
Coverage in Wireless Ad Hoc Sensor Networks
Xiang-Yang Li, Member, IEEE, Peng-Jun Wan, Member, IEEE, and

Ophir Frieder, Fellow, IEEE

Abstract—Sensor networks pose a number of challenging conceptual and optimization problems such as location, deployment, and

tracking [1]. One of the fundamental problems in sensor networks is the calculation of the coverage. In [1], it is assumed that the sensor

has the uniform sensing ability. We provide efficient distributed algorithms to optimally solve the best-coverage problem raised in [1]. In

addition, we consider a more general sensing model: The sensing ability diminishes as the distance increases. As energy conservation

is a major concern in wireless (or sensor) networks, we also consider how to find an optimum best-coverage-path with the least energy

consumption and how to find an optimum best-coverage-path that travels a small distance. In addition, we justify the correctness of the

method proposed in [1] that uses the Delaunay triangulation to solve the best coverage problem and show that the search space of the

best coverage problem can be confined to the relative neighborhood graph, which can be constructed locally.

Index Terms—Coverage, wireless networks, sensors, computational geometry, distributed algorithms.
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1 INTRODUCTION

SENSOR networks pose a number of challenging concep-
tual and optimization problems such as location,

deployment, and tracking [1]. Meguerdichian et al. [1]
addressed one of the fundamental problems, namely,
coverage, which in general answers the questions about
the quality of service that can be provided by a particular
sensor network. They gave polynomial time centralized
algorithms to solve the questions optimally. However, their
algorithms rely heavily on some geometrical structures such
as the Delaunay triangulation and the Voronoi diagram
which cannot be constructed locally or even efficiently in a
distributed manner. Typically, we say that a distributed
algorithm is communication efficient if its total commu-
nication cost is linear in the number of nodes. In addition,
the correctness of using these two geometry structures is
not presented in their paper.

In a wireless ad hoc network (or sensor network), each
wireless node has a maximum transmission power so that it
can send signals to all nodes within its transmission range. If a
node v is not within the transmission range of the sender u,
nodes u and v communicate through multihop wireless links
by using intermediate nodes to relay the message. Each node
in the wireless network also acts as a router, forwarding data
packets for other nodes. We assume that each static wireless
node knows its position information through a low-power
Global Position System (GPS) receiver. If GPS is not available,
the distance between neighboring nodes can be estimated on
the basis of incoming signal strengths. Relative coordinates
of neighboring nodes can be obtained by exchanging such
information between neighbors [2]. For simplicity, we also
assume that all wireless nodes have the same maximum
transmission range and we normalize it to one unit. We

assume that all wireless nodes have distinctive identities.
Consequently, all wireless nodes S together define a unit
disk graph UDGðSÞ, which has an edge uv if and only if the
Euclidean distance between u and v is less than one unit.

We call all nodes within a constant k hops of a node u in
the unit disk graph UDGðSÞ the k-local nodes of u, denoted
by NkðuÞ. Usually, here the constant k is 1 or 2, which will
be omitted if it is clear from the context. By broadcasting,
each node u can gather the location information of all nodes
within the transmission range of u. The total communica-
tion cost to do so is obviously OðnÞ when omnidirectional
antennas are used.

In wireless networks, distributed algorithms often have
advantages over centralized algorithms in reducing commu-
nication cost. Notice, energy conservation is one of the critical
issues in designing wireless networks. Thus, efficient dis-
tributed algorithms are always demanded in solving many
challenging questions in wireless networks. The geometrical
nature of the multihop wireless networks allows a promising
idea: localized algorithms. A distributed algorithm is a
localized algorithm if it uses only the information of all local
nodes plus the information of a constant number of additional
nodes. A graph G can be constructed locally in the ad hoc
wireless environment if each wireless nodeu can compute the
edges of G incident on u by using only the location
information of all local nodes.

Given a wireless sensor network, we are interested in
designing a localized algorithm that finds a path connecting
a point s and a point t which maximizes the smallest
observability of all points on the path. It is called the best
coverage problem [1]. Meguerdichian et al. [1] presented a
centralized method using the Delaunay triangulation to
solve the best coverage problem. Several related problems
were also studied recently. The minimum exposure problem
[3] is to find a path connecting two points in the domain
that minimizes the integral observability over the time
traveled from the source point to the destination point,
while the worst coverage problem [1] is to find the path that
maximizes the distance of the path to all sensor nodes.
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Meguerdichian et al. [1] presented a centralized method
using the Voronoi diagram to solve the worst coverage
problem. The minimum exposure problem was studied in
[3]. We concentrate on the best coverage problem. We
provide efficient distributed algorithms to solve it. In
addition, we justify the correctness of using the Delaunay
triangulation to solve the best coverage problem. Moreover,
we show that the search space of the best coverage problem
can be confined to the relative neighborhood graph, which
can be constructed locally. It automatically gives an efficient
distributed algorithm for the best coverage problem. Some
extensions of the best coverage are discussed.

The rest of the paper is organized as follows: In Section 2,
we define terms and notations used in presenting our
algorithms. We also briefly review the algorithms by
Meguerdichian et al. [1] and outline some discrepancies in
their algorithms. In Section 3, we present the first localized
algorithm that solves the best coverage problem efficiently.
We also discuss several extensions of the best-coverage
problem. Specifically, we consider how to find an optimum
best-coverage-path that conserves energy and how to find
an optimum best-coverage-path with small traveling dis-
tance. Both the correctness of our algorithm and the
correctness of the algorithm by Meguerdichian et al. are
justified in Section 4. We conclude our paper and discuss
possible future research directions in Section 5.

2 PRELIMINARIES

2.1 Problem Formulation

We assume that the wireless sensor nodes are given as a set
of n points S distributed inside a two-dimensional domain

. For simplicity, we assume that the domain 
 is given as a
planar-straight-line graph (PSLG), which is a collection of line
segments and points in the plane, closed under intersection.
Let B be the set of points that define the domain boundary.
For simplicity, we assume that the convex hull CHðSÞ of the
set of sensors S is contained inside the domain 
. We also
assume that every wireless node has the same maximum
transmission range. Then, the set of wireless sensors S
defines a unit disk graph UDGðSÞ. We always assume that
the graph UDGðSÞ is connected.

