
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Ajitha Rajan

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Dr. Mats P.E. Heimdahl
Name of Faculty Adviser(s)

Signature of Faculty Adviser(s)

Date

GRADUATE SCHOOL

Coverage Metrics for Requirements-Based Testing

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA

BY

Ajitha Rajan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dr. Mats P.E. Heimdahl, Advisor
August, 2009

c© Ajitha Rajan 2009

Acknowledgments

I am greatly indebted to my advisor, Prof. Mats Heimdahl, for everything that I

learned during the course of my PhD. He has been an excellent guide and a huge

source of motivation. He has been instrumental in helping me see the forest among

trees in all our research problems. He is a pillar of support and has constantly helped

me feel positive and confident.

I would like to thank my colleague and friend, Dr. Michael Whalen. Without

his guidance, I would have been extremely lost and confused during my first year. I

would also like to acknowledge his help in coming up with the notion of requirements

coverage. The empirical investigations in this dissertation could not have been carried

out without Mike’s help and support.

I would like to acknowedge Kurt Woodham at L3 Communications, and Dr. Steve

Miller from Rockwell Collins Inc. for their advise and insightful comments. I would

like to acknowledge Dr.Elizabeth Whalen from Boeing for her help with the statistical

analysis in our empirical study.

I would like to thank my friends/colleagues Anjali Joshi and Matt Staats for

several interesting discussions and help with the experiments. I would also like to

acknowledge my friend, Satish Sivaswamy, for his constant support, and patience

with my occasional rants during my PhD.

I would like to thank my parents and my sister for always being there for me.

Without their support and encouragement , I would never have embarked on the

PhD adventure. I would also like to thank my fiance, Kartic Subr, for motivating me

and supporting me through the last year of my PhD.

i

Dedication

To my parents, and my sister.

ii

Abstract

In software development, validation that the software meets the customer require-

ments is accomplished through manual inspections and testing. Current practices

in software validation rely on the engineering judgment of domain experts to de-

termine whether or not the tests developed for validation adequately exercise the

requirements. There is no objective way of determining the adequacy of validation

tests. The work in this dissertation tackles this problem by defining objective metrics

termed, requirements coverage metrics, that helps determine whether the behaviors

specified by the requirements have been adequately tested during software validation.

We define coverage metrics directly on the structure of high-level software require-

ments.These metrics provide objective, implementation-independent measures of how

well a validation test suite exercises a set of requirements. We focus on structural

coverage criteria on requirements formalized as Linear Temporal Logic (LTL) prop-

erties. These criteria can also be used to automatically generate requirements-based

test suites (test suites derived directly from requirements) so that the high-cost of

manually developing test cases from requirements is reduced. To achieve this, we de-

veloped a framework that automates the generation of requirements-based test cases

providing requirements coverage . Unlike model or code-derived test cases, these tests

are immediately traceable to high-level requirements. We illustrate the usefulness of

the proposed metrics and test case generation technique with empirical investigations

on realistic examples from the civil avionics domain.

Another potential application of requirements coverage metrics—in the model-

based software development domain—is to measure adequacy of conformance test

suites. Conformance test suites are test suites developed to test the adherence of an
iii

implementation to its specification. We found that the effectiveness of existing ade-

quacy metrics can be improved when they are combined with requirements coverage

metrics. Test suites providing requirements coverage are capable of revealing faults

different from test suites providing coverage defined by existing metrics. We support

this claim with empirical evidence and statistical analysis illustrating the usefulness

of requirements coverage metrics for measuring adequacy of conformance test suites.

To summarize, this dissertation introduces the notion of requirements coverage

and defines potential metrics that can be used to assess requirements coverage. We

make the following claims, supported by empirical evidence, regarding the usefulness

of requirements coverage metrics:

1. Provides an objective measure of adequacy for software validation testing;

2. Allows for autogeneration of tests immediately traceable to requirements;

3. Improves effectiveness of existing measures of adequacy for conformance testing.

iv

Contents

1 Introduction 1

1.1 Testing in Model-Based Software Development 7

1.2 Contributions . 11

1.3 How to Read this Dissertation . 13

2 Background 15

2.1 Software Testing . 15

2.2 Adequacy of Black-Box Test Suites 16

2.2.1 Structural Coverage Criteria over Implementation 17

2.3 Requirements in a Model-Based World 19

3 Requirements Coverage 24

3.1 Metrics for Requirements Coverage 26

3.1.1 Requirements Coverage . 26

3.1.2 Requirements Antecedent Coverage 27

3.1.3 Unique First Cause (UFC) Coverage 29

3.1.4 Adapting Formulas to Finite Tests 36

3.2 Preliminary Experiment . 40

3.2.1 Setup . 41

3.2.2 Results and Analysis . 43

3.3 Requirements Coverage Measurement Tool 49

3.4 Summary . 51
v

4 Automated Requirements-Based Test Case Generation 55

4.1 Requirements-Based Test Case Generation Using Model Checkers . . 58

4.2 Requirements Model for Test Case Generation 60

4.3 Experiment . 65

4.3.1 Case Examples . 66

4.3.2 Setup . 68

4.4 Experiment Results and Analysis . 69

4.4.1 FGS . 70

4.4.2 DWM 1 and DWM 2 . 72

4.5 Discussion . 75

5 Requirements Coverage as an Adequacy Measure for Conformance

Testing 78

5.1 Experiment . 82

5.1.1 Test Suite Generation and Reduction 84

5.1.2 Mutant Generation . 86

5.2 Experimental Results . 88

5.2.1 Statistical Analyses . 91

5.2.2 Threats to Validity . 95

5.3 Discussion . 95

5.3.1 Analysis - Hypothesis 1 . 96

5.3.2 Analysis - Hypothesis 2 . 100

5.4 Summary . 103

6 Related Work 105

6.1 Related Work – Requirements Coverage 105

6.2 Related Work – Requirements-Based Testing 112
vi

7 Conclusions 119

A Automated Test Generation 125

A.1 Formal Modeling Notations . 125

A.2 Model Checkers as Automated Test Generation Tools 128

Bibliography 130

vii

List of Figures

1.1 Traditional Software Development Process. 2

1.2 Specification Centered Development Process. 8

1.3 An overview of the specification centered testing approach. 9

1.4 Dissertation Contributions in Software Development. 12

3.1 Requirements Coverage Measurement Tool 50

4.1 Traditional Validation Approach . 55

4.2 Proposed Model Validation Approach 56

4.3 Automated Requirements-Based Test Case Generation 59

4.4 Approach used in Tool that Automatically Creates the Requirements

Model . 62

A.1 Test sequence generation overview and architecture. 127

viii

Chapter 1

Introduction

The classic approach to developing software (as shown stylistically in Figure 1.1)

begins with customer specification of requirements (description of what the system

should do) and analysis of the requirements to identify any inconsistencies or ambi-

guities. This is typically done by a skilled and experienced software engineer. The

development cycle then proceeds to designing the software, and implementing the

design. Through the entire software development life cycle, the software is tested

and inspected at each stage to ensure the software meets the requirements and the

implementation conforms to the design specification. The process of ensuring this is

termed as Verification and Validation (V&V). The terms verification and validation

are often confused in their usage. Pezze and Young define the terms as; “Assessing the

degree to which a software system fulfills its requirements, in the sense of meeting the

user’s real needs, is called validation. Verification is checking the consistency of an

implementation with a specification, in contrast to validation which compares a de-

scription of the system against actual customer needs” [59]. The term “specification”

refers to the description of the behavior of the system to be developed, and should

not be confused with the term “requirements” that refers to the customer’s actual

needs. The difference between verification and validation is stated by Boehm [13] as:

Validation: Are we building the right product ?

Verification Are we building the product right ?

1

2

Concept

Formation

Requirements

Design

Implementation

Subsystem
integration

System

integration

Production

Inspections

Inspections

Inspections

Some Analysis

Unit Testing (a lot)

Integration

Testing

System

Testing

Figure 1.1: Traditional Software Development Process.

In safety-critical systems, systems whose failure may result in loss of life or severe

damage to equipment or environment, for example, airplanes, pacemakers, etc., the

validation and verification phase (V&V) is particularly costly and consumes a dispro-

portionably large share of the development resources. It is normal for V&V to take

up more than 50% of the total development costs for critical systems. Thus, if we

could devise techniques to help reduce the cost of V&V, dramatic cost savings could

be achieved. The research in this dissertation is an attempt to address this problem.

In particular, we focus on the challenges encountered in software validation. The

software validation problem—determining that the software accurately captures the

customers’ high-level requirements—and the sufficiency of the validation activities has

been largely determined through ad-hoc methods relying on the engineering judge-

ment of domain experts. In this dissertation, we attempt to provide an objective

measure of adequacy of validation activities by answering the following question,

“how well does the system implement the behaviors specified by the requirements?”

One possible way of addressing this question is through the use of formal veri-

fication, i.e., proving or disproving the correctness of a system design with respect

3

to a desired behavior by checking whether a mathematical representation of the de-

sign (formal model) satisfies a specification of this behavior. Formal verification will

exhaustively explore all possible behaviors of the system to check the correctness

with respect to a desired behavior. Nevertheless, the size and complexity of many

industrial systems make the use of formal verification infeasible, even if we have a

formal model of the system and formalized requirements. Exponential increase in the

number of system behaviors with system size make formal verification extremely ex-

pensive and time consuming and often impossible to use on industrial sized systems.

Therefore, in practice, software validation is carried out using other techniques such

as manual inspection and validation testing.

The goal in validation testing is to provide assurance that software meets all

the customer’s requirements. Validation testing is achieved using requirements-based

testing, a testing approach that involves deriving test cases for each requirement to

demonstrate that the system has properly implemented its requirements. Requirements-

based testing is also referred to as black-box testing. Black-box tests are designed to

adequately exercise the functional requirements of a system without regard to the in-

ternal workings of a program. The tests are designed considering only the functional

requirements and the system interface. For example, consider a sample requirement

that states

" If Switch is pressed, then the Light will turn on"

An analyst developing requirements-based tests or black-box tests may derive the

following test case to demonstrate that the requirement is met:

Switch = Pressed, Light = On

In the above test case, Switch = Pressed is the input data and the expected

output is Light = On; knowing the expected response is essential in determining

4

whether actual program execution passed/failed the test case. Does passing such a

test case indicate that the system has correctly implemented the requirement? The

above requirement can also be met with a test case that never presses the switch.

Testing a requirement usually necessitates several test cases to ensure that all the

behaviors specified in the requirement are exercised. Nevertheless, it is not feasible

to test every possible behavior specified in the requirement; an activity equivalent to

formal verification of the requirements. Therefore, we need a criterion that indicates

that the behaviors specified in the requirement have been adequately—rather than

exhaustively—tested. Such a criterion is referred to as a test adequacy criterion and

gives an indication of the thoroughness of testing. A test adequacy criterion imposes

a set of requirements referred to as test obligations to be satisfied by a test suite (a

set of test cases). For example, the statement coverage adequacy criterion defined

over the structure of programs is satisfied by a particular test suite for a particular

program if each executable statement in the program is executed by at least one

test case in the test suite. If a test suite fails to satisfy an adequacy criterion, the

obligation that has not been satisfied indicates how the test suite is inadequate. If

a test suite satisfies all the obligations imposed by an adequacy criterion, we still do

not know definitively that it is a well-designed and effective test suite, but we at least

have some indication of its thoroughness.

The question we put forth earlier can be restated in the context of validation

testing as, how can one assess whether or not black-box tests adequately cover the

behaviors specified in the requirements? To answer this question, we define an ob-

jective notion termed, requirements coverage, that determines whether the behaviors

specified by the requirements have been adequately tested. Current practices for

measuring black-box test suite adequacy either rely on the engineering judgment of

domain experts or the adequacy is inferred by examining different coverage metrics

5

on an executable artifact, either source code [10, 44] or software models [2, 64]. Ex-

ample of such coverage metrics defined over the structure of an implementation are

statement coverage, decision coverage, condition coverage, etc. Section 2.2.1 defines

and discusses these metrics in more detail.

There are several problems with the current practice of using executable artifacts

to measure the adequacy of black-box tests. First, it is an indirect measure: if an

implementation is missing functionality specified by the requirements, a weak set

of black-box tests may yield structural coverage of the implementation and yet not

expose defects of omission. Conversely, if black-box tests yield poor coverage of an

implementation, an analyst must determine whether it is because (a) there are missing

or implicit requirements, (b) there is code in the implementation that is superfluous

and is not derived from the requirements, or (c) the set of tests derived from the

requirements was inadequate. Finally, an executable artifact is necessary to measure

the adequacy of the test suite. This may mean that the adequacy of a test suite

cannot be determined until late in the development process.

The requirements coverage metrics defined in this dissertation are desirable be-

cause they provide objective, implementation-independent measures of how well a

black-box test suite exercises a set of requirements. Further, given a set of test cases

that achieve a certain level of structural coverage of the high-level requirements, it is

possible to measure model or code coverage to objectively assess whether the high-

level requirements have been sufficiently defined for the system. To our knowledge,

there has been no previous work to determine how validation test suites cover the

high-level requirements. Most closely related are manual black-box testing methods.

For example, Beizer’s techniques [8] provide excellent guidance on how to select ef-

fective black-box tests from informal requirements and Richardson et al. defined a

detailed method for systematically selecting functional tests (black-box tests) from

6

informal requirements [69].

Another related issue in the software validation activity is the cost associated

with developing the validation test cases. Traditionally, software validation has been

largely a manual endeavor wherein developers create requirements-based tests and

inspect the model to ensure it satisfies the requirements. This is a costly and time

consuming process and we try to address this issue also in this dissertation.

We propose an approach to auto-generate requirements-based test cases using

the requirements coverage metrics and an executable formal model of the system.

The requirements-based test cases thus generated can be used to validate if the re-

quirements are implemented correctly in the system. The benefit in generating tests

using our approach is that the generated test cases can be immediately traced back

to a high-level requirement of interest. This aspect may be helpful to satisfy the

testing guidelines of rigorous development processes such as DO-178B [70]. One sig-

nificance of this approach is that the requirements-based tests can be created early in

the development process and thus be used to eliminate defects early in the develop-

ment process, saving time and resources. In addition, when the tests are generated,

inconsistencies and ambiguities, if any, in the requirements will often be revealed.

Therefore, this exercise allows the requirements to be improved before the imple-

mentation is developed. An additional benefit of generating requirements-based tests

using our proposed approach is that we do not introduce any implementation bias in

the generated tests, thus the tests are created in a truly black-box manner.

In sum, the primary cost in software validation lies in creating tests to sufficiently

test the required software behavior and in showing that the tests are adequate for

validation of the software system. In this dissertation, we attempt to reduce the

software validation cost by addressing the following:

7

1. Providing a means for objective measurement of the validation activities so that

we can move away from ad-hoc methods for determining requirements coverage

(degree to which the requirements are tested). To achieve this, we define cov-

erage metrics directly on the structure of high-level software requirements and

illustrate how these metrics can be used as an objective adequacy measure.

2. Providing a foundation for the automation of requirements-based test case gen-

eration (generating test cases directly from requirements) so that the high-cost

of manually developing test cases from the requirements can be reduced.

Coverage metrics have been proposed in the past as an adequacy criterion for

testing. Nevertheless, there has been little work in evaluating the effectiveness of the

proposed metrics. Evaluation is crucial if proposed metrics are to be considered in

industrial practice and the lack of such evaluation is disturbing. We overcome this

drawback-at least partially-in our ongoing work. We evaluate the usefulness of the

proposed metrics and test case generation mechanisms with empirical investigations

on realistic examples from the civil avionics domain.

In many of the safety critical system domains, including civil avionics, there has

been a move away from the traditional view of software development to a new par-

adigm called model-based development. The industrial systems used in our empirical

investigations were developed using the model-based software development approach.

We present this approach in the next section and discuss the applications of require-

ments coverage metrics in the context of model-based software development.

1.1 Testing in Model-Based Software Development

In model-based development, the development effort is centered on a formal descrip-

tion of the proposed software system—the “model”. This model is derived from

8

Concept

Formation

Requirements

Implementation

Subsystem

integration

System
integration

Production

Inspections

Integration

Testing

System

Testing
Formal

Specification

Properties

Inspections

Formal Analysis

Specification Testing

Figure 1.2: Specification Centered Development Process.

high-level requirements describing the expected behavior of the software. For valida-

tion and verification purposes, this model can then be subjected to various types of

analysis, for example, completeness and consistency analysis [35, 38], model check-

ing [21, 29, 16, 20, 11], theorem proving [5, 9], and test case generation [15, 3, 27, 24,

12, 57, 41]. This shift towards model-based development naturally leads to changes in

the verification and validation (V&V) process — V&V has been largely moved from

testing the code (Figure 1.1) to analyzing and testing the model (Figure 1.2). The

model is also referred to as the specification. The traditional testing process will in a

model-based world be split into two distinct activities: model validation testing and

conformance-testing. Figure 1.3 shows an overview of the different testing activities

within a model-based development environment. Model validation testing validates

that the model accurately captures the behavior we really want from the software,

i.e., we test the model to convince ourselves that it satisfies the customers’ high-level

requirements. Conformance testing verifies that the code developed from the model

(either manually or automatically through code-generators) correctly implements the

behavior of the model, i.e., that the implementation conforms to the model and no

9

Comparison

(Formal Model

Serves as Oracle)

Requirements Execution

Environment

Implementation-Based

Structural Tests

Required Output

Actual Output
Implementation Execution

Environment

Requirements

Specification Model

Implementation

Functional Tests

Specification-Based

Structural Tests
1

2

3

SE Artifact Tool Generated

Artifact

Legend:

Figure 1.3: An overview of the specification centered testing approach.

“bugs” were introduced in the coding stage or by the automated code generator.

Note here that these testing activities are different than what is commonly referred

to as model-based testing. In model-based testing, the model is typically constructed

specifically for the testing activities and is generally an incomplete abstraction of

the system behavior. Naturally, correctness of the model is important, but it does

not serve as central of a role as it does in our application domain of model-based

development. In model-based development, the model is a complete (or very close

to complete) description of the desired behavior from which production code can be

directly derived.

Currently, to accomplish the model validation activity in model-based develop-

ment a set of requirements-based functional tests is manually developed from the

informal high-level requirements to evaluate the required functionality of the model.

The tests used in this step are developed from the informal requirements by domain

experts, much like requirements-based tests in a traditional software development

process (Step 1 in Figure 1.3). Validation issues raised in the traditional software

development process remain a concern in model-based development also, although

in the context of the model. The same key validation questions are raised (1) when

10

have we developed enough requirements-based tests to ensure the behaviors specified

by the requirements are adequately exercised? and (2) can the process of creating

requirements-based tests be automated to some extent? We propose to use the re-

quirements coverage metrics to assess the adequacy of the model validation testing

activity. Additionally, we provide a test generation framework to automatically gen-

erate requirements-based test cases for model validation.

When testing of the model has been completed and we are convinced that the

model is correct, the testing process can switch from model validation testing to

implementation conformance-testing. In conformance-testing, we are interested in

determining whether the implementation correctly implements the formal model. In

this stage, the formal model is now assumed to be correct and is used as an oracle.

The testing activity confirms that for all tests the implementation yields the same

result as the formal model. All tests used during the validation testing of the formal

specification can naturally be reused when testing the implementation (step 2 in

Figure 1.3). The test cases developed to test the model provide the foundation for

testing the implementation, and the executable model serves as an oracle during the

testing of the implementation. Again, this test set may not provide adequate coverage

of the implementation and will most likely have to be augmented with additional test

cases (Step 3 in Figure 1.3).

The issues in conformance-testing have received more attention than model val-

idation testing; it is possible to automate the generation of conformance-tests from

the formal models as well as the execution of these test cases [66, 68, 12, 27]. Unfor-

tunately, this body of work has largely investigated whether it is possible to automate

these activities and how to feasibly generate the tests. Very little work has been ex-

pended on determining how much to test and if this automation is effective in terms

of fault finding [37, 34, 73]. For critical avionics software, DO-178B necessitates test

11

cases used in verification to achieve requirements coverage in addition to structural

coverage over the code. Presently, however, owing to the lack of a direct and ob-

jective measure of requirements coverage, adequacy of tests are instead inferred by

examining structural coverage achieved over the model.Unfortunately, the evidence

of using structural coverage over the model to measure the adequacy of conformance

testing in the model-based domain is highly inconclusive, and some serious concerns

as to its effectiveness is raised in [62]. Preliminary studies [34, 33] have raised seri-

ous doubts about the fault-finding capability of the various model (or specification)

coverage criteria suggested in the literature.

We hypothesize that adequacy metrics for conformance testing should consider

structural coverage over requirements either in place of or in addition to structural

coverage over the model. Measuring structural coverage over the requirements gives

a notion of how well behaviors specified in the requirements are implemented in the

code. We propose to use the requirements coverage metrics defined in this dissertation

to help achieve this. We conduct empirical studies to investigate this hypothesis and

evaluate the effectiveness of the test sets based on their fault finding capability in the

implementation. Chapter 5 presents this empirical investigation.

In sum, in the domain of model-based software development, we propose to use

requirements coverage metrics as an objective means of measuring adequacy of model

validation testing and as a basis for auto generating model validation test suites.

We also believe that the requirements coverage metrics will be useful in measuring

adequacy of conformance test suites.

1.2 Contributions

Thus far we have discussed the challenges in V&V in both the traditional and model-

based software development approaches. We propose to define requirements coverage

12

Informal

Requirements

Model / Design

Specification

Black-Box Tests

Validate

Source Code

Conformance Tests

Verify

Auto-Generate

Measure

Adequacy

Measure

Adequacy

2

1

3

Contribution

Legend:

Tests
Software

Artifact

Figure 1.4: Dissertation Contributions in Software Development.

metrics to address some of these challenges. The contributions relevant to V&V of

software provided by this dissertation are illustrated in Figure 1.4 and summarized

below. Note that the numbers 1, 2, and 3 in Figure 1.4 correspond to the contributions

enumerated below.

1. A collection of requirements adequacy criteria that can be used as a direct mea-

sure of how well a black-box test suite addresses a set of requirements. The

requirements adequacy criteria also provide an implementation independent as-

sessment of the adequacy of a suite of black-box tests used in validation. The

collection of requirements adequacy criteria will have been formally defined,

evaluated, and compared with respect to their effectiveness in achieving cover-

age over implementation, in the domain of safety-critical reactive systems.

2. Development of a formal framework that allows for auto-generation of valida-

tion tests that are immediately traceable to requirements. Provide empirical

13

evidence on the feasibility and usefulness of the requirements adequacy criteria

used for the purpose of requirements-based test case generation.

3. Provide empirical evidence on the usefulness of requirements coverage metrics

for measuring adequacy of conformance test suites used in model-based devel-

opment. We evaluate usefulness of the metrics in terms of their improvement

in fault finding over existing metrics.

1.3 How to Read this Dissertation

In Chapter 2, we provide background information on software testing and existing

metrics to measure adequacy of testing. To better understand the coverage metrics

we defined on formalized requirements, we also provide some background on how

to formalize requirements. Readers familiar with these topics can skip forward to

Chapter 3.

Chapter 3 presents the metrics we defined for measuring coverage over require-

ments formalized as LTL properties. We formally define and discuss three require-

ments coverage metrics. We discuss how to adapt the definitions of the metrics to

measure finite test cases. We also present an empirical study that compares the effec-

tiveness of the defined requirements coverage metrics on a close to production model

of a flight guidance system. Section 3.3 presents the requirements coverage measure-

ment tool that provides the capability to measure requirements coverage achieved by

a test suite on requirements formalized as LTL properties.

We describe our proposed approach to automatically generate requirements-based

test cases for use in validation testing in Chapter 4. The chapter also presents an

empirical study that evaluates the effectiveness of the generated requirements-based

tests on realistic examples.

