
Coverage Metrics for Verification of Concurrent
SystemC Designs Using Mutation Testing

Alper Sen
Department of Computer Engineering

Bogazici University
Istanbul, Turkey

Email: alper.sen@boun.edu.tr

Magdy S. Abadir
Design Technologies

Freescale Semiconductor Inc.
Austin, Texas

Email: m.abadir@freescale.com

Abstract—Design verification has grown to dominate the cost
of electronic system design; however, designs continue to be
released with latent bugs. A verification test suite developed for a
sequential program is not adequate for a concurrent program. A
major problem with design verification of concurrent systems is
the lack of good coverage metrics. Coverage metrics are heuristic
measures of the exhaustiveness of a test suite. High coverage,
in general, implies fewer bugs. SystemC is the most popular
concurrent system level modeling language used for designing
SoCs in the industry. We propose to attack the verification quality
problem for concurrent SystemC programs by developing novel
mutation testing based coverage metrics. Mutation testing has
successfully been applied in software testing and RTL designs.
In this paper, we develop a comprehensive set of mutation
operators for concurrency constructs in SystemC. Our approach
is also unique in that we define a novel concurrent coverage
metric considering multiple execution schedules that a concurrent
program can generate. This metric allows us to adequately
measure the coverage for concurrent programs. We performed
experiments with various designs including a large industrial
design and obtained favorable results on multiple applications.

I. INTRODUCTION

Concurrent programs are harder to verify than their se-
quential counterparts due to their inherent non-determinism
and concurrency problems such as interference and deadlock.
Raising the level of abstraction via system level design is one
of the most efficient methods of reducing complexity due to
concurrent electronic designs. It is easier to diagnose concur-
rency and protocol problems at the system level, whereas these
problems are hidden at the lower implementation levels.

SystemC is the most popular system level modeling lan-
guage used for designing SoCs in the industry. It is a C++
library that contains constructs related to concurrency, time
and hardware data types. It is freely available from OSCI [15]
and is an IEEE standard. SystemC Transaction Level Modeling
(TLM) 2.0 standard is a modeling level of the SystemC
language providing concurrent communication structures for
complex data types such as transactions between IPs. TLM
allows us to describe the design at a much more abstract
level than RTL or cycle accurate models and brings several
of the benefits of working at a higher level of abstraction.
However, system level design coupled with multi-processors
is a challenge to EDA tool providers, and system level tools are
still in their infancy. New system level techniques of analysis

are required to improve reliability of concurrent software
running on concurrent hardware.

Even if design verification is successfully completed, there
is still a doubt whether specifications (or tests) are com-
prehensive and if they cover all possible behaviors of the
system. Increasingly, there is a need to measure the quality
of verification effort. Coverage metrics play an important role
in evaluating the confidence in the verification results. In this
paper, we develop mutation testing based coverage metrics
in order to increase verification test coverage for concurrent
system level designs.

Mutation testing assumes a given fault model. We develop
a fault model for concurrent SystemC designs to inject func-
tional faults similar to the successful stuck-at fault model for
manufacturing faults. We show the effectiveness of this fault
model by relating the faults to actual bug patterns. Then we
generate mutations based on our fault model and insert these
mutations into a given SystemC TLM 2.0 design (obtaining a
mutant). Finally, we simulate the mutant with the test suite,
activating and propagating the mutation to the outputs. In case
the outputs of the mutant and the original design are different
for a given test, we say that the test kills (detects) the mutant.
The higher the percentage of killed mutants, the higher the
confidence in the verification test suite.

Our work differs from sequential program based mutation
testing. When testing a sequential program, one can assume
that there exists only one correct output for a given verification
test. This is not true for concurrent programs. Concurrent
execution of several processes may result in different schedules
and outputs, depending on the order of execution of the
different processes chosen by the scheduler. A verification test
suite developed for a sequential program is not adequate for a
concurrent program. We need concurrency aware verification
test suites for concurrent programs. To help develop and
measure the quality of such test suites we need a concurrency
aware coverage metric. In this work, we develop a novel con-
currency aware mutation coverage metric where all possible
execution schedules of concurrent programs are considered.

