
Coverage Path Planning: The Boustrophedon Cellular Decomposition

Howie Choset

Department of Mechanical Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

U. S. A.

Philippe Pignon

Nomadic Technologies, Inc.,

Mountain View, CA 94043-1605

U. S. A.

Abstract

Coverage path planning is the determination of
a path that a robot must take in order to pass
over each point in an environment. Applica-
tions include vacuuming, 
oor scrubbing, and
inspection. We developed the boustrophedon
cellular decomposition, which is an exact cel-
lular decomposition approach, for the purposes
of coverage. Each cell in the boustrophedon
is covered with simple back and forth motions.
Once each cell is covered, then the entire envi-
ronment is covered. Therefore, coverage is re-
duced to �nding an exhaustive path through a
graph which represents the adjacency relation-
ships of the cells in the boustrophedon decom-
position. This approach is provably complete
and Experiments on a mobile robot validate
this approach.

1 Introduction

Coverage path planning determines a path that guar-
antees that an agent will pass over every point in a
given environment. This procedure allows for a vari-
ety of applications. Naval applications include mine-
countermeasure missions and continental shelf oceano-
graphic mapping. Commercial applications include con-
tamination cleanup, 
oor scrubbing, crop plowing, and
bridge inspection. Without a coverage algorithm, these
applications cannot be handled. Most current coverage
path planners are rudimentary at best because they are
based on heuristics. Using such approaches for mine
sweeping is akin to performing this operation with a
faulty mine detector. Therefore, the coverage path plan-
ning algorithm described in this pare is complete; that is,
in �nite time, it will �nd a coverage path or determine
that none exists.
Our approach exploits a geometric structure termed

an exact cellular decomposition, which is the union of
non-intersecting regions composing the target environ-
ment. Each region is termed a cell, and the union of

Figure 1. Bountrophedon Path.

the cells �lls the environment. In each cell, a coverage
path can be readily determined, such as simple back-
and-forth motions; thus coverage path planning reduces
to planning motions from one cell to another. This work
will develop a new cellular decomposition, termed the
boustrophedon decomposition and apply it to coverage
path planning.

Boustrophedon was �rst used in the English language
in 1699 and it literally means, \the way of the ox." Typ-
ically, when an ox drags a plow in a �eld, it crosses the
full length of the �eld in a straight line, turns around,
and then traces a new straight line path adjacent to the
previous one. By repeating this procedure, the ox is
guaranteed to cover (and thereby to plow) the entire
�eld. See Figure 1.

The boustrophedon cellular decomposition is a new
type of decomposition where the robot's free space is
broken down into cells such that the robot can cover each
cell with back-and-forth boustrophedic motions. Once a
robot covers each cell, it has covered the entire free region
of an environment. This approach has been validated
with simulations and a Nomadic 200 mobile robot base.

2 Background Work

2.1 Prior Work in Coverage

Previous work in coverage include applications such as
vacuum cleaning [Colegrave and Branch, 1994] and 
oor
cleaning. In these approaches, the path must be ex-



plicitly programmed into the robot; i.e., they do not
use an algorithm to generate the coverage path, but in-
stead prescribe one \by hand." Furthermore, these algo-
rithms rely on landmarks deployed in the environment.
Some modern agricultural operations represent a signi�-
cant opportunity for coverage applications whose cover-
age path is easy to automatically generate. The Demeter
project [Ollis and Stentz, 1996] is used to harvest large
�elds; in this approach the robot simply uses vision to
guide its path alongside the previous cut crop line and
can only cover rectangular �elds.

A 
oor coverage approach that considers non-
holonomic constraints is described in [Hofner and
Schmidt, 1995]. In this work, a set of templates is used
to cover only a bounded region that is free of obsta-
cles. These templates are used to accommodate the non-
holonomic constraints of the robot, and thus may be use-
ful for planning back and forth motions within each cell
of the proposed approach. However, its limitation is that
it cannot plan paths when obstacles are present.

