_prodigy 7 / 60.2 10 / 71.2 15 / 80.4 20 / 90.5 34 / 100

De_torn 8 / 60.8 11 / 71.3 14 / 80.4 19 / 90.2 36 / 100

C. Exact Algorithm applied in Counter-Strike Waypoints

Analyzing the Table 3, we found some results of the
genetic algorithm with reduced AMVG. It allows us to run the
exact algorithm to check how close these results are of the
MVG. For maps Cs_backalley, Cs_office and De_survivor we
performed the exact algorithm, obtaining the results given in
Table 5. As can be seen in these results, the genetic algorithm
obtained solutions near or equal to the MVG.

TABLE V. EXACT AND GENETIC ALGORITHMS IN COUNTER-STRIKE

MAPS: TIME AND MVG RESULTS

Input Map Exact Algorithm Genetic Algorithm

Name MVG
Time

(s)
AMVG a

Time

(s)

Cs_backalley 2 2.92 2 0.112 1.52e+003

Cs_office 3 436.11 3 0.057 1.96e+003

De_survivor 3 1.41e+003 4 0.048 1.76e+003

a. Standard deviation from average of average fitness.

D. Genetic Algorithms applied in Counter-Strike Samples
Points

Another type of mapping samples was tested in a Counter-
Strike map. Instead of take advantage of the waypoints, we did
a 3D uniform sampling in the first stage of the methodology.

We selected the map Cs_assault containing many
interesting geometrical elements, such as large open areas,
indoor areas, tunnels, ramps, obstacles and high areas.

In the first stage we created green zones and red zones.
Green zones are the volumes of interest, i.e. the valid space
where a character can be positioned on the map. The red zones
are obstacles and were created to serve as subtractive volumes
to green zones. These areas were manually created in Autodesk
3D Max, represented by rectangles, prisms and spheres (see
Fig. 8 and Fig. 9). The combination of these primitives allows
the creation of arbitrary geometries.

When we started the process of uniform sampling, we
observed that some green zones had excessive samples and
others had samples shortage. This is due to the method of
uniform sampling, because the spacing between samples
sometimes does not match the volume we need to fill (e.g.
narrow tunnels) and thus it was necessary to further subdivide
the samples. For this experiment, we subdivided the samples
until all the green zones were filled.

To validate each sample, we performed geometric
calculations to test whether the point is inside a 3D polygon of
interest and out of obstacles. See Fig. 10 and Fig. 11.

In the second stage we performed the ray-mesh intersection
test using the Irrlicht graphics engine, generating the
corresponding visibility graph. The graphs generated by
samples of waypoints and the uniform samples are significantly
different, as can be seen in Fig. 12 and Fig. 13.

For the last stage we applied the genetic algorithm in
visibility graph to find the AMVG. The parameters used for the
genetic algorithm with uniform samples were: repetitions = 30,
initial population = 200, number of generations = 2000,

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 152

mutation probability = 10% and crossover probability = 90%.
The comparative results are shown in Table 6.

TABLE VI. WAYPOINT VERSUS UNIFORM SAMPLING METHODS

Cs_assault Map Genetic Algorithm

Sampling

Method
Vertex Edges

AMVG

/ % Cover
a

Time

(s)

Waypoints 487 6313 18 / 100 0.006 0.18+e004

Uniform 8184 4110026 48 / 100 0.001 1.17+e008

a. Standard deviation from average of average fitness.

The uniform sampling provides a more efficient three-

dimensional coverage of the sampling waypoints (see Fig. 14
and Fig. 15), because it requires that the genetic algorithm
covers a larger number of samples better distributed in the
environment. However, the time to process a huge number of
samples is higher.

Fig. 8. Cs_assault map geometry.

Fig. 9. Green zones and red zones from Cs_assault map.

Fig. 10. Uniform three-dimensional sampling in Cs_assault map.

Fig. 11. Valid samples for Cs_assault map (inside green zones).

Fig. 12. Visibility graph using waypoint samples of Cs_assault map.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 153

Fig. 13. Visibility graph using uniform sampling for Cs_assault map.

Fig. 14. Approximate Vertex Guard for waypoint samples of Cs_assault map.

Fig. 15. Approximate Vertex Guard for uniform sampling of Cs_assault map.

All the implementations were done in C/C++ (for Microsoft
Visual Studio 2010). The above described methods were tested
on a PC featuring an Intel(R) Core(TM) i7 CPU 860 at 2.80
GHz and 4 GB of RAM.

V. CONCLUSIONS AND FUTURE WORK

We can conclude that the proposed methodology for the Art
Gallery Problem in arbitrary three-dimensional environments
obtains satisfactory solutions of Approximate Minimum Vertex
Guard close to optimal results in some experiments.

We demonstrate that our methodology is able to cover all
samples of a visibility graph and converge to small coverage
sets. So, no matter if we are working with simple or arbitrary
polygons from the environment, the most important is to make
good mapping of samples based on our interest of monitoring.

In Counter-Strike game we found approximate solutions
that cover all samples of the environment, and also sets of
guard points smaller and most efficient than the set of camp
points known for the maps.