We performed experiments with various designs including
a large industrial design to validate the effectiveness of our
techniques. Our experimental results confirm the inadequacy
of current verification tests for checking concurrent features

978-1-4244-7806-4/10/$26.00 ©2010 IEEE 75



of SystemC. We summarize the contributions of this paper as
follows.

• We present a comprehensive list of mutation operators for
concurrent SystemC and show the effectiveness of these
operators by relating them to actual bug patterns.

• We develop a novel concurrent mutation coverage metric
using multiple schedules of a concurrent program that
allows us to adequately measure the coverage for con-
current programs.

• We develop an automated mutation testing based cov-
erage framework and provide experimental results on
multiple applications showing the effectiveness of our
technique in demonstrating the need for concurrency
aware verification test suites.

II. RELATED WORK

There has been work on traditional coverage metrics for
RTL and gate level designs. These techniques can be sum-
marized as code coverage, structural coverage, functional
coverage, and observability-based coverage techniques [19],
[7], [8].

Code coverage techniques measure the amount of activation
of lines, branches and expressions in designs source code
during simulation. This is a limited approach since activations
cannot be observed at the outputs of the design, hence this
approach may not have impact on the design. Structural
coverage techniques extract an abstract state machine from
design descriptions and measure the number of states traversed
during simulation. This approach is limited due to the growing
size of the state machine for complex designs. Functional
coverage metrics target design functionalities to cover inter-
esting scenarios. However, these techniques are not automatic.
They need to be redeveloped for new designs since they rely
on internal monitors defined and built by engineers having
knowledge both of the design specification and implementa-
tion. Observability-based coverage metrics observe the impact
of errors activated by the verification tests at the outputs of the
design. All above techniques have been applied at the lower
level designs such as RTL and gate level designs.

Mutation testing technique is an observability-based cover-
age technique based on software testing [6], [13], [14]. It has
been applied to programming languages such as Java [5], [12]
and state machines [16]. Mutation testing is based on a given
fault model. Mutations developed based on this fault model
are injected into the design one at a time, and it is checked
whether such mutations are activated and propagated to the
outputs of the design. Mutation testing helps to strengthen the
quality of verification tests iteratively until reaching a given
target coverage. The previously developed stuck-at fault model
is similar to mutation testing and has been very successful for
manufacturing faults [1].

Typical mutation operators for a programming language are
designed to modify variables and expressions by replacement,
insertion or deletion operators. For example, a simple non-
concurrent arithmetic operation mutation can change an as-

signment statement like x = y + z into x = y − z, x = y ∗ z,
or x = y/z.

Mutation operators have been defined for concurrency con-
structs in Java [5], [9]. We make use of some of these operators
in our work and enhance them for SystemC. Mutation testing
has recently been applied to Verilog [10] and SystemC TLM
2.0 communication interfaces [3], [4]. Our work differs from
these works in that we are concerned about all concurrency
constructs in SystemC rather than only communication con-
structs. SystemC and TLM libraries have been modified in
those works. We do not modify any libraries, hence we can
provide better integration into already developed industrial
frameworks. Furthermore, our mutation coverage criterion is
different from the earlier ones.

Multiple schedules of a SystemC design have been used
for verification purposes before. We earlier used multiple
schedules for assertion based verification of SystemC [18].
Helmstetter et al. [11] generate non-equivalent (no two sched-
ules have the same output) SystemC execution schedules using
dynamic partial order reductions. This allows them to explore
all possible schedules with the same test suite. Our work is
different in that we provide a coverage metric to determine the
quality of the test suite, that is, for each schedule, we check
whether the test suite can detect inserted mutations.