We first give some geometry notations that will be used
in the remainder of this section to mathematically formulate
the problems considered. Let kxyk denote the Euclidean
distance of two points x and y.

Definition 1. The distance of a point x to a set of points V ,
denoted by distðx; V Þ, is the smallest distance of x to all points
of V . In other words,

distðx; V Þ ¼ min
y2V
kxyk:

Notice that the point set V may be infinite. For example,
V could be all points lying on a segment uv. We use
distðx; uvÞ to denote the smallest distance from x to all
points on the segment uv.

Given two point sets U and V , the breach distance
distðU; V Þ is defined as minx2U distðx; V Þ. In other words,
distðU; V Þ ¼ minx2U;y2V kxyk. Usually, the breach distance is
called just distance in the literature.

Definition 2. The coverage-distance of a point set U by
another point set V , denoted by coverðU; V Þ, is the maximum
distance of every point x 2 U to V . That is,

coverðU; V Þ ¼ max
x2U

distðx; V Þ:

Notice that, the breach distance distðU; V Þ is symmetric,
i.e., distðU; V Þ ¼ distðV ; UÞ, while the coverage distance
coverðU; V Þ is not symmetric. Here, both point sets U and V
can be infinite. For example, U can be a path connecting two
points s and t and V all sensor nodes. Given a path �ðs; tÞ
inside 
 connecting s and t, the coverage-distance
maxx2�ðs;tÞ distðx; SÞ of the path �ðs; tÞ specifies how well
the path is protected by the sensors, while, on the reverse
side, the breach distance minx2�ðs;tÞ distðx; SÞ specifies how
far the path is from all sensors. Thus, for wireless sensor
networks, the coverage problem has two folds: the best
coverage and the worst coverage, which are defined as
follows:

Definition 3. A path �ðs; tÞ that achieves the minimum
coverage-distance coverð�ðs; tÞ; SÞ is called a best-cover-
age-path. The minimum coverage-distance coverð�ðs; tÞ; SÞ
of all paths connecting s and t is called the best-coverage-
distance or the support-distance.

Thus, given a set of sensors S inside a two-dimensional
domain 
, a starting point s 2 
, and an ending point t 2 
,
we find a path �ðs; tÞ inside 
 to connect s and t such that the
coverage distance coverð�ðs; tÞ; SÞ ¼ maxx2�ðs;tÞ distðx; SÞ is
minimized. In other words, we try to find a path connecting
s and t such that every point x of the path is covered by
some sensor nodes with small distance.

This problem has several interesting applications. For
example, consider a war-field denoted by a two-dimen-
sional domain 
. Assume that a postman soldier wants to
travel from position s to position t in 
. There are some
randomly distributed protection soldiers, denoted by a set
of points S, which will protect the postman soldier. Then, it
is always desirable to find a path in 
 such that the
maximum distance of the postman soldier from the
protection soldiers is minimized when the soldier travels
from s to t.

There are several variations for the best coverage
problem. Notice that, as shown later, there are many paths
that achieve the best-coverage-distance. As energy conserva-
tion is a critical issue in wireless networks, we wish to find a
path that consumes the least energy possible while still
achieving the best-coverage-distance. The other variation is
to find a path with the minimum total traveling distance
among all optimum paths with the best-coverage-distance.
This is justified by the above postman soldier example.

Definition 4. A path �ðs; tÞ that achieves the maximum breach-
distance distð�ðs; tÞ; SÞ is called a worst-coverage-path.
The maximum breach-distance distð�ðs; tÞ; SÞ of all paths
that connecting s and t is called the worst-coverage-distance
or the breach-distance.

This problem also has several interesting applications.
Again consider the same postman soldier problem. Here,
we assume that there is a set of mines, denoted by a
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two-dimensional point set S, randomly distributed in the

domain 
. Then, the postman soldier wants to travel from a

position s to a position t in 
 such that the path walked is

far from any mine to minimize the risk.
Meguerdichian et al. [1] presented a centralized method

using the Voronoi diagram to solve the worst coverage

problem. Notice, for the best coverage problem, we will

show that the search space could be refined to the relative

neighborhood graph. Thus, an efficient localized algorithm

is almost straightforward. However, for the worst coverage

problem, currently, no efficient distributed algorithm is

known except the adaption of the Voronoi Diagram. We

leave it as possible future work to design such an efficient

algorithm.

Sensing devices generally have widely different theore-

tical and physical characteristics. Interestingly, in most

sensing device models, the sensing ability diminishes as

distance increases. LetDðs; pÞbe the sensing ability of sensor s

at point p. When point p is out of the sensing range of the

sensor s, i.e., kspk > 1, then Dðs; pÞ ¼ 0. Notice that the

sensing range is normalized to one unit here. In [3], they

assumed that Dðs; pÞ ¼ �
kspk� for sensor-technology depen-

dent parameters � and �. We adopt the following sensing

model:

1. The sensing ability of every sensor device is uniform,
i.e., Dðsi; uÞ ¼ Dðsj; vÞ if ksiuk ¼ ksjvk.

2. The sensing ability satisfies a monotone property:
Dðs; uÞ > Dðs; vÞ if ksuk < ksvk.

Given a point p, its closest-sensor observability IcðpÞ is

defined as Dðsp; pÞ, where sp is the closest sensor to point p.

In other words, we define

IcðpÞ ¼ max
sp2S
Dðsp; pÞ:

Then, given a path �ðs; tÞ connecting points s and t, its

closest-sensor observability is defined as

Icð�ðs; tÞÞ ¼ min
p2�ðs;tÞ

IcðpÞ:

In [3], Meguerdichian et al. also studied the so-called all

field observability. Define the all-sensor observability of

point p, denoted by IaðpÞ, as follows:

IaðpÞ ¼
X
si2S
Dðsi; pÞ:

Similarly, we define the all-sensor observability as

Iað�ðs; tÞÞ ¼ min
p2�ðs;tÞ

IaðpÞ:

However, we are not aware of applications that specifically

need the all-sensor observability.
We concentrate on the closest-sensor observability. In

other words, we try to find a path connecting s and t such

that all points on the path are well-observed by some

sensors. It is easy to show the correctness of the following

lemma from the definitions of the best-coverage-path and

the closest-sensor observability.