14

In Chapter 5, we illustrate that a requirements coverage metric discussed in Chap-

ter 3 is useful in measuring adequacy of conformance test suites. We present an

empirical study using realistic examples that investigates the effectiveness of require-

ments coverage against an existing adequacy measure for conformance testing in the

critical systems domain.

In Chapter 6, we present literature related to defining requirements coverage met-

rics and their use as a test adequacy metric. We also present literature related to

requirements-based testing.

Finally, Chapter 7 summarizes the work in this dissertation and points to direc-

tions for future work. To understand our approach to automate the generation of

requirements-based test cases, we present notations for formal modeling and existing

tools for automated test case generation in Appendix A

Chapter 2

Background

We first present a brief discussion of what software testing means and the various

types of testing. We then discuss how adequacy of black-box test suites is cur-

rently measured. Related to this we outline the structural coverage metrics that have

been defined over implementations. To better understand our definition of coverage

over formal high-level requirements, we present a discussion about requirements in a

model-based world and how to formalize them.

2.1 Software Testing

Software testing is any activity aimed at evaluating an attribute or capability of a

program or system and determining that it meets its required behavior [39]. In spite

of the importance of software testing, it still remains an art due to limited under-

standing of the principles of software. The difficulty in software testing stems from

the complexity of software: we can not completely test a program with even mod-

erate complexity. The purpose of testing can be quality assurance, verification and

validation, or reliability estimation. Software testing is a trade-off between budget,

time and quality.

The tester may or may not know the inside details of the software module under

test, e.g. control flow, data flow, etc. The two basic techniques of software testing,

black-box testing and white-box testing are explained as follows:

15

16

Black-box testing: The black-box approach is a testing method in which test

cases are derived from the specified functional requirements without regard to the

final program structure [58]. It is also termed data-driven, input/output driven, or

requirements-based [39] testing. Since only the functionality of the software module

is of concern, black-box testing also mainly refers to functional testing, a testing

method that emphasizes on executing the functions and examining their input and

output data. The tester treats the software under test as a black-box—only the

inputs, outputs and specification are visible—and the functionality is determined by

observing the outputs to corresponding inputs. In testing, various inputs are exercised

and the outputs are compared against the specification to validate the correctness.

All test cases are derived from the specification. No implementation details of the

code are considered.

White-box testing: In this testing technique, software is viewed as a white-box, or

glass-box, as the structure and flow of the software under test are visible to the tester.

Testing plans are made according to the details of the software implementation, such

as programming language, logic, and styles. Test cases are derived from the pro-

gram structure. White-box testing is also called logic-driven testing or design-based

testing [39].

2.2 Adequacy of Black-Box Test Suites

We first look at what an adequacy criterion for a test suite implies. According to

Pezze and Young [59], a test suite satisfies an adequacy criterion if all the tests succeed

and if every test obligation in the criterion is satisfied by at least one of the test cases

in the test suite. For example, the statement coverage adequacy criterion is satisfied

by a particular test suite for a particular program if each executable statement in

17

the program is executed by at least one test case in the test suite and the actual

results from the executions match the expected results. If a test suite fails to satisfy

some criterion, the obligation that has not been satisfied may provide some useful

information about improving the test suite. If a test suite satisfies all the obligations

by all the criteria, we still do not know definitively that it is a well-designed and

effective test suite, but we have at least some indication of its thoroughness.

Presently, the adequacy of black-box test suites is inferred by examining different

coverage metrics on an executable artifact. As mentioned earlier, there are several

problems with using the executable artifacts to measure the adequacy of black-box

tests. In the following section we look at some of the existing metrics of adequacy

defined over the structure of an executable artifact.

2.2.1 Structural Coverage Criteria over Implementation

Structural coverage criteria defined over implementations refer to structural coverage

criteria defined over source code or software models. Code coverage is based on code,

for example C-code or Java, and model coverage is based on graphical models such as

Simulink models or UML models. According to Chilenski and Miller [44], structural

coverage criteria are divided into two types: data flow and control flow. Data flow

criteria measure the flow of data between variable assignments and references to the

variables. Data flow metrics, such as all-definitions and all-uses [10], involve analysis

of the paths (or subpaths) between the definition of a variable and its subsequent

use. The structural coverage criteria in many standards, including DO-178B, are

often control flow criteria. Control flow criteria measure the flow of control between

statements and sequences of statements. For control flow criteria, the degree of

structural coverage achieved is measured in terms of statement invocations, Boolean

expressions evaluated, and control constructs exercised. Descriptions of some of the

18

commonly used structural coverage measures based on control flow, as defined by

Hayhurst et al. in [32], are as follows:

Statement Coverage: To achieve statement coverage, every executable statement

in the program is invoked at least once during software testing. Achieving

statement coverage shows that all code statements are reachable. Statement

coverage is considered a weak criterion because it is insensitive to some control

structures.

Decision Coverage: Decision coverage requires two test cases: one for a true out-

come and another for a false outcome. For simple decisions (i.e., decisions with

a single condition), decision coverage ensures complete testing of control con-

structs. However, not all decisions are simple. For the decision (A or B), test

cases (TF) and (FF) will toggle the decision outcome between true and false.

However, the effect of B is not tested; that is, those test cases cannot distinguish

between the decision (A or B) and the decision A.

Condition Coverage: Condition coverage requires that each condition in a deci-

sion take on all possible outcomes at least once (to overcome the problem in the

previous example), but does not require that the decision take on all possible

outcomes at least once. In this case, for the decision (A or B) test cases (TF)

and (FT) meet the coverage criterion, but do not cause the decision to take on

all possible outcomes. As with decision coverage, a minimum of two tests cases

is required for each decision.

Condition/Decision Coverage: Condition/decision coverage combines the require-

ments for decision coverage with those for condition coverage. That is, there

must be sufficient test cases to toggle the decision outcome between true and

19

false and to toggle each condition value between true and false. Hence, a min-

imum of two test cases are necessary for each decision. Using the example

(A or B), test cases (TT) and (FF) would meet the coverage requirement.

However, these two tests do not distinguish the correct expression (A or B) from

the expression A or from the expression B or from the expression (A and B).

Modified Condition/Decision Coverage: The MC/DC criterion enhances the

condition/decision coverage criterion by requiring that each condition be shown

to independently affect the outcome of the decision. The independence require-

ment ensures that the effect of each condition is tested relative to the other

conditions. However, achieving MC/DC requires more thoughtful selection of

the test cases, and, in general, a minimum of n+1 test cases for a decision

with n inputs. For the example (A or B), test cases (TF), (FT), and (FF)

provide MC/DC. For decisions with a large number of inputs, MC/DC requires

considerably more test cases than any of the coverage measures discussed above.

Multiple Condition Coverage: Finally, multiple condition coverage requires test

cases that ensure each possible combination of inputs to a decision is executed

at least once; that is, multiple condition coverage requires exhaustive testing of

the input combinations to a decision. In theory, multiple condition coverage is

the most desirable structural coverage measure; but, it is impractical for many

cases. For a decision with n inputs, multiple condition coverage requires 2n

tests.

2.3 Requirements in a Model-Based World

We propose to define coverage metrics directly on the structure of requirements as

measures of adequacy for validation test suites. In order to define this coverage

20

over requirements written in natural language, we would first need to express the

requirements in a formal, unambiguous way. In this section we discuss how natural

language requirements can be formalized. This section is largely adapted from Section

2 in a NASA Contractor Report produced in the context of this research [76].

Requirements typically begin in the form of natural language statements. The

natural language requirements are usually expressed as “shall” statements [71]. The

flexibility and expressiveness of natural language, which are so important for human

communications, represent an obstacle to automatic analysis. We therefore use prop-

erties (or formalized requirements) captured using formal notations such as temporal

logics [22] and synchronous observers [30]. These properties are very close in struc-

ture to the ”shall” statements making up the requirements; in fact, [53] argues that

the “shall” requirements are simply desirable properties of our system expressed in

an informal and ambiguous notation. It is worth noting that the properties referred

to here are different from the term “model” used in this dissertation. A model as

mentioned in Section 1.1 is a formal description of the proposed software system and

is an abstract implementation of the properties. Some of the notations used to model

a system are described in the Appendix.

In our work, we focus on structural coverage metrics defined over requirements

formalized in the LTL notation. Briefly, LTL is a notation that allows you to represent

and reason about formulae with temporal constraints over paths. For instance, one

can encode an LTL formulae about the future of paths such as that a condition will

eventually be true, or that a condition will be true until another condition becomes

true, etc. The temporal operators in LTL are described in Table 2.1.

Generally, there is not a one-to-one relationship between many of the natural

language requirements and the formal properties. One requirement may lead to a

number of properties. We introduce here a Flight Guidance System (FGS) example

21

Operator Notation Meaning

Globally φ G φ Globally φ has to hold on the entire subsequent path

Future φ F φ Eventually φ has to hold

Next φ X φ φ has to hold in the next state

φ Until ψ φ Uψ φ has to hold in every state until ψ holds.

ψ must eventually hold

Table 2.1: Summary of the Linear Time Temporal Logic (LTL) operators.

to illustrate this one–to–many requirement–property relationship. A more detailed

description is available in [76].

The FGS is a component of the overall Flight Control System (FCS). It compares

the measured state of an aircraft (position, speed, and attitude) to the desired state

and generates pitch and roll guidance commands to minimize the difference between

the measured and desired state. The flight crew interacts with the FGS primarily

through the Flight Control Panel (FCP). The FCP includes switches for turning the

Flight Director (FD) on and off, switches for selecting the different flight modes such

as vertical speed (VS), lateral navigation (NAV), heading select (HDG), altitude hold

(ALT), lateral go around (LGA), approach (APPR), and lateral approach (LAPPR),

the Vertical Speed/Pitch Wheel, and the autopilot disconnect bar. The FCP also

supplies feedback to the crew, indicating selected modes by lighting lamps on either

side of a selected mode’s button. Now, consider the requirement below taken from

the flight guidance example.

"Only one lateral mode shall be active at any time."

This requirement leads to a collection of properties we would like our system to

possess. The number of properties depends on which lateral modes are included in

22

this particular configuration of the flight guidance system. For example, one version

of the FGS used in our study has five lateral modes (ROLL, HDG, NAV, LGA, and

LAPPR) leading to the following properties.

1. If ROLL is active, HDG, NAV, LGA, and LAPPR shall not be active.

2. If HDG is active, ROLL, NAV, LGA, and LAPPR shall not be active.

3. If NAV is active, ROLL, HDG, LGA, and LAPPR shall not be active.

4. If LGA is active, ROLL, HDG, NAV, and LAPPR shall not be active.

5. If LAPPR is active, ROLL, HDG, NAV, and LGA shall not be active.

These properties can easily be formalized as LTL properties for verification.

1. G(Is ROLL Active → (¬Is HDG Active ∧ ¬Is NAV Active

∧ ¬Is LGA Active ∧ ¬Is LAPPR Active))

2. G(Is HDG Active → (¬Is ROLL Active ∧ ¬Is NAV Active

∧ ¬Is LGA Active ∧ ¬Is LAPPR Active))

3. G(Is NAV Active → (¬Is ROLL Active ∧ ¬Is HDG Active

∧ ¬Is LGA Active ∧ ¬Is LAPPR Active))

4. G(Is LGA Active → (¬Is ROLL Active ∧ ¬Is HDG Active

∧ ¬Is NAV Active ∧ ¬Is LAPPR Active))

5. G(Is LAPPR Active → (¬Is ROLL Active ∧ ¬Is HDG Active

∧ ¬Is NAV Active ∧ ¬Is LGA Active))

On the other hand, some requirements, for example, the requirement in Table 2.2

(also from the FGS), lend themselves directly to a one-to-one formalization. (FD

refers to the Flight Director and AP refers to the Auto Pilot.) The property states

that it is globally true (G) that if the Onside FD is not on and the AP is not engaged,

in the next instance in time (X) if the AP is engaged the Onside FD will also be on.

Thus, capturing the natural language requirements as properties typically involves

23

“If the onside FD cues are off, the onside FD cues

shall be displayed when the AP is engaged.”

(a)

G((¬Onside FD On ∧ ¬Is AP Engaged) → X(Is AP Engaged →
Onside FD On))

(b)

Table 2.2: (a) Sample requirement on the FGS (b) LTL property for the requirement

a certain level of refinement and extension to express the properties in the vocabu-

lary of the formal model and to shore up any missing details to make formalization

possible. Nevertheless, in most cases—like the example above—the LTL property is

very similar in structure to the natural language requirement making the translation

straightforward. In [53], the full set of natural language requirements for the FGS

were translated into properties in Linear Time Temporal Logic (LTL) [22].

Chapter 3

Requirements Coverage

As mentioned in Section 2.3, there is a close relationship between the requirements

and the properties captured for verification purposes. An analyst developing test

cases from the natural language requirements (shown in Table 2.2) might derive

the scenario in Table 3.1 to demonstrate that the requirement is met. Does this

adequately cover this requirement? Does passing such a test case indicate that the

system has correctly captured the behavior required through this requirement? If

not, what would additional test cases look like? The specification of the requirement

as a property allows us to define several objective criteria with which to determine

whether we have adequately tested the requirement. We hypothesize that coverage

of such criteria can serve as a reliable measure of the thoroughness of validation

activities. The requirements coverage criteria presented in this chapter is a summary

and extension of our work published in [77].

1. Turn the Onside FD off

2. Disengage the AP

3. Engage the AP

4. Verify that the Onside FD comes on

Table 3.1: Manually developed requirements-based test scenario

As discussed in Section 2.2.1, several different structural coverage criteria have

been investigated for source code and for executable modeling languages, for example,[69,

24

25

66, 57, 27]. It is possible to adapt some of these criteria to fit in the domain of re-

quirements captured as formal properties in, for example, Computational Tree Logic

(CTL) or LTL. For instance, consider the notion of decision coverage of source code

where we are required to find two test cases (one that makes the decision true and

another one that makes the decision false). If we adapt this coverage criterion to

apply to requirements, it would require a single test case that demonstrates that the

requirement is satisfied by the system—a test case such as the manually developed

one in Table 3.1. If we derived such a test case for each requirement, we could claim

that we have achieved requirements decision coverage. A distinction must be made,

however, between coverage metrics over source code and coverage metrics over re-

quirements. Metrics over code assume that a Boolean expression can take on both

true and false values. When generating tests from requirements, we usually are

interested in test cases exercising the different ways of satisfying a requirement (i.e.,

showing that it is true). Test cases that presume the requirement is false are not

particularly interesting.

Recall that the requirements are naturally expressed as formal properties; the

concept of structural coverage of requirements expressed as formal properties can

now naturally be extended to address more demanding coverage criteria, for example,

requirements MC/DC coverage. The notion of structural coverage over property

syntax will be discussed in detail in Section 3.1.

Although we in this dissertation focus on requirements specified in temporal logic

there are other notations that can be used to describe requirements. For example,

SCADE [17] and Reactis [48] use synchronous observers [24], which are small spec-

ifications of requirements written as state machines or in the same notation as the

software specification that run “in parallel” with the model. Structural coverage could

be defined over such observers. Nevertheless, we will focus our work on requirements

26

formalized in some declarative notation (such as LTL) since these formalizations tend

to closely resemble the “shall” requirements we find in practice.

3.1 Metrics for Requirements Coverage

In this section we define and discuss three coverage metrics over the structure of

requirements formalized as Linear Temporal Logic (LTL) properties. The coverage

metrics provide different levels of rigor for measuring adequacy of validation activities,

and—depending on the thoroughness of testing needed—the appropriate metric can

be chosen. .

3.1.1 Requirements Coverage

To satisfy requirements coverage, a test suite should contain at a minimum one test

per requirement that illustrates one way in which the requirement can be met. As

an example, consider a sample requirement in Table 3.2 (simplified from the one in

Table 2.2).

“The onside Flight Director cues shall be displayed

when the Auto-Pilot is engaged.”

(a)

G(Is AP Engaged → Onside FD On)

(b)

Table 3.2: (a) Sample requirement (b) LTL property for the requirement

A test derived from the natural language requirements might look like the fol-

lowing scenario: (1) Engage the AP, and (2) Verify that the Onside FD comes on.

27

Alternatively, we could simply leave the auto-pilot turned off and it does not matter

what happens to the flight director. Technically, this test also demonstrates one way

in which the requirement is met, but the test is not particularly illuminating. This

metric is a very weak measure of whether we have sufficiently exercised requirements,

since there may be several ways of coming up with a test case that appear to address

the requirement but are not otherwise helpful, such as the above example that simply

leaves the auto-pilot off.

3.1.2 Requirements Antecedent Coverage

Requirements are often of the form “if event A happens, then event B shall happen”.

This requirement, can be formalized in LTL as

G(A → B)

Informally, it is always the case that when A holds B will hold. A on the left hand side

of → is referred to as the antecedent, and B on the right hand side as the consequent.

The example in Table 3.2 is a requirement of the above form. When using tools for

test case generation, the tools will generally find the simplest possible test case that

satisfies the property. For requirements of the form mentioned above, the simplest

way of satisfying it is when “event A” never happens, or the autopilot is always off in

the case of the example in Table 3.2. Such test cases are not particularly interesting

and do not exercise the interesting scenario (when event A happens, does event B

happen?).

In order to ensure that requirements of the form mentioned are not tested in a

näıve and uninteresting manner, we defined requirements antecedent coverage. For a

test case to provide requirements antecedent coverage over a requirement, the test

case should satisfy the requirement with the additional constraint that the antecedent

28

is exercised. To illustrate this, consider again the example LTL requirement,

G(A → B)

A test case providing requirements antecedent coverage over such a requirement will

ensure that the antecedent A becomes true at least once along the satisfying path.

That is, the test case would satisfy the obligation

G(A → B) ∧ F (A)

For the requirement in Table 3.2, a test case satisfying requirements antecedent

coverage would have to be an execution path where the autopilot is engaged at least

once in addition to satisfying the overall requirement. Table 3.3 shows the obligation

expressed as an LTL formula, and Table 3.4 shows a sample test case satisfying the

obligation (the antecedent is exercised in the third step in the test case).

Formal LTL Requirement: G(Is AP Engaged → Onside FD On)

Requirements Antecedent Coverage:

1. G(Is AP Engaged → Onside FD On) ∧ F (Is AP Engaged)

Table 3.3: Example LTL property and obligation for Requirements Antecedent Cov-

erage

Step 1 2 3 4

AP Disengaged Disengaged Engaged Disengaged

FD Off On On Off

Table 3.4: Sample Test Case satisfying Requirements Antecedent Coverage

Note that in the illustrated examples, there is only one implication operator (→).

Requirements may be defined with several implication operators (like the example in

29

Table 2.2). For such requirements, requirements antecedent coverage could be defined

to exercise the antecedent in all the implication operators, or simply the antecedent

in the top-level implication operator. The former notion over all implication opera-

tors is more rigorous. Table 3.5 shows the obligations for the two different notions

of requirements antecedent coverage for an example requirement. Presently, the tool

we built to measure requirements coverage only considers top-level implication oper-

ators. In our future work we plan to include the definition of requirements antecedent

coverage that considers all implication operators.

Formal LTL Requirement: G(A → (B → C))

All Implication Operators

Obligation for Antecedent A: G(A → (B → C)) ∧ F (A)

Obligation for Antecedent B: G(A → (B → C)) ∧ F (A ∧ B)

Top-Level Implication Operator

Obligation for Antecedent A: G(A → (B → C)) ∧ F (A)

Table 3.5: Example to illustrate two notions of Requirements Antecedent Coverage

3.1.3 Unique First Cause (UFC) Coverage

Requirements are not usually as simple as the example shown in Table 3.2. They are

often defined using complex conditions, like the example FGS requirement below:

“If this side is active the mode annunciations shall be on if and only if the

onside FD cues are displayed, or the offside FD cues are displayed, or the

AP is engaged.”

Formalized as:

G(Is This Side Active = 1 → (Mode Annunciations On ↔
(Onside FD On ∨ Offside FD On = TRUE ∨ Is AP Engaged)))

30

For such complex requirements (often even simple ones), it can be desirable to have a

rigorous coverage metric that requires tests to demonstrate the effect of each atomic

condition making up the complex conditions in the requirement; this would ensure

that every atomic condition is necessary and affects the outcome of the property.

The requirements and requirements antecedent coverage defined previously would

not be able to do this. Therefore, we define a coverage metric called Unique First

Cause (UFC) coverage over requirements [77]. It is adapted from the Modified Condi-

tion/Decision Coverage (MC/DC) criterion [44, 32] defined over source code. MC/DC

is a structural coverage metric that is designed to demonstrate the independent ef-

fect of basic Boolean conditions (i.e., subexpressions with no logical operators) on

the Boolean decision (expression) in which they occur. A test suite is said to satisfy

MC/DC if executing the test cases in the test suite will guarantee that:

• every point of entry and exit in the model has been invoked at least once,

• every basic condition in a decision in the model has taken on all possible out-

comes at least once, and

• each basic condition has been shown to independently affect the decision’s out-

come.

The process of satisfying MC/DC involves determining whether each of the con-

straints imposed by MC/DC is satisfied by some state that is reached by a test within

a test suite. Since requirements captured as LTL properties define paths rather than

states, we broaden our view of structural coverage to accommodate satisfying paths

rather than satisfying states. The idea is to measure whether we have sufficient

tests to show that all atomic conditions within the property affect the outcome of

the property. We can define these test paths by extending the constraints for state-

based MC/DC to include temporal operators. These operators describe the path

31

constraints required to reach an acceptable state. The idea is to characterize a trace

π = s0 → s1 → . . . in which the formula holds for states s0 . . . sk−1, then passes

through state sk, in which the truth or falsehood of the formula is determined by

the atomic condition of interest. For satisfying traces, we require that the formula

continue to hold thereafter.

A test suite is said to satisfy UFC coverage over a set of LTL formulas if executing

the test cases in the test suite will guarantee that:

• every basic condition in a formula has taken on all possible outcomes at least

once

• each basic condition has been shown to independently affect the formula’s out-

come.

We define independence in terms of the shortest satisfying path for the formula.

Thus, if we have a formula A and a path π, an atom α in A is the unique first cause

if, in the first state along π in which A is satisfied (i.e. the truth value of formual A

is true), it is satisfied because of atom α. To make this notion concrete, suppose we

have the formula F(a ∨ b) and a path P = s0 → s1 → . . . in which a was initially

true in step s2 and b was true in step s5. For path P , a (but not b) would satisfy the

unique first cause obligation.

Based on this definition for UFC, Table 3.6 gives the UFC obligations for an

example LTL requirement. The discussion included above gives the general idea of

the notion of UFC coverage; we next present the complete formalization of UFC

coverage over requirements expressed as LTL properties.

Formalization of UFC Coverage over LTL formulas

It is straightforward to describe the set of required UFC assignments for a decision as

a set of Boolean expressions. Each expression is designed to show whether a particular

32

Formal LTL Requirement: G(Is AP Engaged → Onside FD On)

Requirements UFC Coverage

1. (Is AP Engaged → Onside FD On) U ((¬Is AP Engaged ∧
¬Onside FD On) ∧ G(Is AP Engaged → Onside FD On))

2. (Is AP Engaged → Onside FD On) U ((Is AP Engaged ∧
Onside FD On) ∧ G(Is AP Engaged → Onside FD On))

Table 3.6: Example LTL property and obligation for requirements UFC coverage

condition positively or negatively affects the outcome of a decision. Note that over

expressions with simple boolean operators (∧, ∨, ¬), the definition for UFC is the

same as the definition for the MC/DC metric over source code and models. That is,

if the expression is true, then the corresponding condition is guaranteed to affect the

outcome of the decision. Given a decision A, we define A+ to be the set of expressions

necessary to show that all of the conditions in A positively affect the outcome of A,

and A− to be the set of expressions necessary to show that the all of the conditions

in A negatively affect the outcome of A.