III. CONCURRENCY IN SYSTEMC

SystemC has the concept of processes to model the con-
current activities of a system. Processes can be combined
into modules to create hierarchies. Processes access external
channel interface through the ports of a module and can run
concurrently, but code inside a process is sequential. There are
two types of processes, method process, and thread process.

The SystemC scheduler controls the timing and order of
process execution, handles event notifications and manages
updates to channels. It is an event-based simulator similar
to Verilog. SystemC processes are non-preemptive. Hence, a
process has to voluntarily yield control for another process to
be executed.

Processes are triggered and synchronized with respect to
sensitivity on events. There are two types of sensitivity. Static
sensitivity is defined before simulation starts such as sensitivity
to a clock signal, and dynamic sensitivity is defined after
simulation starts and can be altered during simulation. Events
are controlled via wait, notify and next trigger functions
of the sc event class. A wait function changes dynamic
sensitivity of a thread process and suspends its execution.
For example, wait(0) delays the process by one delta cycle,
whereas the process waits on event e with wait(e). Similarly,
a next trigger function changes dynamic sensitivity of a
method process. However, this function returns immediately
rather than suspending execution. Events occur explicitly by
using the notify function and the scheduler resumes execution
of a thread or method process by executing the internal trigger
function. For example, e.notify() is called an immediate
notification since processes sensitive to event e will run in
the current evaluation phase or delta cycle.

76



initially cs1 = true;
T1:

e.notify();
cs1 = false;

initially cs2 = false;
T2:

wait(e);
cs2 = true;

Fig. 1. SystemC Example

Figure 1 displays a simple SystemC example where there
are multiple schedules during the execution of a design. In
this example, thread T2 is waiting for an event from thread
T1 to move forward. cs1 and cs2 are outputs of the design
and are initially true(t), false(f), respectively. There are
two possible execution schedules by the kernel. These are
T1;T2 and T2;T1;T2. If T1 is executed before T2 (T1;T2),
then notify message is lost since T2 is not waiting and this
leads to a special case of deadlock for T2. In the other schedule
(T2;T1;T2), both threads run till completion.

Similar to events; channels, interfaces, and ports are used
for process synchronization and also for communication re-
finement. These constructs are the core of Transaction Level
Model (TLM) based methodology and are defined as fol-
lows. Channels hold and transmit data. A channel imple-
ments interfaces. An interface is a declaration of the avail-
able functions for accessing a given channel and describes
the set or subset of operations that the channel provides.
A port is bound to a channel through an interface, and it
is an agent that forwards function calls up to the channel
on behalf of the calling module. Channel functions read,
write, b transport, nb transport fw, nb transport bw,
put, get, peek, nb put, nb get, nb peek generate synchro-
nization between processes.

Synchronization is also established through instantiating
sc semaphore and sc mutex objects, which provide wait,
trywait, post and lock, trylock, unlock functions, respec-
tively. Table I summarizes SystemC concurrency functions.

TABLE I
SYSTEMC CONCURRENCY FUNCTIONS

Construct Available Functions

Event notify, wait, next trigger

Channel read, write, put, get, peek, nb put, nb get,
nb peek, b transport, nb transport fw,
nb transport bw

Semaphore wait, trywait, post

Mutex lock, trylock, unlock

IV. SEQUENTIAL AND CONCURRENT COVERAGE METRICS

A verification test suite developed for a sequential program
is not adequate for a concurrent program. We need concur-
rency aware verification test suites for concurrent programs,
and to help develop and measure the quality of such test suites,
we need a concurrent coverage metric.

In this section, we will define a new concurrent mutation
coverage metric for concurrent systems with multiple sched-
ules. First, we define a mutant P ′ as the introduction of a

mutation into a program P . Next, we modify the traditional
definition of “killing (detecting) mutants” given for a single
schedule in mutation testing to account for multiple schedules.