Lemma 1. The best-coverage-path also achieves the maximum
closest-sensor observability.

Consequently, in the rest of the paper, we must only
study how to find the best-coverage-path, which also
achieves the maximum closest-sensor observability.

2.2 Geometry Notations

Delaunay triangulation and Voronoi diagram [4], [5], [6] are
widely used in many areas. We begin with definitions of the
Voronoi diagram and the Delaunay triangulation. We
assume that all wireless nodes are given as a set S of n
vertices in a two-dimensional space. Each node has some
computational power. We also assume that there are no
four vertices of S that are cocircular. A triangulation of S is
a Delaunay triangulation, denoted by DelðSÞ, if the circum-
circle of each of its triangles does not contain any other
vertices of S in its interior. A triangle is called the Delaunay
triangle if its circumcircle is empty of vertices of S. The
Voronoi region, denoted by V orðpÞ, of a vertex p in S is a
collection of two-dimensional points such that every point
is closer to p than to any other vertex of S. The Voronoi
diagram for S is the union of all Voronoi regions V orðpÞ,
where p 2 S. The Delaunay triangulation DelðSÞ is also the
dual of the Voronoi diagram: Two vertices p and q are
connected in DelðSÞ if and only if V orðpÞ and V orðqÞ share a
common boundary. The shared boundary of two Voronoi
regions V orðpÞ and V orðqÞ is on the perpendicular bisector
line of segment pq. The boundary segment of a Voronoi
region is called the Voronoi edge. The intersection point of
two Voronoi edge is called the Voronoi vertex. When there
are no four points of S that are cocircular, then every
Voronoi vertex has only exactly three Voronoi edges
incident on it. The Voronoi vertex is the circumcenter of
some Delaunay triangle. Fig. 1 gives an example of the
Voronoi Diagram and the Delaunay triangulation of a set of
two-dimensional points.

Notice that, generally, we cannot construct the Delaunay
triangulation or the Voronoi diagram efficiently in a
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distributed way. For example, the radius of circumcircle of
three nodes u, v, and w could be as large as 1. To decide
whether 4uvw is a triangle in the Delaunay triangulation,
we have to check if its circumcircle is empty of other nodes
inside, which implies that we are almost sure to have to
check if any given node is inside the circumcircle of 4uvw.
It is not appropriate, thus, to require the construction of the
Delaunay triangulation in the wireless communication
environment because of the possible massive communica-
tions it requires. Therefore, Li [7] studied a subset of the
Delaunay triangulation. Let UDelðSÞ be the graph by
removing all edges of DelðSÞ that are longer than one unit,
i.e., UDelðSÞ ¼ DelðSÞ \ UDGðSÞ. Call UDelðSÞ the unit
Delaunay triangulation. Li et al. [7], [8] provided an efficient
localized algorithm that constructs a planar graph, called
localized Delaunay triangulation PLDeðSÞ, which contains
UDelðSÞ as a subgraph. Thus, the constructed graph can be
used by almost all algorithms that require use of the
structure UDelðSÞ or even DelðSÞ. We review how to
construct the localized Delaunay triangulation PLDelðSÞ
later.

Various proximity subgraphs of the unit disk graph were
studied [9], [10]. For convenience, let diskðu; vÞ be the closed
disk with diameter uv; let diskðu; v; wÞ be the circumcircle
defined by the triangle 4uvw; let Bðu; rÞ be the circle
centered at u with radius r. Call the interior of the
intersection Bðu; kuvkÞ \Bðv; kuvkÞ the lune, denoted by
luneðu; vÞ, defined by two points u and v. The constrained
relative neighborhood graph RNGðV Þ over a point set V has an
edge ðu; vÞ if kuvk � 1 and the luneðu; vÞ does not contain
any point from V in the interior. Toussaint and Jaromczyk
[11], [12] gave the first definition of the relative neighbor-
hood graph to study the pattern recognition. The constrained
Gabriel graph of a point set V , denoted by GGðV Þ, consists of
all edges uv such that kuvk � 1 and the diskðu; vÞ does not
contain any node from V . Gabriel and Sokal [13] defined the
Gabriel graph for the geographic variation analysis.
Obviously, the relative neighborhood graph is always a
subgraph of the Gabriel graph. See Fig. 2 for an illustration
of their definitions.

It is well-known that Delaunay triangulation, Voronoi
Diagram, Gabriel graph, and the relative neighborhood
graph in two dimensions can be constructed in Oðn lognÞ
time. See [6] for efficient construction of the Delaunay
triangulation and the Voronoi Diagram. Since relative
neighborhood graph is a subgraph of the Delaunay
triangulation, a simple method with Oðn2Þ time complexity

is to check whether the lune of each edge in the Delaunay
triangulation is empty. If it is empty, then we add that edge
to RNG. Supowit [14] gave the first Oðn lognÞ time-
complexity algorithm to construct the relative neighbor-
hood graph in two dimensions using the l2 metric, which
eliminates edges from the Delaunay triangulation in
Oðn lognÞ time. Several methods [15], [16] were then
proposed for constructing RNG efficiently. The construction
of the Gabriel graph is a tad easier; see [17]. The algorithm
by Matula and Sokal [17] is based on the observation that
the Gabriel graph only contains those edges in the Delaunay
triangulation that do not intersect their Voronoi edges.

Fig. 3 illustrates four different topologies that could be
used to solve the best coverage problem. All graphs are
planar. The relative neighborhood graph, the Gabriel graph,
and the localized Delaunay triangulation can be constructed
efficiently in a localized manner with communication cost
Oðn lognÞ bits. However, the Delaunay triangulation can
only be constructed efficiently in a centralized manner.

2.3 Prior Arts

Wireless sensor networks have been used practically in our
life for many years. Although many researchers have
mentioned the coverage notion in wireless sensor networks,
it seems that Meguerdichian et al. [1] were among the first
several researchers to identify the importance of using
Delaunay triangulation and Voronoi diagram in sensor
network coverage. A related problem is the so-called art
gallery problem [18], in which one must determine the
number of observers necessary to cover an art gallery room
such that every point of the room is watched by at least one
observer. A sensor network was also used to detect the
global ocean color by assembling and merging data from
satellites at different orbits [19].