For simple boolean operators, we can define A+ and A− schematically over the

structure of complex decisions as follows:

x+ = {x} (where x is a basic condition)

x− = {¬x} (where x is a basic condition)

The positive and negative test cases for conditions are simply the singleton sets

containing the condition and its negation, respectively.

33

(A ∧B)+ = {a ∧B | a ∈ A+} ∪ {A ∧ b | b ∈ B+}

(A ∧B)− = {a ∧B | a ∈ A−} ∪ {A ∧ b | b ∈ B−}

To get positive MC/DC coverage of A ∧ B, we need to make sure that every

element in A+ uniquely contributes to making A∧B true while holding B true,

and symmetrically argue for the elements of B+. The argument for negative

MC/DC coverage is the same, except we show that A ∧ B is false by choosing

elements of A− and B−.

(A ∨B)+ = {a ∧ ¬B | a ∈ A+} ∪ {¬A ∧ b | b ∈ B+}

(A ∨B)− = {a ∧ ¬B | a ∈ A−} ∪ {¬A ∧ b | b ∈ B−}

To get positive (negative) MC/DC coverage over A ∨B, we need to make sure

that every element in A+ (A−) uniquely contributes to making A∨B true (false)

while holding B false, and the symmetric argument for elements of B+ (B−).

(¬A)+ = A−

(¬A)− = A+

The positive and negative MC/DC coverage sets for ¬A swap the positive and

negative obligations for A.

Since expressions over simple boolean operators define program or model states,

each of the expressions above in the positive and negative sets can be seen as defining

a constraint over a program or model state. The process of satisfying UFC involves

determining whether each of these constraints is satisfied by some state that is reached

by a test within a test suite.

On the other hand, requirements captured as LTL properties define paths rather

than states, therefore we broaden our view of structural coverage to accommodate

satisfying paths rather than satisfying states. The idea is to measure whether we

34

have sufficient tests to show that all atomic conditions within the property affect the

outcome of the property. We can define these test paths by extending the constraints

for state-based UFC (or MC/DC) to include temporal operators. These operators

describe the path constraints required to reach an acceptable state. For the formal-

ization of UFC coverage of requirements expressed as LTL properties we will use the

notational conventions that were defined above for Boolean expressions and extend

them to include temporal operators in LTL.

We extend A+ and A− defined over states to define satisfying paths over LTL

temporal operators as follows:

G(A)+ = {A U (a ∧ G(A)) | a ∈ A+}

F(A)− = {¬A U (a ∧G(¬A)) | a ∈ A−}

G(A) is true if A is true along all states within a path. The A U (a ∧ G(A))

formula ensures that each element a in A+ contributes to making A true at

some state along a path in which A is globally true.

F(A)− is the dual of G(A)+, so the obligations match after negating A and a.

F(A)+ = {¬A U a | a ∈ A+}

G(A)− = {A U a | a ∈ A−}

The independent effect of a ∈ A+ for the F(A) formula is demonstrated by

showing that it is the first cause for A to be satisfied. Similar to the previous

definition, G(A)− is the dual of F (A)+.

X(A)+ = {X(a) | a ∈ A+}

X(A)− = {X(a) | a ∈ A−}

The independent effects of a ∈ A+ (resp. a ∈ A−) are demonstrated by showing

that they affect the formula in the next state.

35

(A U B)+ =

{(A ∧ ¬B) U ((a ∧ ¬B) ∧ (A U B)) | a ∈ A+} ∪
{(A ∧ ¬B) U b | b ∈ B+}

For the formula A U B to hold, A must hold in all states until we reach a state

where B holds. Therefore, positive UFC coverage for this would mean we have

to ensure that every element in A+ contributes to making A true along the path

and every element in B+ contributes to completing the formula.

The formula to the left of the union provides positive UFC over A in (A U B).

Recall that an ‘until’ formula is immediately satisfied if B holds. Therefore, in

order to show that some specific atom in A (isolated by the formula a) affects

the outcome, we need to show that this atom is necessary before B holds. This is

accomplished by describing the prefix of the path in which a affects the outcome

as: (A ∧¬B) U (a ∧¬B). In order to ensure that our prefix is sound, we still

want B to eventually hold, we add (A U B) to complete the formula.

The formula on the right of the union is similar and asserts that some b ∈ B is

the unique first cause for B to be satisfied.

(A U B)− =

{(A ∧ ¬B) U ((a ∧ ¬B) | a ∈ A−} ∪
{(A ∧ ¬B) U (b ∧ ¬(A U B)) | b ∈ B−}

For the formula A U B to be falsified, there is some state in which A is false

before B is true. The formula to the left of the union demonstrates that a ∈ A−

uniquely contributes to the falsehood of the formula by describing a path in

which A holds (and B does not — otherwise the formula A U B would be true)

until a state in which both a and B are false.

The formula to the right demonstrates that b ∈ B− uniquely contributes to the

36

falsehood of the formula by describing a path in which A U B eventually fails,

but A holds long enough to contain state b falsifying B.

The formulations above define a rigorous notion of requirements coverage over

execution traces. Since we have been working with linear time temporal logic, the

definitions apply over infinite traces. Naturally, test cases must by necessity be finite;

therefore, the notion of requirements coverage must apply to finite traces.

3.1.4 Adapting Formulas to Finite Tests

LTL is normally formulated over infinite paths while test cases correspond to finite

paths. Nevertheless, the notions of coverage defined in the previous sections can be

straightforwardly adapted to consider finite paths as well. There is a growing body

of research in using LTL formulas as monitors during testing [49, 23, 6], and we can

adapt these ideas to check whether a test suite has sufficiently covered a property.

Manna and Pnueli [49] define LTL over incomplete models, that is, models in

which some states do not have successor states. In this work, the operators are

given a best-effort semantics, that is, a formula holds if all evidence along the finite

path supports the truth of the formula. The most significant consequence of this

formulation is that the next operator (X) is split into two operators: X! and X, which

are strong and weak next state operators, respectively. The strong operator is always

false on the last state in a finite path, while the weak operator is always true.

It is straightforward to define a formal semantics for LTL over finite paths. We

assume that a state is a labeling L : V → {T, F} for a finite set of variables V , and

that a finite path π of length k is a sequence of states s1 → s2 → ... → sk. We write

πi for the suffix of π starting with state si, and the length of the path as |π|. Given

these definitions, the formal semantics of LTL over finite paths is defined in Table 3.7.

As expected, these definitions correspond with the standard semantics except that

37

1. π ² true

2. π ² p iff |π| > 0 and p ∈ L(s1)

3. π ² ¬A iff π 2 A

4. π ² (A ∧B) iff π ² A and π ² B

5. π ² (A ∨B) iff π ² A or π ² B

6. π ² X(A) iff |π| ≤ 1 or π2 ² A

7. π ² X!(A) iff |π| > 1 and π2 ² A

8. π ² G(A) iff ∀1 ≤ i ≤ |π| πi ² A

9. π ² F (A) iff for some 1 ≤ i ≤ |π| πi ² A

10. π ² A U B iff there is some 1 ≤ i ≤ |π|
where πi ² B and ∀j = 1..(i− 1), πj ² A

Table 3.7: Semantics of LTL over Finite Paths

they do not require that G properties hold infinitely (only over the length of the finite

path), and do not require X properties to hold in the last state of a finite path.

The semantics in Table 3.7 are sensible and easy to understand but may be too

strong for measuring test coverage. We may want to consider tests that show the

independence of one of the atoms even if they are “too short” to discharge all of

the temporal logic obligations for the original property. For example, consider the

formula:

((a ∨ b) U c)

and the test cases in Table 3.8. Are these two test cases sufficient to show the

independent effects of a, b, and c? From one perspective, test 1 is (potentially) a

prefix of a path that satisfies ((a ∨ b) U c) and independently shows that a and b

affect the outcome of the formula; the test case illustrates that the formula holds with

only a or only b being true. Test 2 shows the independent effect of c. From another

38

Test1:

Atom Step1 Step2 Step3

a t t f

b t f t

c f f f

Test2:

Atom Step1 Step2

a t t

b t f

c f t

Table 3.8: Test Suite for Property ((a ∨ b) U c)

perspective (the perspective of the finite semantics described above), Test 1 does not

satisfy the formula (since the finite semantics in Table 3.7 requires that for the until

formula to hold, c must become true in the path), so cannot be used to show the

independent effect of any of the atoms.

The issue with these tests (and with finite paths in general) is that there may

be doubt as to whether the property as a whole will hold. This issue is explored by

Eisner et al. [23]; they define three different semantics for temporal operators: weak,

neutral, and strong. The neutral semantics are the semantics defined by Manna and

Pnueli [49] described in Table 3.7. The weak semantics do not require eventualities

(F and the right side of U) to hold along a finite path, and so describe prefixes of

paths that may satisfy the formula as a whole. The strong semantics always fail on

G operators, and therefore disallow finite paths if there is any doubt as to whether

the stated formula is satisfied.

Since we believe that the test cases in Table 3.8 adequately illustrate the indepen-

39

dence of a and b, we slightly weaken our LTL obligations. Given a formula α, we are

interested in a prefix of an accepting path for α that is long enough to demonstrate

the independence of our condition of interest. Thus, we want the operators leading

to this demonstration state to be neutral, but the operators afterwards can be weak.

The strong and weak semantics are a coupled dual pair because the negation

operator switches between them. In [23], the semantics are provided as variant re-

formulations of the neutral semantics. However, they can also be described as syn-

tactic transformations of neutral formulas that can then be checked using the neutral

semantics. We define weak [α] to be the weakening of a formula α and strong [α] to be

the strengthening of formula α. The transformations weak and strong are defined in

Table 3.9. We refer the reader to the work by Eisner et al. [23] for a full description

of the three semantics and their effect on provability within the defined logic.

1. weak [true] = true 12. strong [true] = true

2. weak [p] = p 13. strong [p] = p

3. weak [¬A] = ¬strong [A] 14. strong [¬A] = ¬ weak [A]

4. weak [A ∧B] = weak [A] ∧ weak [B] 15. strong [A ∧B] = strong [A] ∧ strong [B]

5. weak [A ∨B] = weak [A] ∨ weak [B] 16. strong [A ∨B] = strong [A] ∨ strong [B]

6. weak [X!(A)] = X(weak [A]) 17. strong [X!(A)] = X!(strong [A])

7. weak [X(A)] = X(weak [A]) 18. strong [X(A)] = X!(strong [A])

8. weak [G(A)] = G(weak [A]) 19. strong [G(A)] = false

9. weak [F (A)] = true 20. strong [F (A)] = F (strong [A])

10. weak [A U B] = weak [A] W 1weak [B] 21. strong [A U B] = strong [A] U strong [B]

11. weak [A W B] = weak [A] Wweak [B] 22. strong [A W B] = strong [A] U strong [B]

Table 3.9: Definitions of weak and strong LTL transformations

Given these transformations, we can re-formulate the necessary UFC paths in

LTL. The idea is that we want a prefix of a satisfying path that conclusively demon-

strates that a particular condition affects the outcome of the formula. To create such

40

a prefix, we want a neutral formula up to the state that demonstrates the atomic

condition and a weak formula thereafter. The modified formulas defining UFC over

finite prefixes are shown in Table 3.10.

G(A)+ = {A U (a ∧ weak[G(A)]) | a ∈ A+}
G(A)− = {A U a | a ∈ A−}
F (A)+ = {¬A U a | a ∈ A+}
F (A)− = {¬A U (a ∧ weak[G(¬A)]) | a ∈ A−}
(A U B)+ = {(A ∧ ¬B) U ((a ∧ ¬B) ∧ weak[A U B]) | a ∈ A+} ∪

{(A ∧ ¬B) U b | b ∈ B+}
(A U B)− = {(A ∧ ¬B) U ((a ∧ ¬B) | a ∈ A−} ∪

{(A ∧ ¬B) U (b ∧ (¬weak[A U B])) | b ∈ B−}
X(A)+ = {X(a) | a ∈ A+}
X(A)− = {X(a) | a ∈ A−}

Table 3.10: Weakened UFC LTL Formulas describing Accepting Prefixes

The only formulas that are changed in Table 3.10 from the original formulation

in Section 3.1.3 are G(A)+, F (A)−, one branch of (A U B)+, and one branch of

(A U B)−. These are the formulas that have additional obligations to match a prefix

of an accepting path after showing how the focus condition affects the path.

3.2 Preliminary Experiment

In this section, we describe an experiment that empirically evaluates and compares

the effectiveness of the different requirements coverage metrics defined previously.

The case study described in this section is largely adopted from our previous work

published in [77]. To evaluate the effectiveness, we first generate a test suite that

41

provides the defined requirements coverage. The test suites were automatically gen-

erated using a model checker. A model checker can be used to find test cases by

formulating a test criterion as a verification condition; negating the verification con-

dition which is then termed as a trap property, and challenging the model checker

to find a counter example that then constitutes a test case. A more detailed dis-

cussion of automated test generation using model checkers is presented in Appendix

Section A.2. We then run the generated test suite on the system model and measure

model coverage achieved by the requirements-based tests. We perform this evalua-

tion for each of the three requirements coverage metrics defined in Section 3.1 and

compare their effectiveness in terms of model coverage achieved.

To provide realistic results, we conducted the case study using the requirements

and model of the close to production model of a flight guidance system. A Flight

Guidance System is a component of the overall Flight Control System (FCS) in

a commercial aircraft. Chapter 4.3.1 provides a description of the system. This

example consists of 293 informal requirements formalized as LTL properties as well

as a formal model captured in our research notation RSML−e [74]. All the properties

in the FGS system are safety properties, there are no liveness properties.

3.2.1 Setup

The case study followed 3 major steps:

Trap Property Generation: We started with the 293 requirements of the FGS

expressed formally as LTL properties. We generated three sets of trap properties

from these formal LTL properties.

First, we generated tests to provide requirements coverage; one test case per

requirement illustrating one way in which this requirement is met. We ob-

tained these test cases by simply negating each requirement captured as an

42

LTL property and challenged the model checker to find a test case.

Second, we generated tests to provide requirements antecedent coverage. Con-

sider the requirement

G(A → B)

Informally, it is always the case that when A holds B will hold. A test case

providing requirements antecedent coverage over such a requirement will ensure

that the antecedent A becomes true at least once along the satisfying path. That

is, the test case would satisfy the obligation

G(A → B) ∧ F (A)

We implemented a transformation pass over the LTL specifications so that for

requirements of the form G(A → B) we would generate trap properties requiring

A to hold somewhere along the path.

Third, we generated tests to provide requirements UFC coverage over the syntax

(or structure) of the required LTL properties. The rules for performing UFC

over temporal operators were explained in Section 3.1.3. Using these rules,

we implemented a transformation pass over the LTL specifications to generate

trap properties for both the neutral and weakened UFC notions discussed in sec-

tion 3.1.4 (we used the same implementation to generate tests for requirements

coverage, and requirements antecedent coverage mentioned above). However,

both neutral and weakened notions of UFC result in the same test suite for this

case example, since the LTL property set for the FGS system has no ‘future’

and ‘until’ temporal operators. We only generated the positive UFC set over

the temporal properties since each of the properties is known to hold of the

model.

43

Although the properties were already known to hold of the model, generating

tests is still a useful exercise. For a developer, it provides a rich source of

requirements-derived tests that can be used to test the behavior of the object

code. For the purposes of this dissertation, it provides a straightforward way

to test the fault finding capability and completeness of our metrics.

Test suite Generation: To generate the test cases we leveraged a test case gener-

ation environment that was built in a previous project [36]. This environment

uses the bounded model checker in NuSMV for automated test case generation.

We automatically translate the FGS model to the input language of NuSMV,

generate all needed trap properties, and transform the NuSMV counterexam-

ples to input scripts for the Nimbus RSML−e simulator so that the tests can be

run on the model under investigation. Previously, we had enhanced the Nim-

bus framework with a tool to measure different kinds of coverage over RSML−e

models [33]. Therefore, we could run the test cases on the RSML−e models and

measure the resulting coverage.

Coverage Measurement: We measured coverage over the FGS model in RSML−e.

We ran all three test suites (requirements coverage, requirements antecedent

coverage, and requirements UFC coverage) over the model and recorded the

model coverage obtained by each. We measured State coverage, Transition

coverage, Decision coverage, and MC/DC coverage achieved over the model.

Definitions for the different coverage measures is available in Section 2.2.1

3.2.2 Results and Analysis

We used our tools to automatically generate and run three test suites for the FGS;

one suite for requirements coverage, one for requirements antecedent coverage and

44

another one for requirements UFC coverage. The results from our experiment are

summarized in Tables 3.11 and 3.12.

Reqs. Cov. Antecedent Cov. UFC Cov.

Trap Properties 293 293 887

Test Cases 293 293 715

Time Expended 3 min 14 min 35 min

Table 3.11: Summary of the test case generation results.

Table 3.11 shows the number of test cases in each test suite and the time it took to

generate them. It is evident from the table that the UFC coverage test suite is three

times larger than the requirements coverage and requirements antecedent coverage

test suites and can therefore be expected to provide better coverage of the model than

the other two test suites. Also, the time expended in generating the UFC coverage

test suite was significantly higher than the time necessary to generate the other two

test suites.

We observe that our algorithm generating UFC over the syntax of the requirements

generated 887 trap properties. Nevertheless, only 715 of them generated counterex-

amples. For the remaining 172 properties, the UFC trap property is valid, which

means that the condition that it is designed to test does not uniquely affect the out-

come of the property. In each of these cases the original formula was vacuous [7], that

is, the atomic condition was not required to prove the original formula. We discuss

the issue of vacuity checking further in Section 6.1.

Although it was possible to explain many of the vacuous conditions through imple-

mentation choices that satisfied stronger claims than the original properties required,

the number of vacuous conditions was startling and pointed out several previously

unknown weaknesses in our original property set. Rather than correcting the incor-

45

rectly vacuous formulas in our property set before proceeding with our experiment,

we decided to use the property set “as-is” as a representative set of requirements that

might be provided before a model is constructed. If test cases were manually con-

structed from this set of requirements, we postulate that many of these weaknesses

would be found when trying to construct test cases for the vacuous conditions.

For all three coverage metrics mentioned, we did not minimize the size of the

test suites generated. In previous work we found that test suite reduction while

maintaining desired coverage can adversely affect fault finding [33]. However, the

work in [33] was based on test suites generated using model coverage criteria. We

plan to explore the effect of test suite reduction techniques on test suites generated

using requirements coverage criteria in our future work.

Model Cov.

Metric

Reqs. Cov. Antecedent Cov. UFC Cov.

State 37.19% 98.78% 99.12%

Transition 31.97% 89.53% 99.42%

Decision 46.42% 85.75% 83.02%

MC/DC 0.32% 23.87% 53.53%

Table 3.12: Summary of the model coverage obtained by running the requirements

based tests.

In Table 3.12 we show the coverage of the formal model achieved when running

the test cases providing requirements coverage, requirements antecedent coverage and

requirements UFC coverage respectively. We measured four different model coverage

criteria as mentioned in Section 3.2.1.

The results in Table 3.12 show that the test suite generated to provide require-

ments coverage (one test case per requirement) gives very low state, transition, and

46

decision coverage, and almost no MC/DC coverage. This is in part due to the struc-

ture of the properties. Most of the requirements in the FGS system are of the form

G(a → Xb)

The test cases found for such properties are generally those in which the model goes

from the initial state to a state where a is false, thus trivially satisfying the require-

ment. Such test cases exercise a very small portion of the model and the resultant

poor model coverage is not at all surprising.

The requirements antecedent coverage is a stronger metric than the requirements

coverage measure. It gives high state, transition and decision coverage over the model.

However, the MC/DC coverage generated over the model is low. As mentioned ear-

lier, many of the requirements in the FGS system are of the form

G(a → Xb)

Requirements antecedent coverage will ensure that the test cases found for such prop-

erties will exercise the antecedent a (i.e., make a true). Therefore, the requirement is

not trivially satisfied and we get longer test cases and, thus, better model coverage

than the requirements coverage test suite.

On the other hand, the test suite generated for UFC over the syntax of the proper-

ties provides high state, transition, and decision coverage. Nevertheless, the decision

coverage provided by the UFC test suite is in this experiment lower than that provided

by the requirements antecedent coverage test suite. When we looked more closely at

both test suites we found that for variables specified in the property (we call these

variables of interest), both test suites had the same values. In other words, for the

variables of interest, the UFC test suite is a superset of the requirements antecedent

coverage test suite. However, for variables not mentioned in the properties (we call

these free variables), the model checker has the freedom to choose any suitable value

for that variable. We found that the values for these free variables differed between

47

the two test suites. We believe that this is the reason for the antecedent coverage

test suite generating a higher decision coverage over the model than the UFC test

suite; the model checking algorithm in NuSMV simply picked values for the free vari-

ables that happened to give the requirements antecedent test suite better coverage.

If we could control the selection of the free variables the UFC test suite would yield

the same or higher decision coverage than the requirements antecedent coverage test

suite. Clearly, the test case generation method plays an important role in the types

of test cases generated. We plan to explore the effect of different test case generation

methods in our future work.

The UFC test suite generated low MC/DC coverage over the model, although not

as low as the other two test suites. After some thought, it became clear that this is

due in part to the structure of the requirements defined for the FGS. Consider the

requirement

“When the FGS is in independent mode, it shall be active”

This was formalized as a property as follows:

G(m Independent Mode Condition.result → X(Is This Side Active = 1))

Informally, it is always the case (G) that if the condition for being in independent

mode is true, in the next state the FGS will always be active. Note here that the

condition determining if the FGS is to be in independent mode is abstracted to a

macro (Boolean function) returning a result (the .result on the left hand side of the

implication). Many requirements for the FGS were of that general structure.

G(Macro name.result → X b)

Therefore, when we perform UFC over this property structure, we do not perform

UFC over the—potentially very complex—condition making up the definition of the

macro since this condition has been abstracted away in the property definition.

48

The macro Independent Mode Condition is defined in RSML−e as:

MACRO Independent_Mode_Condition():

TABLE

Is_LAPPR_Active : T *;

Is_VAPPR_Active : T *;

Is_Offside_LAPPR_Active : T *;

Is_Offside_VAPPR_Active : T *;

Is_VGA_Active : * T;

Is_Offside_VGA_Active : * T;

END TABLE

END MACRO

Since the structure of Independent Mode Condition is not captured in the required

property, the test cases generated to cover the property will not be required to exercise

the structure of the macro and we will most likely only cover one of the MC/DC cases

needed to adequately cover the macro.

Note that this problem is not related to the method we have presented in this

dissertation; rather, the problem lies with the original definition of the properties.

Properties should not be stated using internal variables, functions, or macros of the

model under investigation; to avoid a level of circular reasoning (using concepts de-

fined in the model to state properties of the model) the properties should be defined

completely in terms of the input variables to the model. If a property must be stated

using an internal variable (or function) then additional requirements (properties) are

required to define the behavior of the internal variable in terms of inputs to the

system. In this example, a collection of additional requirements defining the proper

values of all macro definitions should be captured. These additional requirements

would necessitate the generation of more test cases to achieve requirements UFC

49

coverage and we would presumably get significantly better coverage of the model.

To get a better idea of how many additional test cases UFC coverage would

necessitate when we add requirements defining macros, we considered the sample

requirement property mentioned earlier:

G(m Independent Mode Condition.result → X(Is This Side Active = 1))

We constructed a property defining the Independent Mode Condition macro.

When we performed UFC over this additional macro defining requirement we got

13 additional test cases. This result shows that adding requirements that define all

the macros would make a substantial difference to the test suite size and presumably

the model coverage.