The coverage algorithm described in [Zelinsky et al.,
1993] is well suited to unstructured environments. Al-
though it is complete, it achieves 
oor coverage in a dis-
cretized environment (i.e., it is resolution complete). A
similar approach, without proof, with cooperating robots
was mentioned in [Kurabayashi et al., 1996]. Finally,
Lumelsky et. al. [Hert et al., 1996] produced an algo-
rithm that is similar to the proposed approach in the
planar case. Although the proposed algorithm produces
nearly the same path as Lumelsky' group's in the planar
case, the approach described in this paper is easier to im-
plement because it has two cases whereas their approach
contains a series of special cases. Finally, the approach
in [Hert et al., 1996] is not complete. The primary con-
tribution of the algorithm supplied by [Hert et al., 1996]

is that it is incremental, and thus may lead to a sensor
based implementation on a mobile robot.

2.2 Exact Cellular Decomposition

The approach to coverage used in this paper is an adap-
tation of an existing complete motion planning scheme,
termed an exact cellular decomposition. Cellular decom-
position is a motion planning technique in which the free
con�guration space (set of all robot con�gurations where
the robot does not overlap an obstacle) is decomposed
into cells such that the union of the cells is the original
free space. Each cell can be represented as a node in
a graph, where adjacent cells have an edge connecting
their corresponding nodes. This graph is called an ad-
jacency graph. If each cell can be covered by the robot,
then the 
oor coverage problem reduces to determining a
walk through the adjacency graph that visits each node
at least once, i.e., the traveling salesman problem, for
which a solution (possibly sub-optimal) always exists.

Old
Cell

Slice

New Cell

New Cell

Figure 2. In Event.

New Cell

Slice 

CellOld

CellOld

Figure 3. Out Event.

One popular cellular decomposition technique, which
can yield a complete coverage path solution, is the trape-
zoidal decomposition [Latombe, 1991] (also known as the
slab method [Preparata and Shamos, 1985]) in which the
robot's free space is decomposed into trapezoidal cells.
Since each cell is a trapezoid, coverage in each cell can
easily be achieved with simple back and forth motions
(See Figure 1). Coverage of the environment is achieved
by visiting each cell in the adjacency graph.

The trapezoidal decomposition approach assumes that
a vertical line, termed a slice, sweeps left to right through
a bounded environment which is populated with polyg-

onal obstacles. Cells are formed via a sequence of open
and close operations which occur when the slice encoun-
ters an event, an instance in which a slice intersects a
vertex of a polygon. There are three types of events:
IN , OUT , and MIDDLE . Loosely speaking, at an IN

event the current cell is closed (thereby completing its
construction) and two new cells are opened (thereby ini-
tiating their construction) See Figure 2. An OUT event
is the reverse: two cells are closed, and a new one is
opened. See Figure 3. The IN event can be viewed as
one cell breaking up into two cells, whereas the OUT

event is when two cells merge into one. At a MIDDLE

event, the current cell is closed, and a new one is formed.
The result of these operations is a freespace that is bro-
ken down into trapezoidal cells.

The terrain coverage system of VanderHeide and Rao
[VanderHeide and Rao, 1995] is based on a trapezoidal
decomposition of a planar environment populated with
one or two well-separated obstacles. The advantage of
this system is that it is sensor based.

Unfortunately, the trapezoidal approach requires too
many redundant back and forth motion to guarantee



VS.

One CellTwo Cells

Figure 4. Fewer cells is better.

Cell
Cell

Figure 5. Trapezoidal Decomposition

completeness. In the left hand side of Figure 4 the robot
needs to make one additional lengthwise motion to cover
the remaining portion of the trapezoidal cell. This can be
viewed as part of the cost in guaranteeing the robot ex-
haustively covers the entire environment. Another draw-
back of the trapezoidal approach is that it requires the
environment to be polygonal.