Notice that the coverage problem we study here is
different from the coverage problem studied in cellular
network. Traditionally, in cellular networks, coverage
studies the maintainence of connectivity and, thus, con-
tinuouity of network service. In those scenarios, we often
have to find the optimum number of base stations required
to achieve some system objectives; see [20] for more details.
In [21], Hall studied how many wireless nodes with fixed
coverage radius r are needed so that every point of a unit
square region is covered by some wireless node with high
probability. If the connectivity coverage is of concern, then
we need to find how many wireless nodes are needed in a
unit area square such that the resulting UDG is connected
with high probability. Gupta and Kumar [22] studied the
dual of this problem: If the number of nodes is fixed, then
what is the smallest r such that the resulting UDG is
connected with high probability.

In [1], Meguerdichian et al. developed centralized
algorithms to solve the best coverage problem using the
Delaunay triangulation. Notice that the Delaunay triangula-
tion can be constructed in Oðn lognÞ time in a centralized
manner if the geometrical information of all sensors are
available. Thus, their algorithm has the best possible time
complexity among centralized algorithms. However, no
justification as to why the search space can be confined to
the Delaunay triangulation for the best coverage problem
was provided. Later, we provide a formal proof of the
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correctness of using Delaunay triangulation in Section 4.
Additionally, they connect the starting point s to its closest
sensor node us and connect the ending point t to its closest
sensor node ut. This is based on intuition [1]. We formally
prove that there is an optimum best-coverage-path with this
property if the unit disk graph UDGðSÞ is connected.

To find an optimum best-coverage-path, they assign each
Delaunay edge a weight equal to its Euclidean distance and
then apply some graph algorithms on it to find the path with
the min max weight. Remember that we want to find a path
such that the maximum distance of all points of this path to its
closest sensor node is minimized. Thus, we assign the weight
of an edge uv as maxx2uv distðx; SÞ instead, which is at most
1
2 kuvk. Surprisingly, their weight assignment method also
leads to a correct solution. Notice, intuitively, it is insufficient
to just consider the midpoint of a Delaunay edge uv to
compute its weight maxx2uv distðx; SÞ. This is because it is
possible that there is some other sensor node w that lies
inside distðu; vÞ. See Fig. 4. The weight of the Delaunay edge
uv is less than 1

2 kuvk. We later show that the search space
can be confined to a much smaller graph, namely, the
relative neighborhood graph. Moreover, the weight of each
edge uv in that graph is guaranteed to be exactly 1

2 kuvk.
Our later analysis shows that there is always an

optimum best-coverage-path that only uses the edges in
the relative neighborhood graph. In other words, we can

still find an optimum best-coverage-path without using the

edges of the Delaunay triangulation that are not in the

relative neighborhood graph. We denote such edges by

Del-RNG. Consequently, although the weight assignment of

the edges of Del-RNG in [1] is not exactly correct, the

computed min max path is still an optimum path. Notice,

by definition, an edge uv of RNG has coverage-distance

exactly equal to 1
2 kuvk.

2.4 Growing Disks

Assume that every sensor node originally has a disk

centered at it with radius 0 and every disk starts growing

with the same speed. See Fig. 5. Let DðS; rÞ be the region

covered by all disks centered at points of S with radius r.

Let DðS; rÞ be the complementary region of DðS; rÞ in

domain 
. Then, the best coverage problem asks what is the
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smallest radius value r such that there is a path, inside the
region DðS; rÞ, connecting points s and t. On the other hand,
the worst coverage problem asks what is the largest radius
value r such that there is a path, inside the region DðS; rÞ,
connecting points s and t.

3 THE BEST COVERAGE PROBLEM

3.1 Algorithm

We first give an efficient distributed algorithm that solves
the best coverage problem efficiently. Here, assume that we
are given a set of sensors S, a starting point s, and an ending
point t in a two-dimensional domain 
 such that the unit
disk graph UDGðSÞ is connected and the convex hull
CHðSÞ of S is contained inside 
.

Algorithm 1: FindBestCoverage(S;
; s; t)

1. Find the closest sensor node of the starting point s if
s itself is not a sensor node. Assume us is the closest
sensor node. Similarly, find the closest sensor node ut
of the ending point t.

2. Each sensor node u locally constructs all edges uv of
the relative neighborhood graph RNGðSÞ, where v is
also a sensor node. This can be constructed as
follows: Each node u broadcasts its location informa-
tion and listens to the broadcasting by its neighbors.
Thus, after this step, we assume that each node u has
the location information of N1ðuÞ. Node u adds an
edge uv if and only if the luneðu; vÞ does not contain
any nodes from N1ðuÞ inside.

3. Assign each constructed edge uv weight 1
2 kuvk.

4. Run a distributed shortest path algorithm to compute
the shortest path connecting us and ut. Here, the
weight of a path is the maximum weight of all of its
edges. A path is the shortest path if it has the
minimum weight among all paths connecting us and
ut. The Bellman-Ford algorithm [23] can be modified
to solve this shortest path problem.

5. Let �ðus; utÞbe a computed path andk�ðus; utÞkbe the
weight of the path. Then, the path concatenating the
edge sus, path �ðus; utÞ, and the edge utt is an
optimum best-coverage-path. The best-coverage-dis-
tance is maxðksusk; k�ðus; utÞk; kuttkÞ. Here, ksusk
and kuttk are the Euclidean distance between points.