Our investigation thus far illustrated that it is feasible to define a structural cov-

erage metric over requirements and use it to measure adequacy of black box text

suites. Nevertheless, there are several research problems that need to be addressed

when defining an effective requirements coverage metric. We hope to address them

in our future work as detailed in Chapter 7. It is also worth noting that we only

investigated the effectiveness of the defined requirements coverage metrics with re-

gard to model coverage achieved. The ultimate goal for any coverage metric is its

effectiveness in revealing faults. We hope to investigate and compare the fault finding

effectiveness of the different requirements coverage metrics in our future work.

3.3 Requirements Coverage Measurement Tool

Based on the definition of the requirements coverage metrics presented earlier, we have

built a tool that provides the capability to measure requirements coverage achieved

by a test suite. Figure 3.1 depicts how our tool works.

Our tool operates using three inputs: a test suite, a set of requirements expressed

as Linear Temporal Logic (LTL) properties, and the requirements coverage metric the

50

Formal

Requirements (Eg.

LTL Properties)

Reqs. Cov.

Criteria

Reqs. Cov.

Obligations/formulas
Validation

Test Suite

Evaluate and

Check formulas

Calculate ratio

of formulas that

were true

Run Test Suite

Requirements

Coverage Achieved

by Test Suite

Figure 3.1: Requirements Coverage Measurement Tool

user wishes to measure. We currently support three requirements coverage metrics:

Requirements Coverage, Requirements Antecedent Coverage, and Unique First Cause

Coverage. The metrics were described in Section 3.1. Given these inputs, our tool

outputs the requirements coverage achieved by the test suite (as per the chosen met-

ric). Additionally, we output a file that lists the test cases that satisfy each coverage

obligation and the coverage obligations satisfied by each test case. This information

is expressed as an n × m array, with n test cases on the rows and m obligations

marking the columns. The entries in the matrix are either 1 or 0. Thus, if a cell

{i, j} in the matrix had entry 1, it indicates that the ith test case satisfied the jth

51

obligation. If the entry were 0, it indicates that the ith test case did not satisfy the

jth obligation.

The tool operates as follows. For each requirement formalized as an LTL property,

the tool first generates coverage obligations for the selected requirements coverage

metric. The obligation generation is straight forward and follows the definition rules

of the coverage metric. The generated obligations are LTL formulae. The LTL

obligations for all the requirements are taken together as a complete set. The test

suite is then run against the complete set of generated obligations to check how many

of the obligations were satisfied by the test suite. To do this, the tool sequentially

picks each of the test cases from the suite and runs it against each of the obligations

in the complete set, and evaluates the LTL obligation using the values of variables in

the test case. If the formula evaluates to a Boolean value true, then we say that the

obligation is satisfied by the test case. If at least one test case in the suite satisfies

the obligation, we say that the test suite satisfied the obligation. We compute the

number of obligations that evaluated to true by running all the test cases against all

the obligations. Finally, the tool outputs the requirements coverage achieved by the

test suite as the percentage of total obligations satisfied by the test suite.

3.4 Summary

We have thus far defined coverage metrics over the structure of requirements formal-

ized as Linear Temporal Logic (LTL) properties. These metrics are desirable because

they provide objective, model-independent measures of adequacy for model validation

activities. We defined three metrics to assess coverage over requirements:

1. Requirements Coverage

2. Requirements Antecedent Coverage

52

3. Unique First Cause Coverage

The metrics are ordered by the level of rigor needed in satisfying them. Re-

quirements coverage is the weakest requiring only one test case per requirement as

opposed to Unique First Cause Coverage which potentially requires several test cases

per requirement (depends on the number of conditions and type of operators in the

requirement). Table 3.14 shows an example LTL requirement and summarizes the

obligations for the different coverage metrics. We conducted an empirical study com-

paring the effectiveness of the three different metrics on a close to production model

of a flight guidance system. We found the UFC metric to be the most effective in

terms of model coverage achieved on the flight guidance system.

We also briefly discussed how to adapt the definitions for the metrics so they

can measure finite test cases. We presented two possible views when measuring

the coverage of requirements from a given test suite. The first perspective states

that each test case must have sufficient evidence to demonstrate that the formula of

interest is true and that a condition of interest affects the outcome of the formula.

This perspective can be achieved using the neutral finite LTL rules and our original

property formulation.

The second perspective states that each test case is a prefix of an accepting path

for the formula of interest and that the condition of interest affects the outcome of

the formula. This perspective can be achieved using the weakened UFC obligations

shown in Table 3.10.

Making this discussion concrete, given our example formula:

f = ((a ∨ b) U c)

the UFC obligations for the original and modified rules are shown in Table 3.13. In

the original formulation, the first two obligations are not satisfied by the test suite in

53

Table 3.8 because c never becomes true in the first test case. In the weakened formu-

lation, however, the requirement is covered because the first test case is a potential

prefix of an accepting path.

Original Fomulation:

{ ((a∨b)∧¬c) U (a∧¬c∧((a∨b) U c)),

((a∨b) ∧¬c) U (b∧¬c∧((a∨b) U c)),

((a ∨ b) ∧ ¬c) U c }

Weakened Formulation:

{ ((a∨b)∧¬c) U (a∧¬c∧((a∨b) W c)),

((a∨b) ∧¬c) U (b∧¬c∧((a∨b) W c)),

((a ∨ b) ∧ ¬c) U c }

Table 3.13: UFC obligations for ((a ∨ b) U c)

Finally, we presented the requirements coverage measurement tool that provides

the capability to measure requirements coverage achieved by a test suite. The tool

takes as inputs the test suite, the requirements coverage metric we want to measure

and the formal requirements as LTL properties. We currently support the above three

requirements coverage metrics and both the neural and weakened formulations.

54

Formal LTL Requirement: G(Is AP Engaged → Onside FD On)

Requirements Coverage

1. G(Is AP Engaged → Onside FD On)

Requirements Antecedent Coverage

1. G(Is AP Engaged → Onside FD On) ∧ F (Is AP Engaged)

Requirements UFC Coverage

1. (Is AP Engaged → Onside FD On) U ((¬Is AP Engaged ∧
¬Onside FD On) ∧ G(Is AP Engaged → Onside FD On))

2. (Is AP Engaged → Onside FD On) U ((Is AP Engaged ∧
Onside FD On) ∧ G(Is AP Engaged → Onside FD On))

Table 3.14: Example LTL property and obligations for different requirements coverage

metrics

Chapter 4

Automated Requirements-Based Test Case

Generation

Informal Requirements

Model / Design

Specification

Requirements-Based

Tests

Create

Domain Expert

Validate

Figure 4.1: Traditional Validation Approach

Traditionally, software validation has been largely a manual endeavor wherein

developers manually create requirements-based tests and inspect the system design,

or model in model-based software development, to ensure it satisfies the requirements.

Figure 4.1 illustrates the traditional validation approach. In the critical systems

domain, the validation and verification (V&V) phase can be very costly and consumes

a majority of the development resources. We attempt to reduce the validation effort

by proposing an approach that automates the generation of requirements-based tests.

The proposed approach and empirical study in this chapter is largely adopted from

our previously published work in [61].

Our approach uses a formalized set of requirements, as illustrated in Figure 4.2,

55

56

Informal Requirements

Model / Design

Specification

Requirements-Based

Tests

Validate

Formalized

Requirements

Automatically

Generate

Figure 4.2: Proposed Model Validation Approach

as the basis for automated requirements-based test case generation. We defined a

collection of coverage metrics over the structure of formal requirements in Section 3.1.

Using the formal requirements and the defined requirements coverage metrics, we

automatically generate requirements-based tests through an abstract model—we call

it the Requirements Model—to provide coverage over the requirements (as opposed

to over the model). Similar to previous research efforts [64, 66, 27], we automatically

generate tests from a formal model using model checkers.

Previously, as described in Section 3.2, we developed an approach and tool sup-

port to automatically generate test cases to provide coverage of the requirements (as

opposed to the model) [77]. This approach, however, uses the system design or Model

Under Test (MUT) as the basis for the test case generation. In short, our tool uses

the system model to find execution traces that demonstrate that the requirements

are met (up to some predefined coverage of the requirements, for example, Unique

First Cause coverage). Although this approach will help us find test cases, the tests

are derived from the system model itself and we are explicitly searching for execu-

tion traces of the system model that satisfy the requirements; if there is at least one

execution trace that would satisfy the requirement we will find that as a test case.

Therefore, our earlier approach is useful to illustrate how a system model can satisfy

57

its requirements, but it is not suitable to investigate whether or not the system model

satisfies its requirements. To address the latter issue it is desirable to somehow gen-

erate test cases directly from the requirements without referring to the behavior of

the MUT.

To achieve this goal, we alter our previous approach so that it uses an abstract

model derived only from the requirements without any information about the behav-

ior of the MUT—we call this abstract model the Requirements Model. In general,

when testing to check whether an artifact satisfies a set of requirements, it is highly

undesirable to derive the tests with guidance from the artifact under test. The re-

quirements model must therefore contain only the behaviors required from the MUT,

and not be constrained to the behaviors actually provided by the MUT. Given for-

malized requirements, constraints on the environment of the system, and information

about the types of the inputs and outputs of the MUT, we can create an abstract

model—independent from the MUT—that captures only the required behavior. In

our work we create the requirements model by encoding the requirements and envi-

ronmental assumptions as invariants. By using this requirements model as a basis

for test case generation we can generate truly black-box requirements-based tests for

MUT validation.

We assess the effectiveness of the proposed approach for validation on three re-

alistic models from the avionics domain: the Mode Logic for a Flight Guidance

System (FGS), and two models related to the display window manager for a new

airliner (DWM 1, and DWM 2). For each of these models we automatically gener-

ate requirements-based tests using the requirements model to provide Unique First

Cause (UFC) coverage over the formal requirements (UFC definition is presented in

Section 3.1). We then run the generated test suite on the MUT and measure the

model coverage achieved. In particular, we measure MC/DC achieved over the MUT.

58

From our experiment we found that the requirements-based tests did extremely

well on the DWM 1 and DWM 2 systems (both production models) achieving more

than 95% and 92% MC/DC coverage over the models. On the other hand, the

requirements based tests for the FGS (a large case example developed for research)

performed poorly providing only 41% coverage of the FGS model. We hypothesize

that the poor results on the FGS were due to the inadequacy in the FGS requirements

set; the requirements sets for the DWM 1 and DWM 2 systems, on the other hand,

were developed for production and were extensive, well validated, and well defined.

These experiences indicate that our approach can be effective in the validation testing

of models in model-based development. In addition, the capability of measuring

coverage of the requirements as well as the model enables us to assess the adequacy

of a set of requirements; if we cover the requirements but not the model—as in the

case of the FGS mentioned above—it is an indication that the we have an incomplete

set of requirements.

In the remainder of this chapter, we describe our proposed test case generation

technique in detail in Sections 4.1 and 4.2. We describe the experiment conducted to

evaluate our approach in Section 4.3. Results obtained and their analysis is presented

in Section 4.4. Section 4.5 discusses the implications of our experimental results.

4.1 Requirements-Based Test Case Generation Using Model

Checkers

The technique for automatically generating tests from formal models using model

checkers is described in Section A.2. In this section, we describe how this technique

can be tailored to automatically generate test cases providing requirements coverage.

The requirements coverage metric used in our experiment is the Unique First Cause

59

(UFC) coverage defined in [77] and described in Section 3.1. We evaluated the feasi-

bility of the proposed approach using only the UFC metric for requirements coverage.

We chose the UFC metric for our investigation since it is the most rigorous amongst

the defined metrics. In the future, we plan to evaluate the effectiveness using other

requirements coverage metrics as well.

Requirements Model

Formal Requirements

(Eg. LTL properties)

Trap Properties

(for Cov. Oblig.)

Model Checker

Reqs. Cov.

Criteria

(eg. UFC)

Counter-examples

(Requirements-based test

cases)

Inputs, Ouputs,

Environmental

constraints

Generate Generate

Figure 4.3: Automated Requirements-Based Test Case Generation

Earlier we briefly described UFC over paths. Using this definition we can derive

UFC obligations that show that a particular atomic condition affects the outcome

of the property. Given these obligations and a formal model of the software system,

we can now challenge the model checker to find an execution path that would satisfy

one of these obligations by asserting that there is no such path (i.e., negating the

obligation). As mentioned in Section A.2, we call such a formula a trap property.

The model checker will now search for a counterexample demonstrating that this

trap property is, in fact, satisfiable; such a counterexample constitutes a test case

60

that will show the UFC obligation of interest over the model. By repeating this

process for all UFC obligations within the set derived from a property, we can derive

UFC coverage of the property over the model. By performing this process on all

requirements properties, we can derive a test suite that provides UFC coverage of the

set of requirements. This process is illustrated in Figure 4.3.

When the model checker does not return a counterexample (or test case) for a

trap property (in our case for an UFC obligation) it means that a test case for that

particular test obligation does not exist. In the case of UFC obligations it implies

that the atomic condition that the obligation was designed to test does not uniquely

affect the outcome of the property. In each of these cases the original requirements

property is vacuous [7], that is, the atomic condition is not required to prove the

original property.

For reasons mentioned earlier in the section, we need to create a Requirements

Model different from the MUT for requirements-based test case generation.

4.2 Requirements Model for Test Case Generation

The requirements model is created using the following information:

• requirements specified as invariants

• inputs, and the outputs of the MUT

• input constraints or environmental assumptions (if any)

The formalized requirements and environmental assumptions are specified as in-

variants in the requirements model. These invariants restrict the state space of the

requirements model so that we only allow behaviors defined by the requirements. We

built the requirements model in this fashion since tests derived for model validation

61

should be based solely on the high-level requirements and the environmental assump-

tions, and should not be influenced by the structure and behavior of the MUT. In

addition, the names of the inputs and outputs of the MUT are needed to construct

concrete test cases that can be executed on the MUT.

We hypothesize that with a well defined set of requirements and environmental

constraints, requirements-based tests generated from the requirements model to pro-

vide UFC coverage of the requirements will provide high MC/DC coverage of the

model under test and, thus, be highly beneficial in the validation testing process. We

empirically evaluate this hypothesis in Section 4.4 using three realistic examples from

the avionics domain.

We developed a tool that allows the requirements model to be built in an auto-

mated fashion. The tool takes as inputs a formal set of requirements, environmental

constraints, and the MUT. Requirements need to be formalized in the LTL nota-

tion and the environmental constraints specified as invariants. The tool starts with

the MUT and strips out everything but the declaration for inputs and outputs of

the MUT. To this stripped model (only containing the declarations for the inputs

and outputs of the MUT), the tool automatically adds the formal LTL requirements

and environmental constraints as invariants. The resulting model is the requirements

model. Figure 4.4 illustrates the approach used in the tool to create the Requirements

Model.

The tool currently supports only requirements expressed as safety properties; re-

quirements expressed as liveness properties are not yet supported. Informally, a safety

property stipulates that some “bad thing” will never happen during execution of a

program and a liveness property stipulates that some “good thing” will eventually

happen. In our work we have not found this to be a limitation since all requirements

expressed over our case-examples can be expressed as safety properties. Converting

62

LTL Safety

Requirements
System Model (MUT)

Convert to

Requirements as

Invariants

Additional variables

for requirements (if

necessary)

Extract Input/Output

declarations

Models with only

declarations

Environmental

Constraints as

Invariants

Convert to

Requirements Model

Figure 4.4: Approach used in Tool that Automatically Creates the Requirements

Model

63

safety properties into invariants in the requirements model is not a trivial task. The

tool supports the SMV notation for the models [55]. Note that in the SMV nota-

tion, the declaration that allows us to specify a set of invariant states (“INVAR”)

only allows boolean expressions in its syntax. Thus for requirements defined using

temporal operators, SMV will not allow them to be used directly in the “INVAR”

declaration. For requirements containing the next state temporal operator, this issue

can be resolved easily by defining additional variables in the requirements model. To

see this, consider the following example of a näıve informal requirement:

"If Switch is pressed, then in the next step the Light will turn

on."

formalized in LTL as:

LTLSPEC G((Switch = pressed) -> X (Light = on))

The formalized requirement has the temporal next state operator X in the expression

within the global operator G. To express the above requirement as an invariant in the

requirements model, we will declare a new variable, req 1 to help us in the invariant

definition.

ASSIGN

init(req_1) := TRUE;

next(req_1) := (Switch = pressed) -> next(Light = on);

INVAR req_1

As seen in the SMV assignment above, we specify the requirement as an invariant

using this new variable. If the requirement does not contain any temporal operators,

we do not need this additional variable. We can simply put the requirements expres-

sion in the invariant declaration (INVAR). This method of specifying invariants will

64

not work for requirements defined using “Future” and “Until” LTL operators. Our

tool does not currently support such requirements. We are investigating this issue

and plan to resolve it in our future work. (As mentioned above, this restriction has

not been a problem in practice since all requirements we have encountered in our case

examples could be formalized as safety properties.)

For the example requirement above, test cases through the requirements model

that provide UFC coverage over the requirement may have the following form:

Test Case 1

Step 1

Switch = not pressed

req_1 = true

Light = off

Test Case 2

Step 1

Switch = not pressed

req_1 = true

Light = off

Step 2

Switch = pressed

req_1 = true

Light = off

65

Step 3

Switch = pressed

req_1 = true

Light = on

The above two test cases can now be run through the MUT using the values of

inputs from the test cases. If Switch was the only input to the MUT, and Light

was an output; running the test cases through the MUT would constitute looking up

the value of Switch at each step in the test case and calculating the output Light

through the MUT.

4.3 Experiment

In this experiment we were interested in determining (1) the feasibility of generating

requirements-based tests from a requirements model, and (2) the effectiveness of these

test sets in validating the system model or MUT. We evaluated the effectiveness of

the generated test cases using three realistic examples from the avionics domain -

the FGS, and two models related to the Display Window Manager system (DWM 1,

and DWM 2). We provide a description of these systems in Section 4.3.1. The

requirements for these systems were formalized as LTL properties. We generated

test cases to provide UFC coverage over the LTL properties. In this experiment we

assessed the effectiveness of the test sets in terms of coverage achieved over the MUT

since this is a major concern in our application domain. In the future, we plan on

evaluating the quality of these test sets in terms of their fault finding capability on

the model.

66

4.3.1 Case Examples

In the experiment in this chapter we used three close to production or production

systems, namely: two models related to the Display Window Manager System, and a

prototype model of a Flight Guidance System. All of these systems were provided to

us by Rockwell Collins Inc through our long standing collaboration with Dr. Michael

Whalen. We provide descriptions for these systems in this section. Note that in

the description of the FGS, we refer to two systems modeling the mode logic of the

FGS (vertical and lateral mode logic) in addition to the prototype model used in

this chapter. These two systems are used in our empirical investigation described in

Chapter 5; they are referred to here to provide a complete description of the FGS

and to avoid repetition.

Display Window Manager Models (DWM 1 and DWM 2):

The Display Window Manager models, DWM 1, and DWM 2, represent 2 of the 5

major subsystems of the Display Window Manager (DWM) of an air transport-level

commercial displays system. Both the DWM 1 and DWM 2 subsystems were modeled

using the Simulink notation from Mathworks Inc. The DWM acts as a ‘switchboard’

for the system and has several responsibilities related to routing information to the

displays and managing the location of two cursors that can be used to control ap-

plications by the pilot and copilot. The DWM must update which applications are

being displayed in response to user selections of display applications, and must handle

reversion in case of hardware or application failures, deciding which information is

most critical and moving this information to the remaining display(s). It also must

manage the cursor, ensuring that the cursor does not appear on a display that con-

tains an application that does not support the cursor. In the event of reversion, the

DWM must ensure that the cursor is not tasked to a dead display.

67

The DWM 1 system consists of 43 informal requirements formalized as LTL prop-

erties. The formal model of the system was built in the Simulink notation from

Mathworks, Inc [51]. The DWM 2 system consists of 85 informal requirements for-

malized as LTL properties. The formal model of the system was built in the Simulink

notation.

Flight Guidance System:

A Flight Guidance System is a component of the overall Flight Control System (FCS)

in a commercial aircraft. It compares the measured state of an aircraft (position,

speed, and altitude) to the desired state and generates pitch and roll-guidance com-

mands to minimize the difference between the measured and desired state. The FGS

consists of the mode logic, which determines which lateral and vertical modes of oper-

ation are active and armed at any given time, and the flight control laws that accept

information about the aircraft’s current and desired state and compute the pitch and

roll guidance commands.

This system consists of 293 informal requirements formalized as LTL properties.

We use three FGS models in our empirical investigations that focus on the mode logic

of the FGS. The first model, ToyFGS, is a prototype model described in [54] and the

formal model is captured in our research notation RSML−e [74]. The ToyFGS,

although named with “Toy”, is a close to production model. To avoid confusion, in

the rest of this dissertation, we will refer to the ToyFGS model as the FGS model.

The other two models, Vertmax Batch and Latctl Batch models, describe the vertical

and lateral mode logic for the flight guidance system and are part of the Rockwell

Collins FCS 5000 flight guidance system family, described in [52]. The formal models

for these two systems were captured in the Simulink notation from Mathworks, Inc.

68

4.3.2 Setup

The experiment constituted the following steps:

Create the Requirements Model: The requirements model as mentioned before

was built using the formalized set of requirements, names of inputs and outputs

of the MUT, and environmental assumptions for the system. We described the

tool to build the requirements model in an automated fashion in Section 4.2.

The modeling notation that we use in our tool is the SMV language.

Generate Requirements Obligations: We started with the set of requirements

formalized as LTL properties. We generated obligations (as LTL specifications)

to provide requirements UFC coverage over the syntax (or structure) of the LTL

properties. The rules and tool to auto-generate UFC obligations was described

in Section 3.

Generate Requirements-Based Test Cases: We used the bounded model

checker in NuSMV for automated test case generation. We generated test cases

from the requirements model to provide UFC coverage over the properties. We

discussed this approach in Section 4.1 previously. We ran the generated test

suite on the MUT to measure the resulting model coverage achieved.

Measure Model Coverage Achieved: In this experiment we assessed the effec-

tiveness of the test sets in terms of coverage achieved over the MUT since

this is a major concern in our application domain. (In the future, we plan on

evaluating the quality of these test sets in terms of their fault finding capa-

bility on the MUT.) To measure coverage achieved by the requirements-based

test suites over the RSML−e model of the FGS, we leveraged tools built in a

previous project [33] that allowed us to measure different kinds of coverage of

69

Obligations # Tests Time Expended MC/DC Ach.

FGS 887 835 47 mins 41.7%

DWM 1 129 128 < 1 min 95.3%

DWM 2 335 325 < 2 mins 92.6%

Table 4.1: Summary of Requirements-Based Tests Generated and Coverage Achieved

the FGS model expressed in RSML−e. To measure coverage over the DWM 1

and DWM 2 models in Simulink, we used the capabilities in our translation in-

frastructure [75]. The infrastructure allows us to translate the Simulink model

into a synchronous language, Lustre [30]. We then measure coverage over the

translated Lustre model. Using these measurement tools, we ran the test suite

providing requirements UFC coverage and recorded coverage achieved over the

MUT. In particular, we measured MC/DC achieved over the MUT. We chose to

measure this coverage since current practices and standards [70] in the avionics

domain require test suites to achieve MC/DC over the software.

4.4 Experiment Results and Analysis

Table 4.1 shows the coverage achieved by the requirements-based tests over the MUT

for the three systems. The requirements based tests did poorly on the FGS covering

a mere 41% of the model. On the other hand, the tests did well on the DWM 1

and DWM 2 systems covering more than 95% and 92% of the MUT respectively.

Our findings and analysis for the systems are summarized in the remainder of this

section.