Definition 1: (killing mutant for a single schedule) Given a
mutant P ′ for a program P and a test t, t is said to kill P ′ if
and only if the output of t on P ′ is different from the output
of t on P .

Definition 2: (killing mutant for multiple schedules) Given
a mutant P ′ for a program P and a test t, t is said to kill P ′

if and only if there exists an output of t on P ′ that is different
from all possible outputs of t on P .

Note that the latter definition emphasizes the multiple
schedules that can be generated by a concurrent program. A
verification test is expected to kill each mutant with at least
one test case. In case a mutant cannot be killed, the tester
needs to show that 1) (for multiple schedules): outputs of t on
P ′ are contained in outputs of t on P ; (for a single schedule):
output of t on P ′ is the same as the output of t on P or, 2)
update tests by adding a test case that kills the mutant.

We now define Mutation Coverage to determine the cover-
age of verification tests using Definition 1 and Definition 2.

Definition 3: (sequential mutation coverage) The ratio of
the number of mutants killed using Definition 1 to the number
of all mutants is called a sequential mutation coverage for a
single schedule.

Definition 4: (concurrent mutation coverage) The ratio of
the number of mutants killed using Definition 2 to the number
of all mutants is called a concurrent mutation coverage for
multiple schedules.

We illustrate the need to have a concurrent coverage metric
and how it can improve test suite quality with a mutant
obtained from the example in Figure 1. We apply a mutation
operator that removes the concurrency construct wait and
obtain the mutant in Figure 2. Assume that the test suite
only contained Test1, which generates only the final values
of cs1, cs2 as can be seen from Test1 columns in Table II.
We denote values that are generated before the thread ends
or deadlocks as final values. If we considered only a single
schedule (T1;T2) of the program, this mutation is considered
killed if Definition 1 is used because output of the original pro-
gram (ff) differs from the output of the mutant (ft). However,
the mutation is not killed if Definition 2 is used, since outputs
of both schedules of the mutant are the same (ft), and this
output is one of the possible outputs of the original program.
Hence, we can falsely obtain higher mutation coverage if we
do not use a concurrent metric. Since the coverage is low
using concurrent metric, we need to improve it by adding a
new test. One possible way to improve the quality of the test
suite (and kill the mutant) is to generate values of cs1, cs2 at

77



initially cs1 = true;
T1:

e.notify();
cs1 = false;

initially cs2 = false;
T2:

// removed wait(e)
cs2 = true;

Fig. 2. SystemC Mutant Example

all value changes, starting from their initial values tf . We call
this test as Test2. From Table II, it is clear that the mutant
output tf, tt, ft is not contained in the outputs of the original
program, hence the mutant is killed. Another possible way
to improve the quality of the test suite would be to use an
assertion to check whether cs1, cs2 can be true at the same
time. Note that the second schedule (T2;T1;T2) is exhibited
as (T2;T1) in the mutant.

TABLE II
CONCURRENT AND SEQUENTIAL COVERAGE METRIC COMPARISON

Test1 Outputs(cs1cs2) Test2 Outputs(cs1cs2)

Schedule Original Mutant Original Mutant

T1;T2 ff ft tf,ff tf,ff,ft

T2;T1;T2 ft ft tf,ff,ft tf,tt,ft

V. MUTATION OPERATORS FOR CONCURRENT SYSTEMC

In this section, we first identify typical bugs that designers
make when using concurrency. Next, we develop mutation
operators for concurrent functions in SystemC and relate them
to these bugs.

The following list of bug patterns is based on resources such
as Java concurrency bug patterns [5], [9], patterns for TLM
2.0 communication functions [3], and our experience.
B1. Lost notify: If a notify() is executed before its corre-

sponding wait(), the notify() has no effect and is lost. As
a result, code executing a wait() might not be awakened
because it is waiting for a notify() that occurred before
the wait() was executed.

B2. Interference: Two or more concurrent threads access a
shared variable and at least one access is a write.