3.2 The Time and Communication Complexity

We can also implement the above algorithm in a centralized
manner: construct the relative neighborhood graph
RNGðSÞ and then apply the Bellman-Ford algorithm [23]

to find the shortest path between nodes us and ut. The time

complexity of this centralized algorithm is Oðn lognÞ: The

first step costs OðnÞ time; we can construct the relative

neighborhood graph in Oðn lognÞ time; and we can

compute the shortest path connecting two vertices in a

planar graph in time Oðn lognÞ. This centralized approach

has the same complexity as that given in [1], but it has an

advantage of being run efficiently in a distributed manner.
For wireless sensor networks, however, it is impractical

to collect the location information of all sensors due to the

massive communication it requires. Thus, a distributed

algorithm is a must. Notice that the relative neighborhood

graph of all sensors S can be constructed efficiently by

using a localized approach. It can be constructed in

OðN1ðuÞ logN1ðuÞÞ time using the approach in [14] by

Supowit or in time OðN1ðuÞ2Þ if simply checking each edge

incident on u. The communication cost is also small as

compared to collecting the locations of all sensor nodes. The

communication cost of constructing the graph RNGðSÞ
using a distributed manner is Oðn lognÞ bits. We assume

that the identity of each wireless node can be represented

by OðlognÞ bits and the geometry location information can

be represented by Oð1Þ bits.

3.3 Extensions

In addition, we consider some extensions of the best

coverage problem and present efficient distributed algo-

rithms to solve them. Notice that the coverage-distance of

two points s and t depends on their distances to the closest

sensors. If we want to improve the coverage-distance of all

pairs of points in the domain by adding more sensors, these

new sensors should be placed at the circumcenters of

Delaunay triangles that have the largest circumradius.

3.3.1 Energy Conservation

As energy conservation is critical, the first extension is to

find a path with the best-coverage-distance while the total

energy consumed by this path is minimized among all

optimum best-coverage-paths. We assume that the energy

needed to support a link uv is proportional to kuvk�, where

� is a real constant between 2 and 5. In the best-coverage

problem, finding areas of high observability from sensors

and identifying the best support and guidance regions are

of primary concern [1]. For example, in a sensor network for

detecting fire, it is not only required that the sensor network

observe a given region, it is also necessary that the sensor

that detects the fire can report the fire to a center station

efficiently. We need to find a reporting path that consumes

less energy.

Algorithm 2: EnergyConsrvngBestCoverage(S;
; s; t)

1. Run a distributed shortest path algorithm to compute
the coverage distance of the best-coverage-path con-
necting us and ut. Let � be the best coverage
distance.

2. Construct the Gabriel graph GGðSÞ and prune out
all edges of the Gabriel graph GGðSÞ with weight
larger than � and call the remaining graph the
residue graph G.
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Fig. 5. Each sensor node has a disk specifying the region covered by it.

All disks have the same radius and grow with the same speed.
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3. Assign each edge uv of the residue graphG the weight
equal to kuvk�, where � is the propagation constant
depending on the transmission environment.

4. Run a distributed shortest path algorithm to compute
the shortest path connecting us and ut. Here, the
weight of a path is the total weight of all of its edges.
A path is the shortest path if it has the minimum
weight among all paths connecting us and ut.

5. Let �ðus; utÞ be a computed path and k�ðus; utÞk be
the weight of the path. The path concatenating the
edge sus, path �ðus; utÞ, and the edge utt is an
optimum best-coverage-path with the minimum
energy consumption. The best-coverage-distance is
maxðksusk; �; kuttkÞ. Here, ksusk and kuttk are the
Euclidean distance between points.

The correctness of the algorithm is based on the following

observation: Consider an edge uv of the best-coverage-path

that consumes the minimum energy among all best-coverage-

paths. If there is a sensor nodew insidediskðu; vÞ, thenkwuk �
kuvk and kwvk � kuvk. It is obvious that the path uwv is in the

residue graphG. Thus, the path by substituting edge uvwith

edges uw and wv is still a best-coverage-path and consumes

less energy, which is a contradiction. Consequently, edge uv

must be a Gabriel edge.
The time complexity of the above algorithm is Oðn lognÞ

if it is implemented using a centralized manner. The total

communication cost by all wireless nodes of the above

algorithm is Oðn lognÞ bits if it is implemented in a

distributed manner. Here, we assume that we use a

synchronized distributed algorithm to construct the shortest

path between two given wireless nodes.

3.3.2 Travel Distance

The second extension is to find a path with the best-

coverage-distance with the total length of the edges of this

path of not more than 5=2 times the shortest path among all

optimum best-coverage-paths. It is well-known that the

relative neighborhood graph and the Gabriel graph are not

spanners [24], [10]. Although Delaunay triangulation is a

spanner [25], [26], we know that it cannot always be

constructed efficiently in a distributed manner. Thus, we

have to use some other geometry structure that is a spanner

and can be constructed efficiently. Recently, Li et al. [8]

proposed such a geometry structure, namely, local Delaunay

triangulation, and gave an efficient distributed algorithm to

construct it.
Triangle4uvw is called a k-localized Delaunay triangle if the

interior of the circumcircle of4uvw, denoted by diskðu; v; wÞ
hereafter, does not contain any vertex ofV that is a k-neighbor

of u, v, orw and all edges of the triangle4uvw have length no

more than one unit. The k-localized Delaunay graph over a

vertex set V , denoted by LDelðkÞðV Þ, has exactly all Gabriel

edges and edges of all k-localized Delaunay triangles. We

then review the algorithm proposed in [8].

Algorithm 3: Localized Unit Delaunay Triangulation

1. Each wireless node u broadcasts its identity and
location and listens to the messages from other
nodes.

2. Assume that every wireless node u gathers the
location information of N1ðuÞ. Node u computes the
Delaunay triangulation DelðN1ðuÞÞ of its 1-neighbors
N1ðuÞ, including u itself.

3. Node u finds all Gabriel edges uv and marks them as
Gabriel edges. Notice that here kuvk � 1.

4. Node u finds all triangles 4uvw such that all three
edges of4uvw have length at most one unit. If angle
ffwuv � �

3 , node u broadcasts a proposal to form a
1-localized Delaunay triangle 4uvw in LDelð1ÞðSÞ
and listens to the messages from other nodes.

5. Node v accepts the proposal of constructing 4uvw if
4uvw belongs to the Delaunay triangulation
DelðN1ðvÞÞ; otherwise, it rejects the proposal.
Node w does similarly.