70

4.4.1 FGS

As seen from Table 4.1, we generated 887 requirements UFC obligations for the FGS

requirements, of which 835 resulted in test cases. The time expended in test gener-

ation was 47 minutes using the NuSMV bounded model checker. For the remaining

52 obligations that did not result in test cases, the UFC trap property is valid, which

means that the condition that it is designed to test does not uniquely affect the out-

come of the property and, thus, no test case demonstrating this independent effect

exists. The inability to find a test case may be an indication of a poorly written re-

quirement or an inconsistent set of requirements. In this report, we did not attempt to

correct these properties, we decided to use the property set “as-is” as a representative

set of requirements that might be provided before a model is constructed.

Table 4.1 shows that the test suite generated to provide UFC over the FGS re-

quirements provides only 41% MC/DC coverage over the MUT. To explain the poor

coverage, we took a closer look at the requirements set for the FGS and found that

the poor performance of the generated test suite was due in part to the structure of

the requirements defined for the FGS. Consider the requirement

“When the FGS is in independent mode, it shall be active”

This was formalized as a property as follows:

G(m Independent Mode Condition.result → X(Is This Side Active = 1))

Note here that the condition determining if the FGS is to be in independent mode is

abstracted to a macro (Boolean function) returning a result (the .result on the left

hand side of the implication). Many requirements for the FGS were of that general

structure.

G(Macro name.result → X b)

The definition of the macro resides in the MUT and is missing from the property set.

Therefore, when we perform UFC over this property structure, we do not perform

71

UFC over the—potentially very complex—condition making up the definition of the

macro.

The macro Independent Mode Condition is defined in RSML−e as:

MACRO Independent_Mode_Condition():

TABLE

Is_LAPPR_Active : T *;

Is_VAPPR_Active : T *;

Is_Offside_LAPPR_Active : T *;

Is_Offside_VAPPR_Active : T *;

Is_VGA_Active : * T;

Is_Offside_VGA_Active : * T;

END TABLE

END MACRO

(The table in the macro definition is interpreted as a Boolean expression in disjunctive

normal form; each column in the table represents one disjunction; a * indicates that

in this disjunction the condition on that row is a don’t care.) Since the structure

of Independent Mode Condition is not captured in the required property, the test

cases generated to cover the property will not be required to exercise the conditions

making up the definition of the macro. We will thus most likely only cover one of the

UFC cases needed to adequately cover the macro.

Note that this problem is not related to the method we have presented in this

report; rather, the problem lies with the original formalization of the FGS require-

ments as LTL properties. Properties should not be stated using internal variables,

functions, or macros of the MUT; doing so leads to a level of circular reasoning (using

concepts defined in the model to state properties of the model). If a property must be

stated using an internal variable (or macro) then additional requirements (properties)

72

are needed to define the behavior of the internal variable in terms of inputs to the

system. For the FGS, a collection of additional requirements defining the proper val-

ues of all macro definitions should be captured. These additional requirements would

necessitate the generation of more test cases to achieve requirements UFC coverage

and we would presumably get significantly better coverage of the MUT.

Thus, for the FGS, our approach helped identify inadequacies in the requirements

set by measuring coverage achieved on the MUT with the generated requirements-

based tests. Rockwell Collins Inc. was aware of the problems related to defining

requirements using internal variables from the model, learned from the FGS research

model, and rectified this problem in later modeling efforts. The DWM models pre-

sented in the next section are two such models with well defined requirements.

4.4.2 DWM 1 and DWM 2

In contrast to the FGS, in the DWM models all the requirements were defined com-

pletely in terms of inputs and outputs of the system. Internal variables—if any—

used when describing requirements were defined with additional requirements. The

problems seen with the requirements of the FGS were not present in the DWM ex-

amples. As seen in Table 4.1, our test case generation approach was feasible on

both the DWM 1 and DWM 2 systems. For the DWM 1 system, we generated 128

requirements-based tests from 43 formalized requirements in less than one minute.

The generated requirements-based tests covered more than 95% of the MUT. On the

DWM 2 system, we generated 325 test cases from 85 requirements in less than two

minutes. The generated tests covered more than 92% of the MUT. Note that 10 of

the 335 UFC obligations on the DWM 2 system did not generate test cases. This

implies that the atomic conditions that these obligations were designed to test were

vacuous in the requirement. It is evident from these results that in both the systems,

73

“If a is true then in the next step b will be true” (1)

G(a → Xb) (2)

(a → Xb) U ((a & Xb) & G(a → Xb)) (3)

Table 4.2: (1) Example high-level requirement (2) LTL property for the requirement

(3) UFC obligation for atomic condition b

the requirements-based tests cover most of the behavior in the MUT and therefore

have the potential to be effective in model validation.

In our experiments we observed that for some of the generated requirements-based

tests the outputs predicted by the requirements model differed from the outputs

generated when the tests were executed on the MUT. This occurs because the MUT

may define constraints not in the requirements model, constraints that cause the test

cases to lead to different outputs. To illustrate, consider the näıve example of a

requirement and one of its UFC obligation in Table 4.2. Let us suppose a is an input

and b an output of the example system. The UFC obligation states that (a → Xb)

is true until you reach a state where a is true and in the next state b is true, and

the requirement continues to hold thereafter. This obligation would ensure that b is

necessary for the satisfaction of the requirement.

For illustration purposes, let us suppose the MUT is built in such a way that it

imposes an additional constraint: "Output b is always true"; this model would

still satisfy the requirement. Table 4.3 shows a requirements-based test case predicting

a certain behavior through the requirements model but when executed through the

MUT we get a different (but still correct) behavior. The test case results in different

values for output b between the requirements model and the MUT because of the the

additional constraint imposed by the MUT.

74

Requirements Model

Step 1 2 3 4

a 0 0 1 0

b 0 0 0 1

MUT

Step 1 2 3 4

a 0 0 1 0

b 1 1 1 1

Table 4.3: Sample Test Execution through Requirements Model and MUT

Observing such differences may help developers in validating the additional con-

straint imposed by the MUT. Note again that differences in test results predicted

by the requirements model and the actual results from the MUT do not imply that

the MUT is incorrect. The MUT may be correct but simply more restrictive. Our

approach does not address this oracle problem at this time and we currently rely on

the developers to make a decision of whether or not the results are acceptable. (A

more extensive discussion on this issue is provided in Section 4.5). In our experience,

additional constraints in the MUT are usually correct and needed, and they are miss-

ing from the requirements set. Thus in addition to validation this exercise may help

developers in identifying these missing requirements.

The requirements-based tests generated using our approach provides very high

coverage over the MUT for the DWM 1 and DWM 2 systems owing to their well

defined set of requirements. Nevertheless we did not get 100% coverage over these

systems. There may be several factors contributing to this result: (1) there may be

missing requirements, (2) the model is violating some of the requirements, and (3)

there may be a mismatch between our definition of UFC coverage in the requirements

75

domain and the MC/DC coverage as measured in the model domain. Presently, we

have been unable to determine which of these was the contributing factor on the two

systems, but we plan to investigate it in the future.

4.5 Discussion

In our experiment, we found that our proposed approach for automatically gener-

ating validation tests is feasible but the effectiveness of the generated tests is (not

unexpectedly) subject to the quality of the requirements. For an incomplete set of

requirements—such as the one provided for the FGS—the requirements-based tests

provide low coverage over the MUT. Note that this is a problem with the require-

ments and not the proposed approach. Nevertheless, for a mature and extensive

set of requirements—such as those provided for the DWM models—the generated

requirements-based tests provide high coverage over the MUT. Additionally, our ap-

proach has the potential to help identify missing requirements, like in the case of

the FGS. When requirements-based tests providing coverage over the requirements

provide poor coverage over the model it is an indication that we have an incomplete

set of requirements.

When validating and analyzing models using the generated requirements-based

tests, we encourage developers to carefully consider the following two issues.

First, does every requirements coverage obligation result in a test case from the

requirements model? If it does not it is an indication that the requirement (property)

from which the obligation is derived is poorly written. For instance, if requirements

UFC coverage is used it means that the condition that the obligation is designed to

test does not uniquely affect the outcome of the property and is thus not required to

demonstrate that the property holds. Investigating this issue further would help in

getting better quality requirements.

76

Second, do the predicted outputs match the actual outputs? Compare the pre-

dicted outputs of the requirements-based tests from the requirements model with the

outputs as they are executed on the MUT. As seen in our experiment, for all three

systems, the predicted outputs frequently differ from the output actually produced

by the MUT. We found that this occurred because of the additional constraints that

were in the MUT but not in the requirements model. Investigating this discrepancy

in outputs will help validate these additional constraints.

The oracle problem, that is, deciding whether the generated requirements-based

tests pass/fail on the MUT is not handled in this dissertation. As discussed, this

decision cannot be made by simply comparing the outputs from the MUT with the

ones predicted by the requirements model. We are currently investigating techniques

that will automate the oracle problem in the future. One simple solution would

be to discard the expected outputs generated in the requirements-based test case

generation, run the tests through the MUT and collect the execution traces, and

then use the requirements and the requirements coverage obligations as monitors over

the traces to determine if a violation has occurred. This would be a simple solution

drawing on readily available techniques from the run-time verification community.

Finally, it is worth noting that the requirements coverage metric used plays a key

role in the effectiveness of the generated requirements-based tests. For instance, if

we use decision coverage of the requirements, it would require a single test case that

demonstrates that the requirement is satisfied (a negative test case that demonstrates

that the requirement is not met would presumably not exist). Typically, a single

test case per requirement is too weak of a coverage since it is possible to derive

many rather useless test cases. If we again consider our sample requirement and

formalization from Table 3.2. We can, for example, satisfy the decision coverage

metric by creating a test case that leaves the autopilot disengaged throughout the test

77

and disregards the behavior of the flight director. Although this test case technically

satisfies the requirements, it does not shed much light on the correctness of the MUT.

It is therefore important to choose a rigorous requirements coverage metric, like the

UFC coverage, for requirements-based test case generation.

Chapter 5

Requirements Coverage as an Adequacy Measure

for Conformance Testing

In model-based software development, the traditional testing process is split into two

distinct activities: one activity that tests the model to validate that it accurately

captures the customers’ high-level requirements, and another testing activity that

verifies whether the code generated (manually or automatically) from the model is

behaviorally equivalent to (or conforms to) the model. In this chapter, we focus

on the second testing activity—verification through conformance testing. There are

currently several tools, such as model checkers, that provide the capability to auto-

matically generate conformance tests [65, 27] from formal models. In this chapter, we

examine the effectiveness of metrics used in measuring the adequacy of the generated

conformance tests. In particular, we examine whether requirements coverage metrics

can aid in measuring adequacy of conformance test suites.

For critical avionics software, DO-178B necessitates test cases used in verification

to achieve requirements coverage in addition to structural coverage over the code.

However, previously, there was no direct and objective measure of requirements cov-

erage, and adequacy of tests was instead inferred by examining structural coverage

achieved over the model. The Modified Condition and Decision Coverage (MC/DC)

used when testing highly critical software [70] in the avionics industry has been a

natural choice to measure structural coverage for the most critical models. As seen

78

79

in Chapter 3, however, we have defined coverage metrics that provide direct and

objective measures of how well a test suite exercises a set of high-level formal soft-

ware requirements. In Section 3.2, we examined using requirements coverage metrics,

in particular the Unique First Cause (UFC) coverage metric, to measure adequacy

of tests used in validation (or black-box testing) and found them to be useful. To

save time and effort, we would like to re-use validation tests providing requirements

coverage for verification of code through conformance testing as well. This chap-

ter examines the suitability of using tests providing requirements UFC coverage for

conformance testing as opposed to tests providing MC/DC over the model. The

empirical investigation discussed in this chapter has largely been adopted from our

previous work published in [63].

We believe requirements coverage will be useful as an adequacy measure for con-

formance testing for several reasons. First, measuring structural coverage over the

requirements gives a direct assessment of how well the conformance tests exercise the

required behavior of the system. Second, if a model is missing functionality, mea-

suring structural coverage over the model will not expose such defects of omission.

Third, obligations for requirements coverage describe satisfying scenarios (paths) in

the model as opposed to satisfying states defined by common model coverage oblig-

ations (such as MC/DC). We hypothesize that the coverage obligations that define

satisfying paths will necessitate longer and more effective test cases than those defin-

ing satisfying states in the model. Finally, we found in [62] that structural coverage

metrics over the model, in particular MC/DC, are sensitive to the structure of the

model used in coverage measurement. Therefore, these metrics can be easily rendered

inefficient by (purposely or inadvertently) restructuring the model to make it easier

to achieve the desired coverage.

80

For these reasons, we believe that requirements coverage will serve as a stronger

adequacy measure than model coverage in measuring adequacy of conformance test

suites. More specifically, we investigate the following hypothesis:

Hypothesis 1 (H1): Conformance tests providing requirements UFC coverage are

more effective at fault finding than conformance tests providing MC/DC over

the model.

We evaluated this hypothesis on four industrial examples from the civil avionics

domain. The requirements for these systems are formalized as Linear Temporal Logic

(LTL) [22] properties. The systems were modeled in the Simulink notation [51]. Using

the Simulink models, we created implementations using our translation infrastruc-

ture [75] in the synchronous dataflow language Lustre [30]. We used the implemen-

tations in Lustre as the basis for the generation of large sets of mutants by randomly

seeding faults. We generate numerous test suites to provide 100% achievable UFC

coverage over the LTL properties (the formal requirements), and numerous test suites

to provide 100% achievable MC/DC over the model. We assessed the effectiveness of

the different test suites by measuring their fault finding capability, i.e., running them

over the sets of mutants and measuring the number of faults detected.

In our experiment we found that Hypothesis 1 was rejected on three of the four

examples at the 5% statistical significance level. This result was somewhat disap-

pointing since we believed that the requirements coverage would be effective as a

conformance testing measure. The astute reader might point out that the result

might not be surprising since the effectiveness of the requirements-based tests pro-

viding UFC coverage heavily depends on the ‘goodness’ of the requirements set; in

other words, a poor set of requirements leads to poor tests. In this case, however, we

worked with case examples with very good sets of requirements and we had expected

better results. Nevertheless, we found that the tests providing requirements UFC

81

coverage found several faults that remained undetected by tests providing MC/DC

over the model. We thus formed a second hypothesis stating that complementing

model coverage with requirements coverage will prove more effective as an adequacy

measure than solely using model coverage for conformance testing. To investigate

this, we formulated and tested the following hypothesis:

Hypothesis 2 (H2): Conformance tests providing requirements UFC coverage in ad-

dition to MC/DC over the model are more effective at fault finding than con-

formance tests providing only MC/DC over the model.

In our second set of experiments, the combined test suites were significantly more

effective than MC/DC test suites on three of the four case examples (at the 5% sta-

tistical significance level). For these examples, UFC suites found several faults not

revealed by the MC/DC suites making the combination of UFC and MC/DC more

effective than MC/DC alone. The relative improvement in fault finding over the

MC/DC suites was in the range of 4.3%− 10.8% on these examples. We strongly be-

lieve that for the case example that did not support Hypothesis 2, the MC/DC suite

found all possible faults, making improvement with the combined suites impossible.

Based on our results, we believe that existing adequacy measures for conformance

testing based solely on structural coverage over the model (such as MC/DC) can be

strengthened by combining them with requirements coverage metrics such as UFC. It

is worth noting that Briand et.al. found similar results in their study [14], though in

the context of state-based testing for complex component models in object-oriented

software. Combining a state-based testing technique for classes or class clusters mod-

eled with statecharts [31], with a black-box testing technique, category partition

testing, proved significantly more effective in fault detection. We recommend, based

on our results, that future measures of conformance testing adequacy consider both re-

quirements and model coverage either by combining existing metrics, such as MC/DC

82

and UFC, or by defining new metrics that account for behaviors in the requirements

in addition to those in the model.

Achieving structural coverage over requirements usually necessitates longer test

cases that reveal different faults than those necessary to achieve structural coverage

over the model. Nevertheless, it is important to keep in mind that any approach,

including ours, that rely on structural coverage metrics will be highly sensitive to the

structure of the artifact being covered. For instance, in this experiment we found

that the UFC metric was surprisingly sensitive to the structure of the requirements,

and one has to ensure that the requirements structure does not hide the complexity

of conditions for the metric to be effective. Section 5.3.1 illustrates this issue in more

detail.

The remainder of the chapter is organized as follows. Section 5.1 introduces

our experimental setup. Results and statistical analysis are presented in Section 5.2.

Finally in Sections 5.3 and 5.4, we analyze and discuss the implications of our results,

and point to future directions.

5.1 Experiment

We use four industrial systems in our experiment: two models from a display win-

dow manager for an air-transport class aircraft (DWM 1, DWM 2), and two models

representing flight guidance mode logic for business and regional jet class aircrafts

(Vertmax Batch and Latctl Batch). All four systems were viewed to have good sets of

requirements. Description for these systems were previously provided in Section 4.3.1.

We conducted the experiments for each case example using the steps outlined below

(elaborated in later sections):

83

1. Generate and Reduce Test Suites to provide UFC Coverage: We gen-

erated a test suite to provide UFC coverage over the formalized LTL require-

ments. This test suite was näıvely generated, one test case for every UFC

obligation, and thus highly redundant. We reduced the test suite randomly

while maintaining UFC coverage over the requirements. We generated three

such randomly reduced test suites.

2. Generate and Reduce Test Suites to provide MC/DC over the model:

We näıvely generated a test suite to provide MC/DC over the model. We

then randomly reduced the test suite to maintain MC/DC over the model. We

generated three such reduced test suites.

3. Combined test suites that provide MC/DC + requirements UFC:

Among the reduced MC/DC suites from the previous step, we select the most

effective MC/DC test suite based on their fault finding ability. We merge this

test suite with each of the reduced UFC test suites from the first step. The

combined suites thus provide both MC/DC over the model and UFC coverage

over the requirements.

4. Generate Mutants: We randomly seeded faults in the correct implementation

and generated three sets of 200 mutants using the method outlined in Sec-

tion 5.1.2.

5. Assess and compare fault finding: We run each of the test suites from steps

1, 2 and 3 (that provide requirements UFC coverage, MC/DC over the model,

and MC/DC + requirements UFC coverage respectively) against each set of

mutants and the model. Note that the model serves as the oracle implementa-

tion in conformance testing. We say that a mutant is killed (or detected) by a

test suite if any of the test cases in the suite result in different output values

84

between the model and the mutant. We recorded the number of mutants killed

by each test suite and computed the fault finding ability as the percentage of

mutants killed to the total number of mutants.

5.1.1 Test Suite Generation and Reduction

We generated test suites to provide UFC coverage over formal LTL requirements and

to provide MC/DC over the model. The approach to generate and reduce the test

suites for the two different coverage measures is detailed below. Additionally, we

merge the reduced test suites for the two coverage measures to create combined test

suites that provide UFC coverage over the requirements in addition to MC/DC over

the model.

UFC Coverage over Requirements:

The requirements coverage metric used in this report is the Unique First Cause (UFC)

coverage defined in [77] and described in Section 3.1. We use the NuSMV bounded

model checker along with the formal model of the system to automatically generate

test cases providing requirements UFC coverage. The test generation technique is

identical to the one described in 4.1 except we use the system model rather than the

requirements model for test case generation.

A test suite thus generated will be highly redundant, as a single test case will

often satisfy several UFC obligations. We therefore reduce this test suite using a

greedy approach. We randomly select a test case from the test suite, check how

many UFC obligations are satisfied and add it to a reduced test set. Next, we

randomly pick another test case from the suite and check whether any additional

UFC obligations were satisfied. If so, we add the test case to the reduced test set.

This process continues till we have exhausted all the test cases in the test suite. We

85

now have a randomly reduced test suite that maintains UFC coverage over the LTL

requirements. We generate three such reduced UFC test suites for each case example

in our experiment to eliminate the possibility of skewing our results with an outlier

(an extremely good or bad reduced test suite).

MC/DC over model:

The full test suite to provide MC/DC used in this experiment is the same one used

in previous work [62]. We used the test suite that provides MC/DC over the inlined

model (one in which the intermediate variables and function calls are inlined) rather

than the non-inlined model as it is more rigorous and effective. We thus compare the

requirements UFC coverage against a rigorous notion of MC/DC. The test suite was

automatically generated using the NuSMV [55] model checker to provide MC/DC

over the model. The full test suite was näıvely generated, with a separate test case

for every construct we need to cover in the model. This straightforward method of

generation results in highly redundant test suites, as with UFC test suite generation.

Thus, the size of the complete test suite can typically be reduced while preserving

coverage.

The approach to reduce the test suite is similar to that used for UFC coverage. As

before, we generate three such reduced test suites to decrease the chances of skewing

our results with an outlier (very good or very bad reduced test suite).

Requirements UFC Coverage + MC/DC over model:

To generate test suites providing both requirements UFC coverage and MC/DC over

the model, we simply merge the test suite providing UFC with the test suite providing

MC/DC. As mentioned previously, we generated three reduced MC/DC suites and

three reduced UFC suites. It is thus possible to create nine different combined suites,

86

by merging each of the three reduced MC/DC suites with each of the three reduced

UFC suites. Nevertheless, we elected to use only the best reduced MC/DC suite (with

respect to fault finding among the reduced MC/DC suites) for creating the combined

test suites since we were interested in determining if the UFC suites improved the

fault finding of the best rather than average MC/DC suite. We thus merge the

best MC/DC suite with each of the three reduced UFC suites to create only three

combined suites.

5.1.2 Mutant Generation

To create mutants or faulty implementations, we built a fault seeding tool that can

randomly inject faults into the implementation. Each mutant is created by introduc-

ing a single fault into a correct implementation by mutating an operator or variable.

The fault seeding tool is capable of seeding faults from different classes. We seeded

the following classes of faults:

Arithmetic: Changes an arithmetic operator (+,−, /, ∗, mod, exp).

Relational: Changes a relational operator (=, ! =, <, >,<=, >=).

Boolean: Changes a boolean operator (OR, AND, XOR).

Negation: Introduces the boolean NOT operator.

Delay: Introduces the delay operator on a variable reference (that is, use the stored

value of the variable from the previous computational cycle rather than the

newly computed value).

Constant: Changes a constant expression by adding or subtracting 1 from int and

real constants, or by negating boolean constants.

Variable Replacement: Substitutes a variable occurring in an equation with an-

other variable of the same type.

87

To seed a fault from a certain class, the tool first randomly picks one expression

among all possible expressions of that kind in the implementation. It then randomly

determines how to change the operator. For instance to seed an arithmetic mutation,

we first randomly pick one expression from all possible arithmetic expressions to mu-

tate, say we pick the expression ‘a + b’; we then randomly determine if the arithmetic

operator ‘+’ should be replaced with ‘-’ or ‘*’ or ‘/’ and create the arithmetic mutant

accordingly. Our fault seeding tool ensures that no duplicate faults are seeded.

In our experiment, we generated mutants so that the ‘fault ratio’ for each fault

class is uniform. The term fault ratio refers to the number of mutants generated

for a specific fault class versus the total number of mutants possible for that fault

class. For example, assume an implementation consists of R Relational operators

and B Boolean operators. Thus there are R possible Relational faults and B possible

Boolean faults. For uniform fault ratio, we would seed x relational faults and y

boolean faults in the implementation so that x/R = y/B.

We generated three sets of 200 mutants for each case example. We generated

multiple mutant sets for each example to reduce potential bias in our results from a

mutant set that may have very hard (or easy) faults to detect. Our mutant generator

does not guarantee that a mutant will be semantically different from the original

implementation. Nevertheless, this weakness in mutant generation does not affect

our results, since we are investigating the relative fault finding of test suites rather

than the absolute fault finding.

The fault finding effectiveness of a test suite is measured as the number of mutants

detected (or ‘killed’) to the total number of mutants created. We say that a mutant is

detected by a test suite when the test suite results in different observed values between

the mutant and the oracle implementation. The system model serves as the oracle

implementation in conformance testing. We only observe the output values of the

88

model and mutants for comparison. We do not use internal state information. The

reason being internal state information between the model and implementation may

differ and can therefore not be compared directly. Additionally, in general, internal

state information of the system under test may not be available and it is therefore

preferable to perform the comparison with only output values.