B3. Deadlock: Two or more processes are unable to proceed
due to waiting for one another. Also, we say that a
process is deadlocked when it is stuck as in Figure 1.

B4. Starvation: A process may starve due to actions of other
processes. A change in lock acquisition may lead to this.

B5. Resource exhaustion: A group of processes hold all of a
finite number of resources. One of them needs additional
resource but no other process gives up.

B6. Incorrect count initialization: This occurs when the num-
ber of entries in a semaphore initialization is incorrect.

B7. Nondeterminism: If an immediate notification is used
this may cause nondeterminism. Process execution can
be interleaved with immediate notification, and the order
of runnable processes are executed is undefined.

B8. Forgetting functions: Forgetting to call a put before a
get function.

B9. Incorrect functions: Using read instead of write, or
using blocking instead of a nonblocking function.

We now present a set of mutation operators designed to
exercise concurrency and synchronization present in SystemC
programs. We describe operators in two categories. In the first
category, mutations modify parameters of concurrency func-
tions. In the second category, mutations remove, replace, or
exchange concurrency functions. We also relate these mutation
operators to real bug patterns described above.
Category 1: Modify parameters of concurrency function.

M1. Modify Function Timeout: This operator can be applied
to functions with a timeout parameter such as wait,
notify, and next trigger. For example, we can modify
wait(time) to wait(time/2). This modification may
result in an interference or data race bug B2 since
a process may access a shared variable when it is
not supposed to, due to a potential change in process
activation time or order. This mutation can also lead to
a lost notify B1 and deadlock B3 if the notification is
sent before the corresponding wait.

M2. Modify Concurrency Construct Count: This operator can
be applied to semaphores that indicate the number of
threads that can access a shared resource. This mutation
leads to incorrect count initialization B6 and may also
lead to resource exhaustion B5 if the count is decre-
mented. For example, modify sc semaphore(num) to
sc semaphore(num−1) or sc semaphore(num+1).

Category 2: Remove, replace, exchange concurrency func-
tion.

M3. Remove Concurrency Construct: This operator removes
calls to concurrency functions described in Table I. This
mutation results in B8 bug. Removing wait or lock may
result in interference B2 since a thread that should have
been waiting can potentially access a shared variable.
Removing notify may result in lost notify bug B1 and
deadlock B3. Removing an unlock may result in the
process waiting for the lock to be starved, hence B4.

M4. Replace Timed Construct with Untimed Construct: This
operator replaces timed construct with an untimed con-
struct and vice versa. For example, we can replace
timed notify with immediate notify which may result in
nondeterminism B7. Also, a wait(e) can be replaced by
wait(1, SC NS) which may result in interference B2
since the process may access a shared variable before
waiting for the appropriate event notification. Also, this
can result in an incorrect function B9.

M5. Exchange Lock/Permit Acquisition: This operator ex-
changes a function of a semaphore or mutex with

78



TABLE III
RELATING BUG PATTERNS AND MUTATION OPERATORS

Concurrency Bug Pattern Mutation Operators

B1. Lost notify M1, M3, M6

B2. Interference M1, M3, M4, M6, M7

B3. Deadlock M1, M3, M6, M7

B4. Starvation M5, M6, M3

B5. Exhaustion M2, M6

B6. Incorrect count M2

B7. Nondeterminism M4

B8. Forgetting functions M3

B9. Incorrect functions M4, M5, M6, M7

another one. In a semaphore, wait or trywait can be
used to acquire permits to a shared resource. Exchanging
one function with another may lead to timing changes
and starvation. For example, using trywait instead of
wait may lead to starvation B4 since in the first case
threads do not block whereas threads block in the second
case. Also, this can result in an incorrect function B9.