6. Node u accepts the triangle 4uvw if both nodes v
and w accept the proposal. Nodes v and w do
similarly.

It is shown in [8] that the graph constructed by the above

approach has a linear number of links but not necessarily a

planar graph. They also gave an efficient method to make this

graph planar and denoted the final planarized graph by

PLDelðSÞ. They proved thatPLDelðSÞ containsUDelðSÞ as a

subgraph. Thus, PLDelðSÞ is a planar t-spanner of UDGðSÞ.
Algorithm 4: Planarize LDelð1ÞðSÞ

1. Each wireless node u broadcasts the Gabriel edges
incident on u and the triangles 4uvw of LDelð1ÞðSÞ
and listens to the messages from other nodes.

2. Assume node u gathered the Gabriel edge and
1-local Delaunay triangles information of all nodes
from N1ðuÞ. For two intersected triangles 4uvw and
4xyz known by u, node u removes the triangle
4uvw if its circumcircle contains a node from
fx; y; zg.

3. Each wireless node u broadcasts all remaining
triangles incident on u and listens to the broad-
casting by other nodes.

4. Node u keeps triangle 4uvw if both v and w have
triangle 4uvw remaining.

The above method constructs the local Delaunay triangu-

lation LDelðSÞ using optimum OðnÞ communications. Here,

the communication unit isOðlognÞ bits, which is the number

of bits representing a node ID. They also show that the

number of edges in PLDelðSÞ is OðnÞ by proving that

PLDelðSÞ is indeed a planar graph. We then propose our

algorithm that finds a path with the best-coverage-distance

and the length of this path is not more than 5=2 times the

shortest path among all optimum best-coverage-paths.

Algorithm 5: SmallTravellingBestCoverage(S;
; s; t)

1. Run a distributed shortest path algorithm to compute
the coverage distance of the best-coverage-path con-
necting us and ut. Let � be the best coverage
distance.

2. Construct the local Delaunay triangulation. Prune
out all edges of the local Delaunay triangulation
PLDelðSÞ with weight larger than � and call the
remaining graph the residue graph G.
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3. Assign each edge uv of the residue graph G the
weight equal to kuvk.

4. Run a distributed shortest path algorithm to compute
the shortest path connecting us and ut. Here, the
weight of a path is the total weight of all of its edges.
A path is the shortest path if it has the minimum
weight among all paths connecting us and ut.

5. Let �ðus; utÞbe a computed path andk�ðus; utÞkbe the
length of the path. The path concatenating the edge
sus, path �ðus; utÞ, and the edge utt is an optimum
best-coverage-path with small traveling distance. The
best-coverage-distance is maxðksusk; �; kuttkÞ. Here,
ksusk and kuttk are the Euclidean distance between
points.

Hence, the communication complexity of the above

algorithm is Oðn lognÞ. The correctness of the algorithm is

based on the following observation. Consider an edge uv of

the best-coverage-path that has the minimum total edge

lengths among all best-coverage-paths. It is proven in [7]

that, if edge uv is not in the localized Delaunay triangula-

tion PLDelðSÞ, then there exists a path �ðu; vÞ in PLDelðSÞ
such that all edges of �ðu; vÞ are shorter than uv and the

total length of all edges of �ðu; vÞ is no more than 4
ffiffi
3
p

�
9 kuvk.

It is obvious that the path �ðu; vÞ is in the residue graph G.

Consequently, the shortest path in the residue graph G has

length no more than 4
ffiffi
3
p

�
9 (which is less than 5=2) factor of

the length of the shortest best-coverage-path in the unit disk

graph UDGðSÞ.
Here, we have a trade off between the quality of

performance and the time-complexity. If the graph
UDGðSÞ is used, we get the shortest best-coverage-path,
but the communication complexity of the algorithm is
Oðm lognÞ, where m is the number of edges in UDGðSÞ,
which could be as large as Oðn2Þ. On the other hand, our
algorithm approximates the shortest best-coverage-path
with total communication cost Oðn lognÞ.

4 ALGORITHM CORRECTNESS

This section is devoted to studying the correctness of
Algorithm 1. Given two points s and t, let bs;t be the smallest
radius r such that points s and t are connected inside the
region DðS; rÞ. Let Dðsi1 ; rÞ; Dðsi2 ; rÞ; � � � ; Dðsik ; rÞ be the
sequence of disks centered at sensor nodes traveled by a
path connecting s and t. Then, obviously, the following

path, starting from s, then using the path si1si2 � � � sik , and
finally ending at t has the same optimum best-coverage-
distance (i.e., the radius r) as any optimum best-coverage-
path. See Fig. 6 for an illustration. This implies the following
lemma.

Lemma 2. There is an optimum best-coverage-path that uses only
the following edges: the edges of the unit disk graph UDGðSÞ,
the edges by connecting s to every sensor node, and the edges
by connecting t to every sensor node.

We show that it is sufficient to consider only the edges sus
andutt, whereus andut are the closest sensor nodes to s and t,
respectively. Notice that Meguerdichian et al. [1] had already
applied this approach. We just give a formal proof here.

Lemma 3. There is an optimum best-coverage-path that connects
s to its closest sensor node us and connects t to its closest
sensor node ut.

Proof. Consider an optimum path that does not connect s
to its closest sensor node us. Assume that s is
connected to a node v. We concentrate on the edge
sv. We construct an alternative subpath connecting s
and v using the edge sus. Without loss of generality,
let u0 ¼ us; u1; u2; � � � ; umÿ1, um ¼ v be the vertices corre-
sponding to the sequence of Voronoi regions traversed
by walking from s to v along the segment sv. See Fig. 7. If
a Voronoi edge or a Voronoi vertex happens to lie on the
segment sv, then choose the Voronoi region lying above
sv. Assume that line sv is the x-axis. The sequence of
vertices ui, 0 � i � m, defines a path from us to v. In
general, we refer to the path constructed this way
between some nodes us and v as the direct DT path from
us to v, denoted by DT ðus; vÞ, which is also used by [25].