5.2 Experimental Results

For each of the case examples—DWM 1, DWM 2, Vertmax Batch, Latctl Batch—

we generated three reduced UFC test suites, three reduced MC/DC test suites, three

combined UFC + MC/DC test suites and three sets of mutants. As mentioned earlier

the combined suites are created by merging the best reduced MC/DC suite with each

of the three reduced UFC suites. For this reason we compare the fault finding ability

of the combined suites only against the best MC/DC suite rather than all the reduced

MC/DC suites. We ran every test suite against every set of mutants, and recorded the

percentage of mutants caught. For each case example, this yielded nine observations

each for MC/DC, UFC and the combined test suites. We average the percentage

of mutants caught across the mutant sets for each case example and each kind of

test suite. This yields three averages, one each for MC/DC, UFC, and combined

test suites as summarized in Table 5.1. Also, for each case example we identify the

most effective MC/DC suite (among the generated three reduced MC/DC suites) and

calculate average fault finding across the mutant sets. The ‘Best MC/DC’ column

in the table represents these averaged observations. Additionally Table 5.1 also gives

relative improvement in average fault finding of UFC suites over MC/DC test suites,

and combined suites over the best MC/DC suite. Note that some of the numbers in

the relative improvement column in Table 5.1 are negative. This implies that the test

suite did not yield an improvement, instead did worse than the MC/DC test suite at

89

fault finding. For instance, for the DWM 1 model the MC/DC test suites provide an

average fault finding of 84.6% and the UFC suites provide an average fault finding of

82.7%, and thus the relative improvement in fault finding for UFC suites is negative

(= -2.2%) with respect to MC/DC suites. On the other hand, for the DWM 1 system,

the combined suites provide better fault finding (an average of 91.5%) than the best

MC/DC suite (85.8%), giving a positive relative improvement of 6.6%.

Avg. Avg. Rel. Best Avg. Rel.

MC/DC UFC Improv. MC/DC Combined Improv.

DWM 1 84.6% 82.7% -2.2% 85.8% 91.5% 6.6 %

DWM 2 90.6% 16.7% -81.6% 90.6% 90.6% 0.0%

Latctl 85.1% 88.7% 4.2% 85.4% 94.6% 10.8%

Vertmax 86.0% 68.6% -20.2% 86.0% 89.7% 4.3%

Table 5.1: Average percentage of mutants caught by test suites and relative improve-

ment over MC/DC.

The complete set of 27 fault finding observations for each case example is presented

in Table 5.2. Note that in the table, MU1, MU2, MU3 denote the three mutant

sets; M 1, M 2, M 3 refer to the reduced MC/DC suites; U 1, U 2, U 3 to reduced

UFC suites; and finally C 1, C 2, C 3 to the combined UFC and MC/DC suites. The

best MC/DC suite (used to create combined suites) can be identified by comparing

the fault finding of M 1,M 2, and M 3 across the mutant sets. Thus from the

results in Table 5.2 we find for the DWM 1 system, the best MC/DC test suite is

M 3. For DWM 2 and Vertmax Batch systems, all three reduced MC/DC suites are

equally effective so any of them can be used for creating the combined suites. We

randomly selected M 1 for DWM 2 and M 3 for Vertmax Batch system. Finally, for

the Latctl Batch system, M 1 is the most effective.

90

DWM 1

M 1 M 2 M 3 U 1 U 2 U 3 C 1 C 2 C 3

MU1 82.7% 81.2% 84.3% 79.2% 79.7% 76.1% 88.3% 89.3% 88.8%

MU2 83.8% 83.8% 86.3% 83.8% 82.7% 81.2% 91.4% 91.9% 91.4%

MU3 86.3% 86.3% 86.8% 87.3% 87.8% 86.8% 93.9% 94.4% 94.4%

Size 73 76 77 463 469 468 540 546 545

DWM 2

M 1 M 2 M 3 U 1 U 2 U 3 C 1 C 2 C 3

MU1 91.4% 91.4% 91.4% 17.2% 15.2% 16.7% 91.4% 91.4% 91.4%

MU2 91.4% 91.4% 91.4% 16.7% 14.6% 16.7% 91.4% 91.4% 91.4%

MU3 88.9% 88.9% 88.9% 18.7% 16.2% 18.7% 88.9% 88.9% 88.9%

Size 452 452 448 33 32 31 485 484 483

Latctl Batch

M 1 M 2 M 3 U 1 U 2 U 3 C 1 C 2 C 3

MU1 85.2% 84.2% 84.7% 89.3% 87.8% 89.8% 94.4% 92.9% 91.8%

MU2 85.7% 85.7% 85.2% 89.3% 89.3% 89.8% 96.4% 95.9% 95.9%

MU3 85.2% 84.7% 85.2% 88.8% 85.2% 88.8% 94.9% 93.9% 94.9%

Size 73 71 73 50 49 53 123 122 126

Vertmax Batch

M 1 M 2 M 3 U 1 U 2 U 3 C 1 C 2 C 3

MU1 83.8% 83.8% 83.8% 67.5% 69.5% 66.0% 88.8% 88.8% 88.8%

MU2 81.3% 81.3% 81.3% 71.1% 71.1% 71.6% 91.9% 90.4% 90.4%

MU3 88.9% 88.9% 88.9% 64.5% 66.0% 70.1% 87.3% 86.3% 88.3%

Size 301 299 297 89 79 88 386 376 385

Table 5.2: Complete results for all case examples.

91

From the results in Tables 5.1 and 5.2, it is evident that for all case examples,

except the Latctl Batch system, MC/DC test suites outperform the UFC suites in

fault finding. The degree to which MC/DC suites are better, however, varies by a

vast range. The maximum difference is on DWM 2, where MC/DC suites provide

an average fault finding of 90.6% in contrast to 16.7% provided by UFC suites. The

minimum difference is on DWM 1 where MC/DC provides an average fault finding of

84.6% versus 82.7% provided by UFC suites. The combined suites on the other hand

outperform the MC/DC suites. The relative improvement provided by the combined

suites however spans a much smaller range (0 - 10.8%). In other words, the number of

different faults revealed by the UFC suites as compared to the best MC/DC suite is

in the range of 0− 10.8% of the mutants seeded. The combined suites provide better

fault finding than the best MC/DC suite on three of the four case examples. On the

DWM 2 system the combined suites yield no improvement. A detailed discussion of

the implication of these results is presented in Section 5.3.

5.2.1 Statistical Analyses

In this section, we statistically analyze the results in Tables 5.1 and 5.2 to determine

if the hypotheses, H1 and H2, stated previously in the introduction of this chapter

are supported.

To evaluate H1 and H2, we formulate our respective null hypotheses H01 and H02

as follows:

H01: A test suite generated to provide requirements UFC coverage will find the

same number of faults as a test suite generated to provide MC/DC coverage

over the model.

H02: A test suite generated to provide both requirements UFC coverage and

92

MC/DC over the model will reveal the same number of faults as a test suite

generated to provide only MC/DC over the model.

To accept H2, we must reject H02. Rejecting H02 implies that the data for the

combined test suite and MC/DC suite come from different populations. In other

words, this implies that either the combined suites have more fault finding than the

MC/DC suites or vice versa. However, the combined suite includes the MC/DC

suite and can therefore never have lesser fault finding than the MC/DC suite. This

implies that H2 is supported when H02 is rejected. On the other hand, rejecting H01

does not necessarily imply H1 is supported, as this implies that the UFC suites have

different fault finding ability than the MC/DC suites, not necessarily better fault

finding ability. To accept H1 after rejecting H01, we examine the data in the table

and determine if the UFC suites have greater fault finding than the MC/DC suite.

If so, we accept H1. If the data indicates that UFC suites instead have lesser fault

finding than the MC/DC suites, we reject H1.

Our experimental observations are drawn from an unknown distribution, and we

therefore cannot reasonably fit our data to a theoretical probability distribution. To

evaluate H01 and H02 without any assumptions on the distribution of our data, we use

the permutation test, a non-parametric test with no distribution assumptions. When

performing a permutation test, a reference distribution is obtained by calculating all

possible permutations of the observations [25, 46]. To perform the permutation test,

we restate our null hypotheses as:

H01: The data points for percentage of mutants caught using the UFC and MC/DC

test suites come from the same population.

H02: The data points for percentage of mutants caught using the MC/DC and

combined UFC + MC/DC test suites come from the same population.

93

We evaluate the two hypotheses for each of the case examples. The procedure for

permutation test of each hypothesis is as follows. Data is partitioned into two groups:

A and B. Null hypothesis states that data in groups A and B come from the same

population. We calculate the test statistic S as the absolute value of the difference

in the means of group A and B:

S = | A−B |

We calculate Number of Permutations as the number of ways of grouping all

the observations in A and B into two sets. We then let COUNT equal the number

of permutations of A and B in which the test statistic is greater than S. Finally,

P − V alue is calculated as:

P − V alue = COUNT / Number of Permutations

For each case example, if P −V alue is less than the α value of 0.05 then we reject

the null hypothesis with significance level α.

The null hypotheses H01 and H02 are evaluated using different groups of data.

For H01, data for each case example in Table 5.2 is partitioned into two groups with

nine observations each: % of faults caught by UFC test suites (group A – columns

U 1, U 2, U 3 in the table), and % of faults caught by MC/DC test suites (group B

– columns M 1, M 2, M 3). We calculate the Number of Permutations as:

Number of Permutations =

(
18

9

)
= 48620

For H02, data for each case example in Table 5.2 is partitioned into two groups,

one with nine observations and the other with three observations: % of faults caught

by combined UFC+MC/DC test suites (group A – columns C 1, C 2, C 3), and %

of faults caught by the best MC/DC suite (group B – M 1 column for DWM 2 and

94

Latctl Batch systems, and M 3 column for DWM 1 and Vertmax Batch systems).

We calculate the Number of Permutations as:

Number of Permutations =

(
12

9

)
= 220

We then determine the p-value for each hypothesis using the procedure described

previously. Table 5.3 lists the p-values for both null hypotheses (H01 and H02) and

states if the corresponding original hypotheses (H1 and H2) are supported for each

case example. As mentioned earlier, for each case example, H1 is supported if H01 is

rejected with significance level α = 0.05 and all the UFC suites (columns U 1, U 2,

U 3 in Table 5.2) have better fault finding than the MCDC suites (columns M 1,

M 2, M 3), and H2 is supported if we reject H02.

P-Value Result

H01 H02 H1 H2

DWM 1 0.24 0.004 Unsupported Supported

DWM 2 0.00004 1.0 Unsupported Unsupported

Latctl Batch 0.0002 0.004 Supported Supported

Vertmax Batch 0.00004 0.027 Unsupported Supported

Table 5.3: Hypotheses Evaluation for different case examples

Given the p-values in Table 5.3 and the fault finding data in Table 5.2 we exam-

ine why the original hypotheses (H1 and H2) are supported/rejected for each case

example. For the DWM 1 system, H01 is accepted (since p-value is greater than

α value), and we therefore reject H1. For the other three systems, H01 is rejected

but the UFC suites outperform the MC/DC suites only on the Latctl Batch system.

For the DWM 2 and Vertmax Batch systems, MC/DC suites always outperforms the

UFC test suites. Thus, H1 is supported on the Latctl Batch system and rejected

95

on the DWM 2 and Vertmax Batch systems. On the other hand, H02 is rejected

(p-value less than the α value) on all but the DWM 2 system. This implies that H2

is supported on all except the DWM 2 system. Thus, we find that with statistical

significance level α = 0.05 hypothesis H1 is supported only on one case example, and

hypothesis H2 is supported on three of the four case examples.

5.2.2 Threats to Validity

While our results are statistically significant, they are derived from a small set of

examples, which poses a threat to the generalization of the results.

Our fault seeding method seeds one fault per mutant. In practice, implementations

are likely to have more than one fault. However, previous studies have shown that

mutation testing in which one fault is seeded per mutant draws valid conclusions of

fault finding ability [4].

Additionally, all fault seeding methods have an inherent weakness. It is difficult

to determine the exact fault classes and ensure that seeded faults are representative

of faults that occur in practical situations. In our experiment, we assume a uniform

ratio of faults across fault classes. This may not reflect the fault distribution in

practice. Finally, our fault seeding method does not ensure that seeded faults result

in mutants that are semantically different from the oracle implementation. Ideally,

we would eliminate mutants that are semantically equivalent, however, identifying

such mutants is infeasible in practice.

5.3 Discussion

In this section we analyze and discuss the implications of the results in Tables 5.1

and 5.2. We present the discussion in the context of Hypotheses 1 and 2 stated in

the introduction of this Chapter.

96

5.3.1 Analysis - Hypothesis 1

Avg. MC/DC Achieved Achievable Rel. Diff.

by UFC suites MC/DC

DWM 1 78.2% 92.5% 15.5%

DWM 2 25.8% 100% 74.2%

Latctl Batch 88.6% 98.0% 9.6%

Vertmax Batch 80.9% 99.8% 18.9%

Table 5.4: MC/DC achieved by the reduced UFC suites over the system model

As seen from Table 5.1, on all but one of the industrial systems, test suites gener-

ated for requirements UFC coverage have lower fault finding than test suites providing

MC/DC over the system model. Statistical analysis revealed that hypothesis 1 stating

“test suites providing requirements UFC coverage have better fault finding than test

suites providing MC/DC over the model” was supported only on the Latctl Batch

system and rejected on all the other systems at the 5% significance level. We believe

this may be because of one or both of the following reasons, (1) The UFC metric used

for requirements coverage is not sufficiently rigorous and we thus have an inadequate

set of requirements-based tests, and (2) Requirements are not sufficiently defined with

respect to the system model. Thus, test suites providing requirements coverage will

be ineffective at revealing faults in the model since there are behaviors in the model

not specified in the requirements.

To assess the rigor of the UFC metric and the quality of the requirements with

regard to behaviors covered in the system model, we measured MC/DC achieved

by the reduced UFC suites over the system model. The results are summarized in

Table 5.4. We found that for all the case examples, UFC test suites provide less than

Achievable MC/DC over the system model. Thus, faults seeded in these uncovered

97

portions of the model cannot be revealed by the UFC suites. The extent to which the

model is covered is an indicator of the effectiveness of the UFC metric and the quality

of the requirements set. On the DWM 1, Vertmax Batch, and Latctl Batch systems

the UFC suites do reasonably well, achieving an average MC/DC of 78.2%, 88.6%,

and 80.9% respectively as compared to 92.5%, 98% and 99.8% achievable MC/DC.

Note, however, that relative differences in MC/DC need not correspond exactly to

relative differences in fault finding between the UFC and MC/DC suites (as seen in

our examples). In addition to coverage, fault finding is also highly influenced by the

nature and number of faults seeded in covered and uncovered portions of the model.

The relation between coverage and fault finding is not the focus of this report and

we hope to investigate this in our future work.

On the DWM 2 system, the UFC suites do poorly in both fault finding and

MC/DC achieved. The UFC suites only achieve an average of 25.8% MC/DC over

the model when compared to an achievable MC/DC of 100%. Correspondingly, the

UFC suites have very poor fault finding (average of 16.7%) when compared to the

MC/DC suites (average of 90.6%), since faults seeded in the uncovered portions of

the model cannot be revealed by the UFC suites. The terrible fault finding and

MC/DC achieved by the UFC suites on the DWM 2 system was surprising since we

knew the system had a good set of requirements. To gain better understanding we

took a closer look at the requirements set and the UFC obligations generated from

them. We found that many of the requirements were structured similar to the sample

requirement (formalized as an LTL property in the SMV [55] language) below,

LTLSPEC G(var_a > (

case

foo : 0 ;

bar : 1 ;

98

esac +

case

baz : 2 ;

bpr : 3 ;

esac

));

Informally, the sample requirement states that var a is always greater than the

sum of the outcomes of the two case expressions. When we perform UFC for the

above requirement, it would result in obligations for the following expressions:

1. Relational expression within the globally operator (G)

2. Atomic condition foo within the first case expression

3. Atomic condition bar within the first case expression

4. Atomic condition baz within the second case expression

5. Atomic condition bpr within the second case expression

The above requirement may be restructured (to express the same behavior) so that

the sum of two case expressions is expressed as a single case expression as shown:

LTLSPEC G(var_a > (

case

foo & baz : 0 + 2 ;

foo & bpr : 0 + 3 ;

bar & baz : 1 + 2 ;

bar & bpr : 1 + 3 ;

esac

));

99

Achieving UFC coverage over this restructured requirement will involve more

obligations than before since the boolean conditions in the case expression are more

complex. UFC would result in obligations for the following expressions in this re-

structured requirement:

1. Relational expression within the globally operator (G)

2. Complex condition foo & baz within the case expression

3. Complex condition foo & bpr within the case expression

4. Complex condition bar & baz within the case expression

5. Complex condition bar & bpr within the case expression

Thus, the structure of the requirements has a significant impact on the number

and rigor of UFC obligations and hence the size of the test suite providing UFC

coverage. In our experiment, we did not restructure requirements similar to the sam-

ple requirement discussed and instead retained the original structure. Therefore, the

UFC obligations generated were fewer and far less rigorous. We believe this is the

primary reason for the poor performance (both fault finding and MC/DC achieved)

of the UFC suites for the DWM 2 system. The experience with the DWM 2 system

suggests that even with a good set of requirements, rigorous requirements coverage

metrics, such as the UFC metric, can be easily cheated since they are highly sensitive

to the structure of the requirements. The issue here is similar to the sensitivity of

the MC/DC metric to structure of the implementation observed in [62]. MC/DC was

found to be significantly less effective when used over an implementation structure

with intermediate variables and non inlined function calls as opposed to an imple-

mentation with inline expanded intermediate variables and function calls. Thus, as

with all structural coverage metrics, we must be aware that the structure of the object

used in measurement plays an important role in the effectiveness of the metrics.

100

To summarize, we find that the fault finding effectiveness of test suites providing

requirements UFC coverage is heavily dependent on the nature and completeness of

the requirements. Additionally, the rigor and robustness (with respect to require-

ments structure) of the requirements coverage metric used plays an important role in

the effectiveness of the generated test suites. Thus, even with a good set of require-

ments, test suites providing requirements structural coverage may be ineffective if

the coverage metric can be cheated. In our experiment, the UFC metric gets cheated

when requirements are structured to hide the complexity of conditions on the DWM 2

system. Based on these observations and our results, we do not recommend using

requirements coverage in place of model coverage as a measure of adequacy for con-

formance test suites.

5.3.2 Analysis - Hypothesis 2

As seen in Tables 5.1 and 5.2, for three of the four industrial case examples the

combined UFC and MC/DC suites outperform the MC/DC suite in fault finding.

For the DWM 2 system, however, the combined suites yield no improvement in fault

finding over the MC/DC suite. Statistical analysis on the data in Table 5.2 revealed

that Hypothesis 2 is supported with a significance level of 5% for the DWM 1, Vert-

max Batch, Latctl Batch systems, and rejected for the DWM 2 system since the

combined suites yield no improvement.

For the the DWM 1, Vertmax Batch, Latctl Batch systems, the combined UFC

and MC/DC suites yielded an average fault finding improvement in the range of

(4.3% - 10.8%) over the best MC/DC suite. The relative improvement implies that

the UFC suites find a considerable number of faults not revealed by the best MC/DC

suite.

To confirm that the improvement seen in DWM 1, Vertmax Batch, Latctl Batch

101

Avg. UFC Achieved Achievable Rel. Diff.

by MC/DC suites UFC

DWM 1 28.3% 96.9% 70.8%

DWM 2 59.7% 64.0% 6.7%

Latctl Batch 94.7% 99.5% 4.8%

Vertmax Batch 97.4% 99.0% 1.6%

Table 5.5: UFC achieved by the reduced MC/DC suites over the system model

systems is a result of combining the MC/DC metric with the UFC metric and not

solely because of the increased number of test cases in the combined suites, we decided

to measure the UFC coverage achieved over the requirements by the MC/DC suite.

The results are summarized in Table 5.5. To understand the implications of the results

in the table, consider the following two situations. If the MC/DC suite provides 100%

achievable UFC over the requirements, it implies that the combined MC/DC + UFC

coverage is satisfied by simply using the MC/DC suite instead of the combined suites.

Under such circumstances, the fault finding improvement observed on combining the

test suites would be solely due to the increased number of test cases. On the other

hand, if the MC/DC suite provides less than achievable UFC over the requirements, it

implies that there are scenarios/behaviors specified by the requirements that are not

covered by the MC/DC suite but covered by the UFC suite. Thus, the combination

may have proved more effective because of these additional covered scenarios and not

simply because of increased test cases. We now take a closer look at the results in

Table 5.5 to see which of these situations occurred. We found that in all three systems

(Latctl Batch, Vertmax Batch, and DWM 1), the MC/DC suites provided less than

achievable UFC coverage over the requirements. This indicates that the UFC suites

102

cover several behaviors specified in the requirements that are not covered by the

MC/DC suite. We postulate that these additional covered behaviors contribute to

the improved fault finding observed with the combined suites on these systems.

For the DWM 2 system, the combined suites yield no improvement in fault find-

ing over the MC/DC suite, implying that the faults revealed by the UFC suites are

a subset of the faults revealed by the MC/DC suite. The DWM 2 system consists

almost entirely of complex Boolean mode logic, and the MC/DC metric is extremely

effective for such kind of systems. There is thus a distinct possibility that the MC/DC

suite reveals all the seeded faults (excluding semantically equivalent faults that can

never be revealed). This belief was strengthened when we ran the full rather than

reduced MC/DC and UFC suites and measured fault finding. We found that even

with the full test suites, that have dramatically larger number of test cases, the com-

bination did not yield any improvement in the number of faults revealed. Therefore,

we believe that there is a strong possibility the MC/DC suites revealed all except the

semantically equivalent faults on the DWM 2 system. Under such a circumstance,

no test suite complementing the MC/DC suite can improve the fault finding thereby

always rejecting Hypothesis 2. Such occurrences are anomalous and we discount them

from our analysis.

To summarize, we found that for three of the four case examples, the combined

test suite providing both requirements UFC coverage and MC/DC over the model

is significantly more effective than a test suite solely providing MC/DC over the

model. For the DWM 2 system that did not support this, we strongly believe that

the MC/DC suites revealed all possible faults making improvement in fault finding

on combining with UFC suites impossible. We disregard this abnormal occurrence to

conclude that combined test suites have better fault finding than the MC/DC suites

for all the systems. Given our results, we believe using requirements coverage metrics,

103

such as UFC, in combination with model coverage metrics, such as MC/DC, yields a

significantly stronger adequacy measure than simply covering the model.

Note that for all the case examples, all three kinds of test suites—MC/DC, UFC,

and combined—never yield 100% fault finding. This is because some of the seeded

faults may result in mutant implementations that are semantically equivalent to the

correct implementation (i.e., faults that cannot result in any observable failure).

Thus, in each of our case examples, although we seed 200 faults giving 200 mutated

implementations, it may be that less than 200 of the mutations are semantically

different from the correct implementation and can therefore be detected. This is a

common problem in fault seeding experiments [4, 56]. In industrial size examples

it is extraordinarily expensive and time consuming, or—in most cases—infeasible to

identify mutations that are semantically equivalent to the correct implementation

and exclude them from consideration. Therefore, the fault finding percentage that

we give in our experiment results is a conservative estimate, and we expect the actual

fault finding for the test suites to be higher if we were to exclude the semantically

equivalent mutations. Nevertheless, this issue will not affect our conclusions since we

only judge based on relative fault finding rather than absolute fault finding.