M6. Exchange Function Call with Another: This operator
exchanges a function in Table I with another appropriate
function. For example, a call to semaphore post is
exchanged with wait or notify exchanged with wait.
Also, a call to get may be exchanged with appropriate
peek. This may result in starvation B4 as in M5,
interference B2 since a shared variable may be accessed,
deadlock B3 since instead of releasing a lock it may
be requested creating a circular chain of lock requests,
exhaustion B5 since resources may have been received
from the channel by get, lost notify B1, or incorrect
function B9.

M7. Exchange one Concurrency Construct Instance with An-
other: When there is more than one lock (mutex or
semaphore), we replace a call to a lock with another one.
This may lead to a deadlock situation B3, or interference
B2 since the correct lock is not used to access critical
regions, and also may lead to an incorrect usage of
functions B9.

We have described mutation operators and how they relate
to real bug patterns. Table III summarizes this relationship. Our
mutation operators are equally applicable for a single schedule
or for multiple schedules of a concurrent program.

VI. MUTATION COVERAGE ALGORITHM

Algorithm MutCov in Figure 3 displays our automatic
mutation coverage algorithm for SystemC. In line 1, for every
concurrency function in the original program, we insert a
mutation operator and obtain a metaprogram. We currently
use an implementation with parsers to accomplish this. The
metaprogram uses a mutant schema where each inserted muta-
tion is guarded by a conditional statement that can be switched
on and off at runtime. This metaprogram is more efficient than

Algorithm MutCov
Input: a SystemC program P , a set of verification tests T

Output: sequential and concurrent mutation coverage

1: insert all ”relevant” mutation operators into P ;
(all mutation operators may not be applicable)

2: for each inserted mutation operator M in P do
3: enable M and obtain a mutant P ′;
4: for each verification test t ∈ T do
5: simulate P ′ with t;
6: check if t kills P ′;
7: endfor;
8: endfor;
9: generate sequential and concurrent mutation coverage

Fig. 3. Mutation Coverage Algorithm

generating a new version of the program for each mutation.
Note that not all mutation operators are applicable to every
program. In line 3, we enable the inserted mutation operators
one by one, obtaining a mutant for each enabling. Then, in
line 4, we choose every test in the test suite one by one for
simulation. It is possible that some tests may not execute the
inserted mutation so we do not consider these tests during
simulation. This check can be done by an initial execution
of all tests on the metaprogram. In line 5, we use the work
by Helmstetter et al. [11] for simulation. During simulation,
there can be multiple execution schedules, and we may obtain
multiple outputs, that is, one output for each schedule. In
line 6, if there is a single output of the simulation, we check if
the test kills the mutant using Definition 1, otherwise, we use
Definition 2. Finally, in line 9, we generate mutation coverage
using Definition 3 and Definition 4.

VII. EXPERIMENTAL RESULTS

We have performed experiments on concurrent SystemC
designs using our mutation testing based coverage framework
to validate the effectiveness of our approach. As experimental
testbeds, we chose five designs from OSCI SystemC and
TLM 2.0 library distributions [15], two designs from SystemC
Runtime Verification Toolbox (SCRV) [17], and an industrial
design. Each design contained its own verification tests. For
each design, we executed Algorithm MutCov and displayed
mutation coverage together with the mutations killed and not
killed as feedback.

The OSCI and SCRV design descriptions can be found
in respective references. The industrial design is a modeling
library based on SystemC used for architectural exploration,
RTL development, constrained random verification, and early
software development. It includes a complete set of BFM
and monitor components for several bus protocols including
proprietary TLM compliant bus protocols. Also, included is
a new testbench environment built on the existing hardware
modeling library, that includes controllers through which all
interaction with the device under verification takes place.
Some of the controllers are data stimulus, clock, signal, bus,
fifo, and memory. The framework consists of around 40,000

79



TABLE IV
MUTATION TESTING BASED COVERAGE METRIC EXPERIMENTS

Design Lines # Schedules # Mutants # Killed Mutants # Killed Mutants Coverage (%) Coverage (%)
(single schedule) (multiple schedules) (sequential) (concurrent)

pv example 2449 1 18 12 12 66 66
p2p pipe thread 926 1 36 20 20 55 55

scx mutex w policy 161 1 30 23 23 76 76
at1 phase 2350 1 34 19 19 56 56
industrial 40,000 1 146 76 76 52 52

pvt put example 1161 2 55 23 20 41 36
bozo 139 3 16 9 1 56 6
sirac 253 12 28 17 5 60 18

lines of SystemC code. The experiments were executed with
up to 12 threads. We used 17 testbenches that were used
during original validation. This design contained only a single
schedule.