Then, we show that the path, denoted by DT ðs; vÞ,
consisting of edge sus and the direct DT path DT ðus; vÞ
from us to v is not worse than the edge sv in terms the
coverage-distance. Fig. 8 illustrates the proof that
follows. Let xi denote the point on the x-axis that also
lies on the boundary between the Voronoi regions
V orðuiÞ and V orðuiþ1Þ for i ¼ 0; 1; � � � ;mÿ 1. The defini-
tion of the Voronoi diagram immediately gives that the
circle centered at xi passing through the vertices ui and
uiþ1 contains no points of S in its interior. We denote
such a circle as Ci, i.e., Ci ¼ diskðxi; kxiuikÞ. For each
point xi on the subpath �ðs; vÞ, its coverage-distance is
exactly kxiuik. Consequently, the coverage-distance of
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Fig. 6. There is a path inside the region covered by all disks that

connects the source point s and the destination point t.
Fig. 7. Connect the starting point s to its closest sensor node us.
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the edge sv is at least (by considering only the point s
and all points xi, 0 � i < m)

max ksu0k; max
0�i<m

ðkxiuikÞ
� �

:

Notice that the coverage-distance of any edge uiuiþ1,

0 � i < m, is at most 1
2 kuiuiþ1k; the coverage distance of

the edge su0 is exactly ksu0k. Consequently, the cover-

age-distance of the subpath DT ðs; vÞ is at most

max ksu0k; max
0�i<m

1

2
kuiuiþ1k

� �� �
:

The definition of the Voronoi region immediately implies

that kxiuik � 1
2 kuiuiþ1k. Consequently, the coverage-

distance of the subpath DT ðs; vÞ is at most as large as

the coverage-distance of the edge sv. Substituting the

subpath �ðs; vÞ by the subpath DT ðs; vÞ gives an

optimum best-coverage-path that connects s to its closest

sensor node us ¼ u0. Then, the lemma follows. tu

For simplicity, from now on, we will not consider the

starting point s and the ending point t. Instead, we must

only determine the best-coverage-path connecting a pair of

sensor nodes. As shown by Lemma 2, the search can be

confined to the paths in the unit disk graph UDGðSÞ.
However, the unit disk graph UDGðSÞ may have too many

edges, which, in the worst case, could be as large as Oðn2Þ.
We then show that the search space of the best covering

problem can be further confined to the Delaunay triangula-

tion DelðSÞ of the set S of sensors. Notice that the algorithm

given in [1] uses this approach without the justification of

its correctness. We prove this by the following lemma.

Lemma 4. There is an optimum best-coverage-path that uses only

the edges of the Delaunay triangulation DelðSÞ.
Proof. Consider any optimum best-coverage-path con-

necting two sensor nodes. We show that there is
another optimum best-coverage-path such that every
edge uv in the path is a Delaunay edge. Remember
that an edge uv is a Delaunay edge if and only if
the Voronoi regions V orðuÞ and V orðvÞ share some
common Voronoi edge. Consider any edge uv of an
optimum best-coverage-path. We show that the
direct DT path DT ðu; vÞ has a coverage-distance at
most of that of uv. The proof is similar to the
proof of Lemma 3. Without loss of generality, let
b0 ¼ u; b1; b2; � � � ; bmÿ1; bm ¼ v be the vertices corre-
sponding to the sequence of Voronoi regions
traversed by walking from u to v along the
segment uv. See Fig. 9. Let xi denote the point
on the x-axis that also lies on the boundary
between the Voronoi regions V orðbiÿ1Þ and V orðbiÞ
for i ¼ 1; 2; � � � ;m. Then, kxibik � 1

2 kbibiþ1k. Conse-
quently, the coverage-distance of the subpath
DT ðu; vÞ, which is at most max1�i�m

1
2 kbiÿ1bik, is at

most as large as the coverage-distance of the edge
uv, which is at least max1�i�m kxibik. Notice that
every edge biÿ1bi of the direct DT path DT ðu; vÞ is a
Delaunay edge because the Voronoi regions V orðuiÞ and
V orðuiþ1Þ are adjacent. Thus, the lemma follows. tu

The following lemma shows that we can confine our
search space to a much smaller graph GGðSÞ, which can be
efficiently constructed in a distributed manner.

Lemma 5. There is an optimum best-coverage-path that uses only

the edges of the Gabriel graph GGðSÞ.
Proof. Fig. 10 illustrates the proof that follows. Similarly to

the proof of Lemma 4, we know that there is an optimum
best-coverage-path connecting any two sensor nodes
such that every edge uv of the path only intersects the
Voronoi edge shared by V orðuÞ and V orðvÞ. Let p be the
midpoint of the segment uv. Then, the circle centered at p
with radius 1

2 kuvk is empty. It implies that the edge uv is
an Gabriel edge. The lemma then follows. tu

Actually, we can further confine our search space based
on the following lemma.

Lemma 6. There is an optimum best-coverage-path that uses only

the edges of the relative neighborhood graph RNGðSÞ.
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Fig. 8. Proof that point s is connected to its closest sensor node us.

Fig. 9. There is an optimum best-path that uses only the edges of the

Delaunay triangulation.

Fig. 10. There is an optimum best-coverage-path that uses only the

edges of the Gabriel graph.
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Proof. Fig. 11 illustrates the proof that follows. Consider an

optimum best-coverage-path using edges of the Gabriel

graph GGðSÞ. Consider any edge uv of this path. Assume

that the luneðu; vÞ contains a sensor w from S in the

interior. Then, node w can not be inside the circle

diskðu; vÞ because uv is a Gabriel edge. Thus, the

coverage-distance of the midpoint p of edge uv is exactly
1
2 kuvk. Notice that the coverage-distance of edge uw is at

most1 1
2 kuvk. and the coverage-distance of edge wv is at

most 1
2 kuvk. Thus, the coverage-distance of the subpath

uwv is at most maxð12 kuwk; 1
2 kwvkÞ � 1

2 kuvk. Conse-

quently, substituting the edge uv by the path uwv will

not increase the coverage-distance of the optimum best-

coverage-path. It then follows that there is an optimum

best-coverage-path such that it only uses the edges of the

relative neighborhood graph RNGðSÞ. tu

Since there is no sensor node inside the disk using a
Gabriel edge uv as diameter, the coverage-distance of the
Gabriel edge uv is exactly 1

2 kuvk, which is achieved at the
midpoint of the edge uv. For an edge uv of the relative
neighborhood graph, the same reasoning holds.