5.4 Summary

Presently in model-based development, adequacy of conformance test suites is in-

ferred by measuring structural coverage achieved over the model. In this chapter

we investigated the use of requirements coverage as an adequacy measure for confor-

mance testing. Our empirical study revealed that on three of the four industrial case

examples, our hypothesis stating “Requirements coverage (UFC) is more effective

than model coverage (MC/DC) when used as an adequacy measure for conformance

test suites” was rejected at 5% statistical significance level. Nevertheless, we found

104

that requirements coverage is useful when used in combination with model coverage

to measure adequacy of conformance test suites. Our hypothesis stating that “test

suites providing both requirements UFC coverage and MC/DC over the model is more

effective than test suites providing only MC/DC over the model” was supported at

5% significance level on three of the four case examples. The relative improvement

in fault finding yielded by the combined suites over the MC/DC suites was in the

range of 4.3% − 10.8%. The system that did not support the hypothesis was an

outlier where we firmly believe the MC/DC suite found all possible faults, making

improvement with the combined suites impossible. Based on our results, we believe

that the effectiveness of adequacy measures based solely on model coverage can cer-

tainly be improved. Combining existing metrics for model coverage and requirements

coverage investigated in this report may be one possible way of accomplishing this.

There may be other approaches, for instance, defining a new metric that accounts for

both requirements and model coverage. Presently, however, in the absence of such a

metric, we highly recommend combining existing metrics for rigorous model coverage

and requirements coverage to measure adequacy of conformance test suites.

Another observation gained in our experiment relates to the sensitivity of require-

ments coverage metrics such as UFC to the structure of the requirements. Test suites

providing requirements coverage may be ineffective even with an excellent set of re-

quirements. This can occur when structure of the formalized requirements effectively

“cheat” the requirements coverage metric. The UFC metric in our experiment was

cheated when requirements were structured to hide the complexity of conditions in

them. In our future work, we hope to define requirements coverage metrics that are

more robust to the structure of the requirements.

Chapter 6

Related Work

We present related work as two sections; Section 6.1 describes work related to defin-

ing requirements coverage metrics, their use as a test adequacy metric, and as a

means for measuring requirements completeness; Section 6.2 describes work related

to requirements-based testing, i.e. , deriving test cases from requirements.

6.1 Related Work – Requirements Coverage

The work in this dissertation is related to work assessing the completeness and cor-

rectness of formulae in temporal logics. The most similar work involves vacuity check-

ing of temporal logic formulas [7, 45, 60]. Intuitively, a model M vacuously satisfies

property f if a subformula φ of f is not necessary to prove whether or not f is true.

Formally, a formula is vacuous if we can replace φ by any arbitrary formula ψ in f

without affecting the validity of f :

M |= f ≡ M |= f [φ ← ψ]

Beer et al. [7] show it is possible to detect whether a formula contains vacuity by

checking whether each of its atomic subformulas can be replaced by ‘true’ (if the

subformula is of positive polarity)or ‘false’ (if the subformula is of negative poalrity)

without affecting the validity of the original formula (the choice also depends on

the structure of the formula and whether it is satisfied or not). To place it in our

terms, this check determines whether each atomic condition independently affects the

105

106

formula in question. Using this notion of vacuity, they classify the formulas as either

non-valid, vacuously valid, or non-vacuously valid. Traditionally, a formula is shown

to be valid with a proof, and a formula that is non-valid is demonstrated by means

of a counter-example using a standard model checker. Beer et al. show that a valid

formula is non-vacuous by means of an interesting witness. An interesting witness is

similar to a counter-example but proves non-vacuity, while a counter-example proves

non-validity. They have formalized the notions of vacuity, and interesting witness,

and show how to detect vacuity and generate interesting witness in temporal model

checking.

Their approach in generating witness counterexamples for each atomic condition

to prove non-vacuity is similar to the trap properties for UFC that are described in

Section 3.2. Nevertheless, the goal of this work is quite different than ours. The

purpose of performing vacuity detection on a formula over a model is to see whether

or not a valid formula can be replaced by a stronger valid formula. This stronger

formula may indicate problems within either the formula or the model. Our work

is concerned with adequately testing requirements, potentially in the absence of a

model. The complete vacuity check defined in [7] is one possible metric for assessing

the adequacy of a test set. It is simpler and more rigorous metric than our UFC metric

when used for test generation. In future work, we plan to reformulate the metric

in [7] to support ‘partial’ weakening (as described in Section 3.1.4) and investigate

its effectiveness.

Vacuity detection defined in [45] is an extension of the vacuity detection and

interesting witness generation performed by Beer et al. [7]. Beer et al. identify a

subset of ACTL called w-ACTL for which they perform vacuity detection, whereas

in this paper, they generalize it to specifications of CTL∗. They also give a more

rigorous definition of vacuity, checking whether all subformulas of the specification

107

affect the truth value in the system. An efficient implementation of the algorithm

proposed in [45] is presented by Purandare and Somenzi [60] for all CTL formulae.

In our case study we examined how well coverage of requirements mapped to cov-

erage of an implementation model. This is similar to recent research assessing the

completeness of LTL properties over models. Chockler et al. propose coverage metrics

for formal verification based on coverage metrics used in hardware simulation [19].

Mutations, capturing the different metrics of coverage, are applied to a given design

and the resultant mutant designs are examined with respect to a given specification.

Each mutation was generated to check whether a particular element of the design

was essential for the satisfaction of the specification. Mutations correspond to omis-

sions and replacements of small elements of the design. Two coverage checks were

performed on the mutant design: falsity coverage (does the mutant still satisfy the

specification?), and vacuity coverage (if the mutant design still satisfies the specifica-

tion, does it satisfy it vacuously?). The following coverage metrics were defined for

model checking based on the metrics from simulation-based verification:

Syntactic coverage: Coverage is measured over the syntactic representation of the

design. Code coverage, circuit coverage, and hit count were the syntactic cov-

erage metrics defined.

Semantic coverage: Strengthening of existing semantic mutation coverage metrics

were proposed. In addition to satisfaction of the specification, they checked

vacuous satisfaction as well on a mutant design. Finite State Machine (FSM)

coverage (state coverage and path coverage), and assertion coverage were the

semantic coverage measures defined.

Symbolic algorithms to compute the different types of coverage were proposed.

In [17, 18], Chockler et al. propose additional metrics to determine whether all parts

108

of a model are covered by requirements. They consider specifications given as LTL

formulas, or by automata on infinite words. They define the notions of node, struc-

ture, and tree coverage on an infinite tree tF obtained by unwinding the FSM F of

the design. Node coverage of a state w corresponds to flipping the value of an output

variable q in one occurrence of w in the infinite tree. Structure coverage corresponds

to flipping the value of q in all the occurrences of w in the tree. Tree coverage gener-

alizes node and structure coverage and corresponds to flipping the value of q in some

occurrences of w in the tree. They describe two symbolic algorithms to compute

node, structure, and tree coverage (with minor changes to capture the different types

of coverage). The first algorithm is built on top of automata-based model-checking al-

gorithms. The second algorithm reduces the coverage problem to the model-checking

problem. Our goal is to create a coverage metric that when provided a robust set

of formal requirements and a test suite satisfying the metric will yield a high level

of coverage of an implementation using standard coverage metrics. Chockler’s work

provides a more direct (and potentially accurate) assessment of the adequacy of the

requirements. The process of building the set of mutant specifications and re-checking

the properties is very expensive, however, and may not be feasible in practice.

Hoskote at. al [42] also defined a coverage metric to estimate the completeness of a

set of properties against a design. The metric identifies the portion of the state space

of the design that is covered by the properties. In each property, the authors identify

a signal or proposition as the observed signal in that property. The coverage metric

measures the coverage of properties with respect to this observed signal. According

to their definition, a covered set of states for an observed signal is the set of reachable

states in which the values of the observed signal must be checked to prove satisfaction

of the property. The authors present a recursive algorithm to compute coverage for

properties specified over a subset of ACTL. The coverage estimator is also capable of

109

generating traces to specific uncovered states.

As Jayakumar et al. stated [43], vacuity detection discussed in [7] and coverage

estimation are complementary techniques. Vacuity detection is concerned with im-

proving individual properties, while the latter is concerned with augmenting a set of

properties so that, collectively, they represent a better specification. In the case stud-

ies conducted in [43], the authors found that detecting vacuity in properties before

estimating their coverage resulted in better coverage and less work.

Unlike the requirements coverage metrics we proposed, the metric presented in [43]

is based on the design model. Thus, it is capable of identifying functionality in the

model not addressed in the properties, but it cannot point out missing functionality

in the model. Thus, it is possible to achieve 100% coverage and still have an incom-

plete model. Secondly, the coverage metric is based on states, and not paths. The

requirements coverage metric that we presented measures coverage over execution

paths rather than states. Ultimately, any testing approach is interested in actual

executions of the model over time and therefore coverage over execution paths. A

state may be reached via several execution paths, and any of those paths will cover

that state. Nevertheless, the behavior along that execution path is not verified.

Lakehal et al. [48] defined structural coverage criteria for LUSTRE/SCADE spec-

ifications. Lustre is a data-flow synchronous language, that describes the behavior of

systems through the use of nodes, modules that are computed in a dataflow order to

describe the behavior of a system. The paper proposes structural coverage criteria for

specifications in LUSTRE/SCADE. Lustre specifications can be represented as oper-

ator networks, a labeled graph connecting operators by means of directed edges. The

authors propose three coverage criteria of varying rigor based on paths in the operator

networks. Basic Coverage (BC) requires every path of the program to be exercised

once. Elementary Conditions Coverage (ECC) requires paths with a boolean input

110

to be exercised with both logical values of the input. Multiple Condition Coverage

(MCC) requires both boolean inputs and internal edges to be set to all logical values.

The MCC criterion is close to the constraints imposed by MC/DC.

The authors defined the structural coverage criteria with the aim of measuring

coverage over designs modeled in Lustre/SCADE. Nevertheless, as observed in the

paper, Lustre can express temporal properties and thus it is possible to specify the

required properties of the system also in Lustre. Thus, coverage criteria defined in this

paper can also be potentially used as requirements coverage criteria. In our work,

we defined requirements coverage metrics over requirements formalized as Linear

Temporal Logic properties. Nevertheless, as we had mentioned earlier, the notion of

requirements coverage is not restricted to requirements formalized as LTL properties,

and can be applied to any other formal notation. Lustre is one such formal notation.

The work in [48] is thus very relevant to requirements coverage, and the metrics

defined can be used directly to measure coverage over requirements formalized as

Lustre specifications.

In the context of conformance testing, we conducted empirical investigations that

indicated combining structural coverage metrics over the implementation with re-

quirements coverage metrics served as a more effective test adequacy measure than

simply using structural coverage metrics over the implementation. Briand et al. found

similar results in their empirical study [14], though in the context of state-based test-

ing for complex component models in object-oriented software. Combining a state-

based testing technique for classes or class clusters modeled with statecharts [31],

with a black-box testing technique, category partition testing, proved significantly

more effective in fault detection.

Our investigation differs from the one performed by Briand et al. in several re-

spects. We generate test suites providing requirements UFC coverage for black-box

111

testing. UFC test suites exercise execution paths in the model as opposed to states

exercised by category partition testing. Additionally, all the test suites used in our

study are automatically generated to mirror recent practices in model-based develop-

ment where test suite generation tools are gaining rapid popularity. The investigation

conducted by Briand et al. uses test cases manually generated by graduate students

in a laboratory setting. Also, our domain of concern is slightly different. All the

examples we considered are industry sized systems from the critical systems domain.

Briand et al. use C++ and Java classes from a Domain Name Server and an academic

software system in their experiments.

Reasoning with Temporal Logic on Truncated Paths

Eisner et al. [23] define semantics for reasoning with LTL on finite truncated paths.

This work is very useful in our definition of coverage measurement of finite test

case over LTL properties. The paper defines three different semantics for temporal

operators: weak, neutral, and strong. The traditional LTL semantics defined over

finite paths by Manna et al. [49] is the neutral view. The weak semantics do not

require eventualities (F and the right side of U) to hold along a finite path, and

so describe prefixes of paths that may satisfy the formula as a whole. The strong

semantics always fail on G operators, and therefore disallow finite paths if there is any

doubt as to whether the stated formula is satisfied. The strong and weak semantics

are a coupled dual pair because the negation operator switches between them. The

semantics defined in this paper are provided as variant re-formulations of the neutral

semantics in [49]. In our definition of UFC coverage, we provide two views: a neutral

view that uses the semantics of LTL over finite paths defined by Manna et al. [49],

and the weakened view which uses a combination of the neutral and weak semantics

presented by Eisner et al.

112

Runtime Verification Vs Requirements Coverage

We believe the concept of runtime monitoring/verification will be useful in measur-

ing requirements coverage. In runtime monitoring/verfication a software component

monitors the execution of a program and check its conformity with a requirement

specification. Therefore, we can use obligations for the desired requirements cover-

age criteria to monitor the execution traces through the system and coverage can be

computed based on the number of monitor formulas that were satisfied. Goldberg et

al. [28] have developed a language, called EAGLE, that allows behavioral properties

to be expressed over time. Properties in LTL can be embedded as rules in EAGLE.

The authors have developed a framework that allows temporal properties expressed

in EAGLE to be monitored over a system. Thus, requirements coverage obligations

expressed in LTL can be expressed as monitors in EAGLE. The main disadvantage

in using the runtime monitoring approach to measure requirements coverage lies in

the need for a system to generate execution traces on which to monitor execution.

Thus the benefit of using requirements coverage in measuring adequacy of test suites

early in the development process without have to wait for an implementation is lost if

we use the runtime monitoring approach. Nevertheless, in situations where an imple-

mentation is available, runtime monitoring offers a viable alternative for measuring

requirements coverage.

6.2 Related Work – Requirements-Based Testing

Tan et al. [72] use the vacuity check presented in [7] to define a property coverage

metric over LTL formulas. Their coverage metric could potentially be used as a

measure of adequacy of black box test suites. However, Tan et al. use the metric as

a means of test case generation from requirements properties. They consider system

requirements formalized as LTL properties and assume that the model of the system

113

in the form of Kripke structures is available. The property coverage metric is identical

to the vacuity check presented in [7]. The property coverage criteria is defined as:

ST is a property-coverage test suite for a system Ts and an LTL property f if Ts passes

ST and ST covers every subformula

A test t covers a subformula φ of f if there is a mutation f [φ ← ψ] such that every

Kripke structure T that passes t will not satisfy the formula f [φ ← ψ]. This is

the definition of non-vacuity given by Beer et al. Using this idea, the test cases are

generated from the properties as follows:

• Each LTL property is transformed into a set of ∃LTL formulae called trapping

formula. For every subformula ψ (or for every atomic proposition as defined by

Beer et al.) of a property f , they generate a ∃LTL formula of the form:

¬ f [ψ ← (τ)]

where τ = false if ψ has positive polarity in f

and τ = true if ψ has negative polarity in f

which is a mutation of f in which ψ is replaced by true or false depending on

its polarity.

• These ∃LTL formula can be treated as trap properties and fed to the model

checker to generate witnesses as tests that satisfy the property coverage criteria.

• The infinite tests produced by the model checker is truncated to a finite test

case.

Their test truncating strategy relies on the fact that the tests generated by a model

checker are lasso-shaped. In a black-box test setting, they assume knowledge of the

upper-bound n on the number of states. To truncate the lasso-shaped tests to a finite

one in a black-box test setting, they create a finite prefix of the lasso-shaped test by

repeating the loop part of the test n times. In a white-box test setting, the finite-prefix

114

is constructed by tracking the states traversed and terminating whenever the same

state has been visited twice at the same position on the loop. This methodology of

generating acceptable black-box tests is highly impractical since most of the systems

used in practice have very large n, therefore repeating the loop part of the test n times

might not be feasible. The goal of our work in defining structural coverage metrics

based on requirements that allow us to measure the adequacy of black-box test suites

is different from theirs. They propose an approach to generate black-box test suites

that satisfy the property coverage metric and enable the testing of linear temporal

properties on the implementation. Also, Tan et al. [72] do not have any notion of

test weakening and their notion of acceptable black box tests, while rigorous, is not

practical for the reason stated previously about their test truncating strategy. In

addition, the efficacy of the proposed metric is not explored.

In [1], Abdellatif-Kaddour et al. propose an approach that uses the specification

of a property to drive the testing process. The objective of the approach is to find

a system state where the target property if violated. The proposed approach con-

structs test scenarios in a step wise fashion. Each step explores possible continuations

of “dangerous” scenarios identified at the previous step. A dangerous situation is de-

scribed as one in which the system reaches intermediate states from which property

violations may eventually occur if the system is not robust enough to recover. The

proposed approach is based on the assumption that the system will gradually evolve

towards critical failure, traversing states of dangerous situations. A random sampling

technique is used to select test sequences at each step.

This approach differs from our proposed approach in that the test case construc-

tion to detect property violations uses the specification of the system. This testing

approach is not implementation independent and will thus not be beneficial in early

bug detection. In addition, the test case construction is guided by the property

115

and is not directly derived from the property. Therefore, the constructed test cases

will not be directly traceable to the properties. The approach also requires manual

intervention especially in identifying the dangerous situations.

In [26], Fraser et al. present a notion called property relevance, that helps deter-

mine if there is a relation between a test case and a property. This notion helps

provide traceability of a test case to a property; thus, if the implementation were to

fail a test case, the property relevance notion helps determine if it violates a property

for which the test case is relevant. The authors present a method for measuring prop-

erty relevance achieved by test cases. Additionally, the authors define a criteria that

combines property relevance with structural coverage criteria over the model. They

also present an approach using model checkers to automate test case generation for

this combined criteria.

The goal of this work is similar to ours, to establish traceability between test

cases and requirement properties, and to measure coverage achieved by test cases

over requirements. Nevertheless, the property relevance criteria is too weak since it

only checks if the property is relevant to the test case. It does not determine whether

the property is exercised by test cases in several interesting ways. As mentioned earlier

and explored in [7, 45, 60], one can come up with a naive test case satisfying a property

vacuously. Such a test case will not be useful in fault finding. It is therefore important

to ensure that the test case exercises the property in interesting ways. Additionally,

to establish property relevance of a test case, the authors propose to create a model

of the test case and then model check the property on this test case model. With

potentially thousands of test cases and hundreds of requirements properties, this

approach would necessitate model checking to be performed more than a hundred

thousand times. This approach is not practical given the time needed for each model

checking effort. Also, the test case generation approach for property relevance has

116

high complexity. To create positive test cases that are property relevant using model

checkers, the approach requires the correct model to be combined with a mutated

model and test case generation performed on this combined model. Combining models

will significantly increase the difficulty of using model checkers especially on industrial

systems with large state spaces.

Winbladh et al. [47] explored manually deriving requirements-based tests using

requirements in the forms of goals and scenarios. The goal of this approach is to

validate how well the system meets the requirements, and to identify weaknesses in

the requirements early in the development process. Test scenarios are derived by

following particular paths in the scenarios. The event outputs from the system are

compared against the events in the requirements scenarios to validate the system

using the test case. When this comparison is not possible, the authors propose to

use the run time pre and post conditions in the requirements scenario to validate

the system. Goals, plans, and scenarios are used to describe stake holder goals at

different levels of abstraction. GoalML—an XML-based language—is used to express

goals and plans. Scenarios—refinements of goals—are expressed using ScenarioML.

The objective of the approach in [47] is similar to our work in requirements-

based testing, namely to validate the system using test cases derived directly for

requirements and to identify weaknesses in the requirements. As opposed to this

work, we use a more formal approach based on requirements formalized as temporal

logic properties. Additionally, we automate the generation of requirements-based

tests.

The last piece of related work that we present is the Reactis tool from Reactive

Systems Inc. It is a commercially available test case generation tool that can be used

to perform requirements-based testing. Reactis uses random and heuristic search to

try to generate test cases up to some level of structural coverage of a Simulink model.

117

Reactis defines a notion of MC/DC coverage on the model and uses this as its most

rigorous notion of structural coverage. It also supports assertions, which are synchro-

nous observers written in Simulink or StateFlow that encode requirements on the

system. The assertion checking is integrated into the structural test generation that

Reactis performs to generate model-based tests. In this process, Reactis attempts

to structurally cover the assertion (as well as the rest of the model) to the MC/DC

metric defined on Simulink models. In its current form, Reactis has several drawbacks

for performing requirements-based testing. One is that the coverage of the require-

ment is integrated into a model-based testing phase, that is, Reactis will attempt

to find MC/DC coverage of both the model and the requirement at the same time.

This means that tests are not particularly well-structured; it is difficult to determine

exactly what is being tested in a particular test case. Also, this integration precludes

separating out the requirements-based tests to determine how well the model is cov-

ered. Finally, the search algorithms used by Reactis are random and incomplete,

and on many classes of models may not find test cases showing structural coverage

of a requirement even if they exist. For this reason, Reactis is also unable to detect

vacuity in synchronous observers – it cannot determine whether a path is unreach-

able. On the other hand, Reactis is able to analyze models that involve large-domain

integers and reals that currently are beyond the capability of model checking tools.

Also, it would be straightforward to modify the algorithms in Reactis to only attempt

to provide structural coverage of assertions, rather than of the entire model. This

would allow the kinds of comparisons of requirements and model coverage that we

provided for the model checking tools. We did some preliminary experiments with the

Reactis tool for requirements-based test generation on some small models to examine

the scalability of the tool [76]. We found that the test generation facility in Reactis

does not scale linearly with the size of the model. The model coverage achieved over

118

models with a significant number of non-linear constraints over floating-point vari-

ables was also poor. However, these are preliminary results over a few models; more

experimentation is needed to generalize these results.

Chapter 7

Conclusions

In this dissertation, we introduced the notion of requirements coverage and defined

potential metrics that could be used to assess requirements coverage. There are

several potential benefits of defining requirements coverage metrics, including:

1. a direct measure of how well a black-box test suite (or validation test suite)

addresses a set of requirements,

2. an implementation independent assessment of the adequacy of a suite of black-

box tests,

3. a means for measuring the adequacy of requirements on a given implementation,

4. a formal framework that, given a model, allows for autogeneration of tests that

are immediately traceable to requirements

5. a measure of adequacy of conformance tests that test conformance of an imple-

mentation to a design

We defined three coverage metrics in Chapter 3, namely: requirements, coverage,

requirements antecedent coverage and requirements UFC coverage, at different levels

of rigor, over the structure of requirements formalized as Linear Temporal Logic

(LTL) properties. We conducted an empirical study comparing the effectiveness of

the three different metrics on a close to production model of a flight guidance system.

Chapter 3 also discusses how to adapt the definitions for the metrics so they can

119

120

measure finite test cases.

We observed in our empirical study that given a well defined set of requirements

and a rigorous testing metric such as the requirements UFC coverage, we achieve a

high level of coverage of an implementation of the requirements. We found that a

requirements-based test suite can be used to help determine the completeness of a

set of requirements with respect to an implementation, and a test suite which yields

high requirements coverage and low implementation coverage illustrates one of three

problems:

1. The implementation is incorrect. The implementation allows behaviors not

specified by the requirements. Hence a test suite that provides a high level of

requirements coverage will not cover these incorrect behaviors, thus resulting

in poor model coverage.

2. There are missing requirements. Here, the implementation under investigation

may be correct and more restrictive than the behavior defined in the original

requirement; the original requirements are simply incomplete and allow behav-

iors that should not be there. Hence we need additional requirements to restrict

these behaviors. These additional requirements necessitate the creation of more

test cases to achieve requirements coverage and will, presumably, lead to better

coverage of the implementation.