Table IV shows our results. In the table, we denote the
number of lines in the design in column Lines, the number
of schedules that the original program can generate in col-
umn Schedules, the number of generated mutants in column
Mutants. Columns denoted by Killed Mutants display the
number of killed mutants using Definition 1 and Definition 2.
Finally, columns denoted by Coverage represent sequential
and concurrent mutation coverage percentages. All original
designs except the last three in Table IV have a single schedule.
Hence, we obtain the same coverage percentages for both
sequential and concurrent coverage. For designs with multiple
schedules, we used the first schedule of the original and mutant
designs when obtaining sequential coverage. We observed that
design pv example has two mutants with multiple schedules
although the original program has a single schedule.

Our experimental results can be summarized as follows:

1. Low sequential and concurrent mutation coverage per-
centages (less than 80%) confirm the inadequacy of
test suites to find many possible design errors since
mutations are closely related to actual errors as we
described above.

2. Our experiments also confirm that for designs with
multiple schedules, concurrent coverage is smaller than
sequential coverage. This makes sense because a concur-
rent design needs to be tested by a concurrency aware
verification test suite that considers multiple schedules.
Hence, it is better to use a concurrent coverage metric.

3. For each design (except for the industrial), execution of
our mutation algorithm for all mutants took less than
2s to complete except for the last test case, where it
took 8.5s since it has the highest number of schedules.
This confirms our expectation that multiple schedules
will consume more resources than a single schedule.
Also, designs with higher number of testbenches result
in the larger the execution times (close to 5x execution
time slowdown for the industrial design). However, our
approach lends itself to simple parallelization and we

expect to reduce these execution times substantially
when we implement parallelism.

4. The relatively few number of generated mutants shows
that by solely focusing on concurrency functions at
TLM, we do not suffer from an explosion in the number
of mutants. The industrial design especially used very
few concurrency constructs.

Similar to other coverage measures, a target coverage per-
centage can be provided by the user. Empirical industrial data
has shown that mutation coverage over 80% could be the initial
target [2]. The user can iteratively improve the test suite by
adding new test cases until the target coverage is reached.
For example, in the case of the industrial design, although the
coverage was 52%, we increased it to 83% after the addition
of a new test. Our framework can also be used to optimize
the test suite by removing redundant test cases that kill the
same set of mutants. Ultimately, the quality of the test suite is
improved due to our mutation testing based coverage metrics.

VIII. CONCLUSIONS AND FUTURE WORK

There is great demand for developing system level coverage
metrics that can adequately deal with concurrency. Mutation
testing based coverage metrics are practical, automatic and
at the same time allow us to measure the impact of faults on
the design. We developed and implemented mutation coverage
metrics for concurrent SystemC designs.

The mutation operators in this paper are a comprehensive
list of the concurrency and synchronization related features of
SystemC. We also showed the effectiveness of these operators
by relating them to actual bug patterns.

Our approach is unique in that we defined a novel concur-
rent mutation coverage metric considering multiple execution
schedules that a concurrent program can generate. This metric
allows us to adequately generate coverage for concurrent
SystemC programs and ultimately, improve the quality of test
suites. Our experimental results confirm the inadequacy of
current verification test suites for checking concurrent features
of SystemC and demonstrate the effectiveness of mutation
testing based coverage metrics.