5 CONCLUSION

We discussed efficient algorithms to find a path with
maximum observability under a general assumption of the
sensing model. We proved that it is the same as the best
coverage problem, which can be solved by an efficient
distributed algorithm using the relative neighborhood
graph. In addition, we considered some extensions of the
best coverage problem: to find a path with the best-
coverage-distance while the total energy consumed by this
path is minimized among all optimum best-coverage-paths;
to find a path with the best-coverage-distance with the total
length of edges of this path is no more than 2:5 times the
shortest best-coverage-path. We gave efficient distributed
algorithms for both extended problems. We also justified
the correctness of the algorithm proposed by Meguerdi-
chian et al. [1] using the Delaunay triangulation to solve the
best coverage problem. Moreover, we showed that the
search space of the best coverage problem can be confined
to the relative neighborhood graph, which can be con-
structed locally.

REFERENCES

[1] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.
Srivastava “Coverage Problems in Wireless Ad-Hoc Sensor
Network,” Proc. IEEE INFOCOM ’01, pp. 1380-1387, 2001.

[2] S. Capkun, M. Hamdi, and J.P. Hubaux, “GPS-Free Positioning in
Mobile Ad-Hoc Networks,” Proc. Hawaii Int’l Conf. System Sciences,
2001.

[3] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak,
“Exposure in Wireless Ad-Hoc Sensor Network,” Proc. IEEE
MOBICOM ’01, pp. 139-150, 2001.

[4] S. Fortune, “Voronoi Diagrams and Delaunay Triangulations,”
Computing in Euclidean Geometry, F.K. Hwang and D.-Z. Du, eds.,
pp. 193-233, Singapore: World Scientific, 1992.

[5] H. Edelsbrunner, Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

[6] F.P. Preparata and M.I. Shamos, Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[7] X.-Y. Li, “Localized Delaunay Triangulation Is as Good as Unit
Disk Graph,” J. Computer Networks, submitted for publication.

[8] X.-Y. Li, G. Calinescu, and P.-J. Wan, “Distributed Construction of
Planar Spanner and Routing for Ad Hoc Wireless Networks,”
Proc. 21st Ann. Joint Conf. IEEE Computer and Comm. Socs.
(INFOCOM), vol. 3, 2002.

[9] X.-Y. Li, P.-J. Wan, and Y. Wang, “Power Efficient and Sparse
Spanner for Wireless Ad Hoc Networks,” Proc. IEEE Int’l Conf.
Computer Comm. and Networks (ICCCN01), pp. 564-567, 2001.

[10] X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder, “Sparse Power
Efficient Topology for Wireless Networks,” Proc. IEEE Hawaii Int’l
Conf. System Sciences (HICSS), 2002.

[11] G.T. Toussaint, “The Relative Neighborhood Graph of a Finite
Planar Set,” Pattern Recognition, vol. 12, no. 4, pp. 261-268, 1980.

[12] J.W. Jaromczyk and G.T. Toussaint, “Relative Neighborhood
Graphs and Their Relatives,” Proc. IEEE, vol. 80, no. 9, pp. 1502-
1517, 1992.

[13] K.R. Gabriel and R.R. Sokal, “A New Statistical Approach to
Geographic Variation Analysis,” Systematic Zoology, vol. 18,
pp. 259-278, 1969.

[14] K.J. Supowit, “The Relative Neighborhood Graph, with an
Application to Minimum Spanning Trees,” J. ACM, vol. 30, 1983.

[15] J.W. Jaromczyk and M. Kowaluk, “Constructing the Relative
Neighborhood Graph in Three-Dimensional Euclidean Space,”
Discrete Applied Math., vol. 31, pp. 181-192, 1991.

[16] J.W. Jaromczyk, M. Kowaluk, and F. Yao, “An Optimal Algorithm
for Constructing �-Skeletons in lp Metric,” SIAM J. Computing,
1991.

[17] D.W. Matula and R.R. Sokal, “Properties of Gabriel Graphs
Relevant to Geographical Variation Research and the Clustering of
Points in the Plane,” Geographical Analysis, vol. 12, pp. 205-222,
1984.

[18] M. Marengoni, B.A. Draper, A. Hanson, and R.A. Sitaraman,
“System to Place Observers on a Polyhedral Terrain in Polynomial
Time,” Image and Vision Computing, vol. 18, pp. 773-780, 1996.

[19] W.W. Gregg, W.E. Esaias, G.C. Feldman, R. Frouin, S.B. Hooker,
C.R. McClain, and R.H. Woodward, “Coverage Opportunities for
Global Ocean Color in a Multimission Era,” IEEE Trans. Geoscience
and Remote Sensing, vol. 36, pp. 1620-1627, 1998.

[20] A. Molina, G.E. Athanasiadou, and A.R. Nix, “The Automatic
Location of Base Stations for Optimized Cellular Coverage: A
New Combinatorial Approach,” Proc. IEEE 49th Vehicular Technol-
ogy Conf., vol. 1, pp. 606-610, 1999.

[21] P. Hall, Introduction to the Theory of Coverage Processes. New York:
Wiley, 1998.

[22] P. Gupta and P.R. Kumar, “Critical Power for Asymptotic
Connectivity in Wireless Networks,” Stochastic Analysis, Control,
Optimization and Applications: A Volume in Honor of W.H. Fleming,
W.M. McEneaney, G. Yin, and Q. Zhang, eds., 1998.

[23] T.J. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press and McGraw-Hill, 1990.

[24] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, “On the
Spanning Ratio of Gabriel Graphs and Beta-Skeletons,” Proc. Latin
Am. Theoretical Infocomatics (LATIN), 2002.

[25] D.P. Dobkin, S.J. Friedman, and K.J. Supowit, “Delaunay Graphs
Are Almost as Good as Complete Graphs,” Discrete Computational
Geometry, 1990.

[26] J.M. Keil and C.A. Gutwin, “Classes of Graphs which Approx-
imate the Complete Euclidean Graph,” Discrete Computational
Geometry, vol. 7, 1992.

762 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 6, JUNE 2003

1. It is possible that there is some other sensor node inside the circle
diskðu; wÞ. Thus, we can only claim that it is at most 1

2 kuwk.

Fig. 11. There is an optimum best-coverage-path that uses only the

edges of the relative neighborhood graph.
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