3. The criteria chosen for requirements coverage is too weak.

In Chapter 4, we proposed, implemented and evaluated an approach that auto-

mates the generation of requirements-based tests for software validation. Our ap-

proach uses requirements formalized as LTL properties. We developed a framework

that uses model checkers for auto generation of test cases. Test cases were generated

121

through an abstract model, that we call the requirements model, to provide require-

ments coverage over the properties. We evaluated our approach using three realistic

examples from Rockwell Collins Inc.: prototype model of the mode logic from a flight

guidance system, and two models related to the display window manager system.

We measured coverage achieved by the generated tests on the system model. We

found our approach was feasible with regard to time taken and number of test cases

generated for all three systems. The generated tests achieved high coverage over the

system model for the display window manager systems that had a well defined set

of requirements. On the other hand, the tests generated from the requirements of

the flight guidance system covered the system model poorly since the flight guidance

system had an incomplete set of requirements. Based on our empirical investigation

we believe our proposed approach to generating requirements-based tests provides

three benefits:

1. Saves time and effort when generating test cases from requirements.

2. Effective method for generating validation tests when the requirements are well

defined.

3. Helps in identifying missing requirements and over-constrained designs/models.

In Chapter 5, we investigated using requirements coverage metrics as an adequacy

measure for conformance testing in the model-based software development approach.

Currently, adequacy of conformance test suites is assessed by measuring coverage

achieved over the model. Adequacy measured in this manner does not give a direct

measure of how well the implementation exercises the requirements. In our investiga-

tion, we combine existing adequacy metrics measuring coverage over the model with

a requirements coverage metric that we define in this dissertation. We conducted

empirical studies that investigated the effectiveness of the combined metrics. More

122

specifically, we investigated the hypothesis stating that “test suites providing both

requirements UFC coverage and MC/DC over the model is more effective than test

suites providing only MC/DC over the model”. Effectiveness refers to the fault find-

ing capability of the generated test suites. We developed tools that allowed a large

number of mutants to be randomly and automatically seeded in the systems and ran

the test suites against the correct and mutated systems to assess fault finding effec-

tiveness. We found that our hypothesis was supported at 5% statistical significance

level on all realistic case examples. Tests providing requirements coverage found sev-

eral faults that remained undetected by tests providing model coverage (in this case

MC/DC coverage) making the combination more effective. Based on the empirical

data in our experiments, we recommend that future measures of conformance testing

adequacy consider both requirements and model coverage either by combining ex-

isting rigorous metrics, such as MC/DC and requirements UFC, or by defining new

metrics that account for both behaviors in the requirements as well as the model.

In sum, we strongly encourage the software engineering community to consider the

notion of requirements coverage as a test adequacy metric in software development.

The requirements coverage metrics defined in this dissertation only provide a start for

the rigorous exploration of metrics for requirements-based testing. We have merely

defined the notion and explored the application and feasibility of the metrics on a

few industrial examples. There are several topics that require further study:

Requirements formalization: Since formalizing high-level requirements is a rather

new concept not generally practiced, there is little experience with how to best

capture the informal requirements as formal properties. Finding a formalism

and notation that is acceptable to practicing developers, requirements engineers,

and domain experts is necessary. In our work we have used LTL, but we are

convinced that there are notations better suited to the task at hand.

123

Requirements coverage criteria: To our knowledge, there has been little other

work on defining coverage criteria for high-level software requirements. There-

fore, we do not know what coverage criteria will be useful in practice. In this

dissertation, we conducted empirical studies that investigated the feasibility and

effectiveness of requirements coverage metrics using a small number of industrial

case examples. Presently, there is lack of industrial systems with completely

formalized and a well defined set of requirements. In the future, however, given

the trend towards formal methods in domains such as critical avionics, we hope

that many more such systems will be available. We hope to conduct a more

extensive empirical investigation and determine a requirements coverage crite-

ria that (1) help us assess test suites with regard to their effectiveness in fault

finding in implementations and (2) do not require test suites of unreasonable

size.

Requirements versus model coverage: We must explore the relationship be-

tween requirements-based structural coverage and model or code-based struc-

tural coverage. Given a “good” set of requirements properties and a test suite

that provides a high level of structural coverage of the requirements, is it pos-

sible to achieve a high level of structural coverage of the formal model and

of the generated code? That is, does structural coverage at the requirements

level translate into structural coverage at the code level? Investigating the re-

lationship between requirements coverage and model coverage will help assess

whether requirements have been sufficiently defined for the system.

Test case generation method: We believe the test case generation tool or tech-

nique used can have a significant effect on the effectiveness of the generated

requirements-based test suites. We plan to evaluate the effect that different

test case generation methods have on the fault finding capability and model

124

coverage achieved by test suites that provide a high level of structural coverage

of the requirements. We plan to investigate a variety of model checkers and

their strategies in this regard.

In sum, we believe that the notion of coverage metrics for requirements-based

testing holds promise and we look forward to exploring each of these topics in future

investigations.

Appendix A

Automated Test Generation

It is possible for functional testing to be fully automated when specifications are given

in terms of some formal model. Several research efforts have developed techniques

for automatic generation of tests from the formal models. Our research group has

previously explored using model checkers to generate tests to provide structural cov-

erage of formal models [37, 66, 67, 65]. The formal modeling notations used in our

case examples and the automated test generation tools that this dissertation uses are

discussed in the following sections.

A.1 Formal Modeling Notations

SCADE : The SCADE Suite from Esterel Technologies is a mature, commercially-

supported toolset that is tailored to building reactive, safety-critical systems. In

SCADE, software is specified using a combination of hierarchical state machines and

block diagrams. The SCADE graphical notation is built on top of the kernel language

Lustre [30]. In our research, we support automated test case generation for systems

modeled in SCADE/Lustre. Lustre is a synchronous dataflow language that describes

the behavior of systems through the use of nodes, modules that are computed in a

dataflow order to describe the behavior of a system. This syntax can be graphically

represented as block diagrams that are often used to describe requirements for control

engineering. The dataflow model has several merits:

125

126

• It is a completely functional model without side effects. This feature makes

the model well-suited to formal verification and program transformation. It

also facilitates reuse, as a module will behave the same way in any context into

which it is embedded.

• It is a naturally parallel model, in which the only constraints on parallelism are

enforced by the data-dependencies between variables. This allows for parallel

implementations to be realized, either in software, or directly in hardware.

Because of the syntax of Lustre and the checks of the compiler, the composition of

these nodes always yields a complete, deterministic function. Thus, there is only

one possible interpretation of a SCADE model. The SCADE notation is natural

for describing dataflow systems, but can be difficult to use for describing control

logic. To address this deficiency, SCADE is now bundled with Esterel Studio. This

allows Esterel models to be embedded as nodes into SCADE models to describe this

functionality. SCADE is bundled with a graphical editor for Lustre specifications, a

graphical simulator, a model checker, a document generation tool, and several code

generators, one of which is qualified to DO178B level A. The code generated by

SCADE is suitable for use in safety-critical environments.

Simulink and Stateflow : Simulink [51] is a platform for multidomain simulation

and Model-Based Design for dynamic systems. It provides an interactive graphical

environment and a customizable set of block libraries, and can be extended for

specialized applications. Simulation capabilities for both discrete and continuous

systems are provided. Simulink has an enormous number of companion products

and add-ons. These include test case generators, coverage analyzers, and code

generators. The Simulink notation is natural for describing data-driven, control-law

127

Requirements

Specification Model
(RSML-e)

Test Criteria

(coverage criteria)
Model of

Environment

Model Checker
(e.g., SMV)

Instantiator

(Constraint Solver

Inverse Abstraction)

LTL/CTL

Properties
Counter

Example

Specification-Based
Test Sequence

Model

Abstraction

SE Artifact Tool Generated

Artifact

Legend:

Figure A.1: Test sequence generation overview and architecture.

functionality of systems, but can be difficult for describing mode logic. Therefore,

Simulink has a companion product, Stateflow [50], which can be used to describe

mode logic. Stateflow is an interactive design and simulation tool for event-driven

systems. Stateflow provides the language elements required to describe complex

logic in a natural, readable, and understandable form. It is tightly integrated with

MATLAB and Simulink, providing an efficient environment for designing embedded

systems that contain control, supervisory, and mode logic. Mathworks supports a

plug-in code generation tool for Simulink models called Real-Time Workshop. This

tool provides a wide range of code generation options, and has good traceability

back to the original specification, and good code style. There are also third party

code generators that have been used to autogenerate safety-critical avionics systems.

Simulink is widely used in the aerospace industry to design, simulate, and autocode

software for avionics equipment. We support automated test case generation for

systems modeled in Simulink and Stateflow.

128

A.2 Model Checkers as Automated Test Generation Tools

Model checking is an algorithmic technique for checking temporal properties of sys-

tems modeled as finite state machines. Model checkers exhaustively explore the reach-

able state space of the model searching for violations of the properties under investi-

gation [22]. Should a property violation be detected, the model checker will produce

a counter-example illustrating how this violation can take place. For instance, if the

property under consideration is a safety property (that basically specifies what should

happen or not happen), a counter-example would be a sequence of inputs that will

take the finite state model from its initial state to a state where the safety property

is violated.

A model checker can be used to find test cases by formulating a test criterion

as a verification condition for the model checker. For example, we may want to

test a transition (guarded with condition C) between states A and B in the formal

model. We can formulate a condition describing a test case testing this transition—

the sequence of inputs must take the model to state A; in state A, C must be true,

and the next state must be B. This is a property expressible in the logics used

in common model checkers, for example, the logic LTL. We can now challenge the

model checker to find a way of getting to such a state by negating the property

(saying that we assert that there is no such input sequence) and start verification.

We call such a property a trap property [27]. The model checker will now search for

a counterexample demonstrating that this trap property is, in fact, satisfiable; such

a counterexample constitutes a test case that will exercise the transition of interest.

By repeating this process for each transition in the formal model, we use the model

checker to automatically derive test sequences that will give us transition coverage of

the model. Obviously, this general approach can be used to generate tests for a wide

variety of structural coverage criteria, such as all state variables have take on every

129

value, and all decisions in the model have evaluated to both true and false. The test

generation process is outlined in Figure A.1.

The approach discussed above is not unique to our group, several research groups

are actively pursuing model checking techniques as a means for test case generation [2,

3, 27, 41, 66, 40]. We use the the NuSMV [55] model-checker in our research to

automatically generate test cases that provide requirements coverage. The NuSMV

model checker has been designed to be an open architecture for model checking,

which can be reliably used for the verification of industrial designs, as a core for

custom verification tools, as a testbed for formal verification techniques, and applied

to other research areas . Properties to be verified in NuSMV are specified using

either branching time logic (CTL) or linear time logic (LTL). A discussion on how

we use model checkers to automatically generate test cases that provide requirements

coverage is provided in Section 4.1.

Bibliography

[1] O. Abdellatif-Kaddour, P. Thvenod-Fosse, and H. Waeselynck. Property-
Oriented Testing: A Strategy for Exploring Dangerous Scenarios. In Proceedings
of the 2003 ACM symposium on Applied computing, 2003.

[2] P. E. Ammann and P. E. Black. A Specification-Based Coverage Metric to
Evaluate Test Sets. In Proceedings of the Fourth IEEE International Symposium
on High-Assurance Systems Engineering. IEEE Computer Society, November
1999.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using Model Checking to Gener-
ate Tests from Specifications. In Proceedings of the Second IEEE International
Conference on Formal Engineering Methods (ICFEM’98), pages 46–54. IEEE
Computer Society, November 1998.

[4] J.H. Andrews, L.C. Briand, and Y. Labiche. Is Mutation an Appropriate Tool
for Testing Experiments? Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 402–411, 2005.

[5] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS Interface to Simplify
Proofs for Automata Models. In User Interfaces for Theorem Provers, 1998.

[6] R. Armoni, D. Bustan, O. Kupferman, and M. Y. Vardi. Aborts vs. Resets in
Linear Temporal Logic. In TACAS, pages 65–80, November 2003.

[7] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient Detection of Vacuity
in ACTL Formulas. In Formal Methods in System Design, pages 141–162, 2001.

[8] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 2nd
edition, 1990.

[9] S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas. A Methodology for
Proving Control Systems with Lustre and PVS. In Proceedings of the Seventh
Working Conference on Dependable Computing for Critical Applications (DCCA
7), pages 89–107, San Jose, CA, January 1999. IEEE Computer Society.

[10] B. Bezier. Software Testing Techniques, 2nd Edition. Van Nostrand Reinhold,
New York, 1990.

130

131

[11] R. Bharadwaj and C. Heitmeyer. Model Checking Complete Requirements Spec-
ifications Using Abstraction. In First ACM SIGPLAN Workshop on Automatic
Analysis of Software, 1997.

[12] M. R. Blackburn, R. D. Busser, and J. S. Fontaine. Automatic Generation of
Test Vectors for SCR-style Specifications. In Proceedings of the 12th Annual
Conference on Computer Assurance, COMPASS’97, June 1997.

[13] B. Boehm. Software Engineering; R&D Trends and Defense Needs. MIT Press,
Cambridge, MA, 1979.

[14] L.C Briand, M. Di Penta, and Y. Labiche. Assessing and Improving State-
Based Class Testing: A Series of Experiments. IEEE Transactions on Software
Engineering, 30 (11), 2004.

[15] J. Callahan, F. Schneider, and S. Easterbrook. Specification-Based Testing Using
Model Checking. In Proceedings of the SPIN Workshop, August 1996.

[16] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.
Reese. Model Checking Large Software Specifications. IEEE Transactions on
Software Engineering, 24(7):498–520, July 1998.

[17] H. Chockler, O. Kupferman, R. P. Kurshan, and M. Y. Vardi. A Practical
Approach to Coverage in Model Checking. In Proceedings of the International
Conference on Computer Aided Verification (CAV01), Lecture Notes in Com-
puter Science 2102, pages 66–78. Springer-Verlag, July 2001.

[18] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage Metrics for Temporal
Logic Model Checking. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science 2031, pages 528–542. Springer-Verlag, April 2001.

[19] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage Metrics for Formal Ver-
ification. In 12th Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, volume 2860 of Lecture Notes in Computer
Science, pages 111–125. Springer-Verlag, October 2003.

[20] Y. Choi and M.P.E Heimdahl. Model Checking RSML−e Requirements. In
Proceedings of the 7th IEEE/IEICE International Symposium on High Assurance
Systems Engineering, pages 109–118, Tokyo, Japan, October 2002.

132

[21] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction.
ACM Transaction on Programming Languages and Systems, 16(5):1512–1542,
September 1994.

[22] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[23] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van Camp-
enhout. Reasoning with Temporal Logic on Truncated Paths. In Proceedings of
Computer Aided Verification (CAV), pages 27–39, 2003.

[24] A. Engels, L. M. G. Feijs, and S. Mauw. Test Generation for Intelligent Networks
Using Model Checking. In Proceedings of TACAS’97, LNCS 1217, pages 384–
398. Springer, 1997.

[25] R.A. Fisher. The Design of Experiment. New York: Hafner, 1935.

[26] G. Fraser and F. Wotawa. Property Relevant Software Testing with Model-
Checkers. In Second Workshop on Advances in Model-based Software Testing
(A-MOST’06), 2006.

[27] A. Gargantini and C. Heitmeyer. Using Model Checking to Generate Tests
from Requirements Specifications. Software Engineering Notes, 24(6):146–162,
November 1999.

[28] A. Goldberg and K. Havelund. Automated Runtime Verification with Eagle. In
MSVVEIS, 2005.

[29] O. Grumberg and D.E.Long. Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, May 1994.

[30] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Dataflow
Programming Language Lustre. Proceedings of the IEEE, 79(9):1305–1320, Sep-
tember 1991.

[31] D. Harel and R. Marelly. Come Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

[32] K.J. Hayhurst, D.S. Veerhusen, and L.K. Rierson. A Practical Tutorial on Mod-
ified Condition/Decision Coverage. Technical Report TM-2001-210876, NASA,
2001.

133

[33] M.P.E. Heimdahl and G. Devaraj. Test-suite Reduction for Model Based Tests:
Effects on Test Quality and Implications for Testing. In Proceedings of the
19th IEEE International Conference on Automated Software Engineering (ASE),
Linz, Austria, September 2004.

[34] M.P.E. Heimdahl, G. Devaraj, and R.J. Weber. Specification Test Coverage
Adequacy Criteria = Specification Test Generation Inadequacy Criteria? In
Proceedings of the Eighth IEEE International Symposium on High Assurance
Systems Engineering (HASE), Tampa, Florida, March 2004.

[35] M.P.E. Heimdahl and N.G. Leveson. Completeness and Consistency in Hierar-
chical State-Base Requirements. IEEE Transactions on Software Engineering,
22(6):363–377, June 1996.

[36] M.P.E. Heimdahl, S. Rayadurgam, and W. Visser. Specification Centered Test-
ing. In Second International Workshop on Analysis, Testing and Verification,
May 2001.

[37] M.P.E Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao. Auto-
Generating Test Sequences using Model Checkers: A Case Study. In 3rd Inter-
national Worshop on Formal Approaches to Testing of Software (FATES 2003),
2003.

[38] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR∗: A Toolset for Specify-
ing and Analyzing Requirements. In Proceedings of the Tenth Annual Conference
on Computer Assurance, COMPASS 95, 1995.

[39] B. Hetzel. The Complete Guide to Software Testing. John Wiley and Sons, 1988.

[40] H.S. Hong, S.D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data Flow Testing as
Model Checking. In Proceedings of the International Conference on Software
Engineering, Portland, Oregon, May 2003.

[41] H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A Temporal Logic Based Theory of
Test Coverage and Generation. In Proceedings of the International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS ’02),
Grenoble, France, April 2002.

[42] Y. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage Estimation for Symbolic
Model Checking. In Proceedings of the 36th ACM/IEEE conference on Design
automation, pages 300–305, 1999.

134

[43] N. Jayakumar, M. Purandare, and F. Somenzi. Dos Don’ts of CTL State Cov-
erage Estimation. In Proceedings of the Design Automation Conference, June
2003.

[44] J.J.Chilenski and S.P. Miller. Applicability of Modified Condition/Decision Cov-
erage to Software Testing. Software Engineering Journal, pages 193–200, Sep-
tember 1994.

[45] O. Kupferman and M. Y. Vardi. Vacuity Detection in Temporal Model Checking.
Journal on Software Tools for Technology Transfer, 4(2), February 2003.

[46] P.H. Kvam and B. Vidakovic. Nonparametric Statistics with Applications to
Science and Engineering. 2007.

[47] K.Winbladh, T.Alspaugh, and D.Richardson. Meeting the Requirements and
Living Up to Expectations. In ISR Technical Report UCI-ISR-07-1, Dept. of
Informatics, Univ. of California, Irvine, 2007.

[48] A. Lakehal and I. Parissis. Structural Test Coverage Criteria for Lustre Pro-
grams. In Proceedings of the 10th international workshop on Formal methods for
industrial critical systems, 2005.

[49] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Technical report, Springer-Verlag, New York, 1995.

[50] MathWorks. The MathWorks Inc. Corporate Web Page. Via the world-wide-
web: http://www.mathworks.com, 2004.

[51] Mathworks Inc. Simulink Product Web Site. Via the world-wide-web:
http://www.mathworks.com/products/simulink.

[52] S.P. Miller, E.A. Anderson, L.G. Wagner, M.W. Whalen, and M.P.E. Heimdahl.
Formal Verification of Flight Critical Software. In Proceedings of the AIAA
Guidance, Navigation and Control Conference and Exhibit, August 2005.

[53] S.P. Miller, M.P.E. Heimdahl, and A.C. Tribble. Proving the Shalls. In Proceed-
ings of FM 2003: the 12th International FME Symposium, September 2003.

[54] S.P. Miller, A.C. Tribble, T. Carlson, and E.J. Danielson. Flight Guidance
System Requirements Specification. Technical Report CR-2003-212426, NASA,
June 2003.

[55] The NuSMV Toolset, 2005. Available at
http://nusmv.irst.itc.it/.

135

[56] A.J. Offutt and J. Pan. Automatically Detecting Equivalent Mutants and Infea-
sible Paths. Software Testing, Verification & Reliability, 7(3):165–192, 1997.

[57] A.J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating Specification-based
Tests. In Proceedings of the Fifth IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS ’99), October 1999.

[58] W.E. Perry. A Standard for Testing Application Software. 1990.

[59] M. Pezze and M. Young. Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons, October 2006.

[60] M. Purandare and F. Somenzi. Vacuum Cleaning CTL Formulae. In Proceedings
of the 14th Conference on Computer Aided Design, pages 485–499. Springer-
Verlag, 2002.

[61] A. Rajan, M.W. Whalen, and M.P.E. Heimdahl. Model Validation Using Auto-
matically Generated Requirements-Based Tests. In Proceedings of the IEEE High
Assurance Systems Engineering Symposium (HASE 2007), Novemeber 2007.

[62] A. Rajan, M.W. Whalen, and M.P.E. Heimdahl. The Effect of Program and
Model Structure on MC/DC Test Adequacy Coverage. In Proceedings of 30th
International Conference on Software Engineering (ICSE), To appear in May
2008. Available at http://crisys.cs.umn.edu/ICSE08.pdf.

[63] A. Rajan, M.W. Whalen, M. Staats, and M.P.E. Heimdahl. Requirements Cov-
erage as an Adequacy Measure for Conformance Testing. In Proceedings of Inter-
national Conference on Formal Engineering Methods (ICFEM), October 2008.

[64] S. Rayadurgam. Automatic Test-case Generation from Formal Models of Soft-
ware. PhD thesis, University of Minnesota, November 2003.

[65] S. Rayadurgam and Mats P.E. Heimdahl. Generating MC/DC Adequate
Test Sequences Through Model Checking. In Proceedings of the 28th Annual
IEEE/NASA Software Engineering Workshop – SEW-03, Greenbelt, Maryland,
December 2003.

[66] S. Rayadurgam and M.P.E. Heimdahl. Coverage Based Test-Case Generation Us-
ing Model Checkers. In Proceedings of the 8th Annual IEEE International Con-
ference and Workshop on the Engineering of Computer Based Systems (ECBS
2001), pages 83–91. IEEE Computer Society, April 2001.

136

[67] S. Rayadurgam and M.P.E. Heimdahl. Test-Sequence Generation from Formal
Requirement Models. In Proceedings of the 6th IEEE International Symposium
on the High Assurance Systems Engineering (HASE 2001), Boca Raton, Florida,
October 2001.

[68] Reactive Systems Inc. Reactis Product Description. http://www.reactive-
systems.com/index.msp.

[69] D. J. Richardson, S. L. Aha, and T. O’Malley. Specification-based Test Oracles
for Reactive Systems. In Proceedings of the 14th International Conference on
Software Engineering, pages 105–118. Springer, May 1992.

[70] RTCA. DO-178B: Software Considerations In Airborne Systems and Equipment
Certification. RTCA, 1992.

[71] I. Somerville. Software Engineering. Addison-Wesley, eighth edition, 2007.

[72] L. Tan, O. Sokolsky, and I. Lee. Specification-Based Testing with Linear Tem-
poral Logic. In IEEE Int. Conf. on Information Reuse and Integration (IEEE
IRI-2004), November 2004.

[73] E. Weyuker, T. Goradia, and A. Singh. Automatically Generating Test Data
from a Boolean Specification. IEEE Transactions on Software Engineering,
20(5):353–363, May 1994.

[74] M.W. Whalen. A Formal Semantics for RSML−e. Master’s thesis, University
of Minnesota, May 2000.

[75] M.W. Whalen. Autocoding Tools Interim Report. In NASA Contract NCC-01-
001 Project Report, February 2004.

[76] M.W. Whalen and S.P. Miller. Autocoding Tools Final Report. In NASA Con-
tract NCC-01-001 Project Report, November 2005.

[77] M.W. Whalen, A. Rajan, and M.P.E. Heimdahl. Coverage Metrics for
Requirements-Based Testing. In Proceedings of International Symposium on
Software Testing and Analysis, July 2006.