Upon considering all possible schedules of a design the
execution times can be high. For future work, in order to
improve performance for large designs, we will develop a

80



technique that calculates an approximated set, defined as a
subset of all possible schedules of original program. Also,
a parallel version of our work will substantially improve
performance. Finally, our work is an important step towards
standardizing a mutation fault model for SystemC.

ACKNOWLEDGMENTS

This research was supported by a Marie Curie European
Reintegration Grant within the 7th European Community
Framework Programme and BU Research Fund 09HA101P.

REFERENCES

[1] M. Abramovici, B. M. A., and A. D. Friedman. Digital Systems Testing
and Testable Design. Computer Science Press, New York, 1990.

[2] B. Bailey. Can Mutation Analysis Help Fix Our Broken Coverage
Metrics? In 4th International Haifa Verification Conference, 2008.

[3] N. Bombieri, F. Fummi, and G. Pravadelli. A Mutation Model for the
SystemC TLM 2.0 Communication Interfaces. In Proc. of the Confer-
ence on Design Automation and Test in Europe (DATE), pages 396–401.
ACM, 2008.

[4] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe.
Functional Qualification of TLM Verification. In Proc. of the Conference
on Design Automation and Test in Europe (DATE). ACM, 2009.

[5] J. Bradbury, J. Cordy, and J. Dingel. Mutation Operators for Concurrent
Java (j2se 5.0). In Workshop on Mutation Analysis, 2006, Nov. 2006.

[6] T. A. Budd. Mutation Analysis: Ideas, Examples, Problems and
Prospects. In Computer Program Testing, pages 129–148. North-
Holland, 1981.

[7] S. Devadas, A. Ghosh, and K. Keutzer. An Observability-based Code
Coverage Metric for Functional Simulation. In Proc. of the International
Conference on Computer Aided Design (ICCAD), pages 418–425. IEEE
Computer Society, 1996.

[8] F. Fallah, S. Devadas, and K. Keutzer. OCCOM: Efficient Computation
of Observability-based Code Coverage Metrics for Functional Verifi-
cation. In Proc. of the Design Automation Conference (DAC), pages
152–157. ACM, 1998.

[9] E. Farchi, Y. Nir, and S. Ur. Concurrent Bug Patterns and How to Test
Them. In Proc. of the International Parallel and Distributed Processing
Symposium, 2003.

[10] M. Hampton and S. Petithomme. Leveraging a Commercial Mutation
Analysis Tool for Research. In Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, 2007,
pages 203–209, Sept. 2007.

[11] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Auto-
matic Generation of Schedulings for Improving the Test Coverage of
Systems-on-a-Chip. In Proc. of the International Conference on Formal
Methods in Computer Aided Design (FMCAD), 2006.

[12] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: An Automated Class Muta-
tion System: Research Articles. Softw. Test. Verif. Reliab., 15(2):97–133,
2005.

[13] J. Offutt, P. Ammann, and L. Liu. Mutation Testing implements
Grammar-Based Testing. In Workshop on Mutation Analysis, 2006,
pages 12–12, 2006.

[14] J. Offutt and R. H. Untch. Mutation 2000: Uniting the Orthogonal.
Kluwer Academic Publishers, 2001.

[15] Open SystemC Initiative, http://www.systemc.org/.
[16] S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and P. Masiero. Mu-

tation Analysis Testing for Finite State Machines. In 5th International
Symposium on Software Reliability Engineering, Nov 1994.

[17] SystemC Runtime Verification Toolbox (SCRV), http://my-
trac.assembla.com/scrv/wiki.

[18] A. Sen, V. Ogale, and M. S. Abadir. Predictive Runtime Verification of
Multi-Processor SoCs in SystemC. In Proc. of the Design Automation
Conference (DAC), pages 948–953, 2008.

[19] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Veri-
fication: The Complete Industry Cycle (Systems on Silicon). Morgan
Kaufmann Publishers Inc., 2005.

81