We can affirm that sampling is a stage that requires careful
in our approach, because it interferes directly in the quality of
the results. Starting with good sampling sets it is possible to
obtain satisfactory results using our methodology. So, this
study given significant progress for Art Gallery Problems
applied in unrestricted environments, enabling new research
possibilities.

As future work, we intend to explore other techniques of
genetic algorithms to increase the diversity of individuals
trying to find better solutions. We also want to investigate
others sampling methods, taking advantage of the concept of
green zones, already implemented in this work, to optimize the
process.

Another experiment we want to perform is the cameras
placement, where we restrict the positions of observers and
apply a reduced angle of visibility to them. It would be
interesting to use for recording or live streaming of shooting
games.

ACKNOWLEDGMENT

The authors would like to acknowledge the partial support
of CAPES, CNPq and Fapemig in the development of this
work.

REFERENCES

[1] R. Honsberger, Mathematical Gems II, Mathematical Association of

America (1976), 104-110.

[2] J. O'Rourke. Art gallery theorems and algorithms. Oxford University
Press, New York, 1987.

[3] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack and J.
Urrutia, editors, Handbook of Computational Geometry. North-Holland,
2000.

[4] T. S. Michael. How to guard an art gallery and other discrete
mathematicaladventures. Johns Hopkins Press, 2009.

[5] Görkem Safak. The Art-Gallery Problem: A Survey and an Extension.
Master’s thesis, School of Computer Science and Engineering Royal
Institute of Technology, Sweden, 2009.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 154

[6] Marengoni, Maurício, Draper, Bruce A., Hanson, Allen R. and
Sitaraman, R.. "A system to place observers on a polyhedral terrain in
polynomial time.." Image Vision Comput. 18 , no. 10 (2000): 773-780.

[7] . chter, H. Surmann, and J. Hertzberg, "Planning robot motion for
3d digitalization of indoor environments," in Proc. of the 11th
International Conference on Advanced Robotics (ICAR), 2003.

[8] D. T. Lee and A. K. Lin. Computational complexity of art gallery
problems. IEEE Trans. Inform. Theory, 32(2):276-282, 1986.

[9] A. Efrat and S. Har-Peled. Guarding galleries and terrains. Information
Processing Letters, 2006.

[10] S. K. Ghosh. Approximation algorithms for art gallery problems. Proc.
of the Canadian Information Processing Society Congress, pages 429-
434, 1987.

[11] H. Gonzállez-Banos and and J-C. Latombe. A randomized art-gallery
algorithm for sensor placement. In Proc. 17th Annu. ACM Sympos.
Comput. Geom., pages 232-240, 2001.

[12] A.L. Bajuelos, S. Canales, G. ern nde , A.M. Martins: Optimizing the
Minimum Vertex Guard Set on Simple Polygons via a Genetic
Algorithm, in WSEAS Transactions in Information Science and
Applications 5 (11), 1584-1596 (2008).

[13] A.L. Bajuelos, S. Canales, G. Hernández, and A.M. Martins. Minimum
vertex guard problem for orthogonal polygons: a genetic approach. In
Proc. 10th WSEAS International Conference on Mathematical Methods,
Computational Techniques and Intelligent Systems (MAMECTIS'08),
pages 78-84, 2008.

[14] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor
approximation algorithm for optimal terrain guarding. In Proc. 16th
ACM-SIAM Symposium on Discrete Algorithms, pages 515-524, 2005.

[15] J. King. A 4-approximation algorithm for guarding 1.5-dimensional
terrains. In Proc. 7th Latin American Sympos. on Theoretical
Informatics, vol. 3887 of Lecture Notes Comput. Sci., pages 629-640,
Springer-Verlag, 2006.

[16] B. J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. In Proc. 32nd Internat. Colloq. Automata Lang. Prog., vol.
3580 of Lecture Notes Comput. Sci., pages 1362-1373, Springer-Verlag,
2005.

[17] C. Worman and M. Keil. Polygon decomposition and the orthogonal art
gallery problem. Internat. J. Comput. Geom. Appl., 2006.

[18] Couto, M. C., de Souza, C. C., and de Rezende, P. J. 2008. Experimental
evaluation of an exact algorithm for the orthogonal art gallery problem.
In Proceedings of the 7th International Conference on Experimental
Algorithms (WEA'08). Springer-Verlag, Berlin, 101-113.

[19] G. Viglietta. Guarding and searching polyhedra. Ph.D. Thesis,
University of Pisa, 2012.

[20] Kevin Suffern. Ray Tracing from the Ground Up. A K Peters, Ltd., 1
edition, 2007. ISBN 978-1-56881-272-4.

[21] T. T. Wong, W. S. Luk, and P. A. Heng, "Sampling with Hammersley
and Halton points," Graphics tools: The jgt editors' choice, 2005.

[22] I. Millington. Artificial Intelligence for Games. Morgan Kaufmann,
2006.

[23] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in
Evolutionary Algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141
(1999).

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 155