3 Contributions

The boustrophedon cellular decomposition, introduced
in this paper, is an enhancement of the trapezoidal de-
composition and is designed to minimize the number of
excess lengthwise motions, as described in the previous
paragraph. In essence, all cells between IN and OUT

events are merged into one cell. Compare the trapezoidal
decomposition in Figure 5 with the boustrophedon de-
composition in Figure 6. Note that the boustrophedon
decomposition has a fewer number of cells.
The advantage of having a fewer number of cells is

that the number of back-and-forth boustrophedon mo-
tions can be minimized. For example, consider two ad-
jacent trapezoidal cells whose widths are each two and
a half times the width of the robot. In order to cover
each trapezoid, the robot must make three passes, for a

Cell
Cell

Cell

Cell

Figure 6. Boustrophedon Decomposition

One
Connect

Two

Connect

C
ritical

Slice

Figure 7. Critical points are points where
the connectivity of a slice changes,
i.e., they are events.

New Cell

New Cell

Slice

f

Cell
Old

c

Figure 8. In Event.

total of six lengthwise motions. With the boustrophedon
decomposition approach, the two cells are merged into
one cell which is a monotone polygon and requires �ve
passes to cover. See Figure 4.

Instead of exploiting the structure of polygons to de-
termine IN and OUT events, this approach will rely on
changes in connectivity of a slice to determine the exis-
tence of an event. Typically, this is called a critical point,
which are used in roadmap motion planning techniques
such as Canny and Lin's \Opportunistic Path Planner"
(OPP) [Canny and Lin, 1990], [Canny and Lin, 1993],
which is itself based on Canny's Roadmap Algorithm
[Canny, 1988]. Now, the robot can perform coverage in
curved, or even sampled, environments. See Figure 7.

4 Algorithm Overview

The boustrophedon cellular decomposition approach is
similar to the trapezoidal one. Again, a slice sweeps
through a bounded planar environment populated with
polygonal obstacles. Just like the trapezoidal decompo-
sition, at an IN event, where the connectivity of the slice
increases, the current cell is closed and two new cells are
opened (Figure 8). Conversely, at an OUT event, where
the connectivity of the slice decreases, the two current
cells are closed and one new cell is opened (Figure 9).
The di�erence between the trapezoidal decomposition

and boustrophedon decomposition approach is with the
middle events: at the MIDDLE events, do not open nor
close a cell, but rather simply update the current cell.
Essentially, cells are opened and closed when there is a
change in connectivity of slice. See Figure 6.

As the decomposition is computed, the adjacency



Old Cell

CellOld

Slice 

c

New Cell

f

Figure 9. Out Event.

graph is also determined. Again, each cell is a node
in the graph and an edge connects the nodes of adjacent
cells. A depth-�rst-like graph search algorithm outputs a
path list that represents an exhaustive walk through the
adjacency graph. A walk through the path list consti-
tutes an exhaustive walk through the adjacency graph.
Finally, the actual path for the robot to take is com-

puted using the above described path list. When the
robot enters an \uncleaned" cell, the boustrophedic mo-
tion is planned, and then a path to the next cell in the
path list in planned. When the robot enters a \cleaned"
cell, it simply plans a path through that cell to the next
cell in the path list. These two actions are repeated until
the end of the path list is reached, i.e., until each cell has
been cleaned.

5 Algorithm Speci�cs

This section contains details for implementing the bous-
trophedon decomposition in a known polygonal envi-
ronment. Current work includes implementing the al-
gorithm in a curved environment using sensors. The
con�guration space obstacles are computed by enlarging
the obstacles by the radius of the robot, which is cir-
cular. The resulting generalized polygons (sequences of
segments and arcs of circles) are then approximated by
polygons.

5.1 Events

In our implementation of the boustrophedon decomposi-
tion method, we replaced themiddle event with two more
types of events: FLOOR and CEILING . The FLOOR

events correspond to vertices that are on the top of the
polygonal obstacle and the CEILING events correspond
to vertices that are on the bottom of the obstacle. In this
way, the FLOOR and CEILING events correspond to the

oor and ceiling, respectively, of the cells that are being
incrementally generated. See Figure 10.
The input to the algorithm is a list of polygons whose

vertices are listed in counter-clockwise order. The algo-
rithm �rst creates a list of events from the list of poly-
gons. The polygons are considered in no special order,
but in our implementation we make a generic assump-
tion that no two IN nor two OUT events have the same
x-coordinates.

Polygon

Cell

Ceiling

In Out

Figure 10. Floor and Ceiling of Cell

Polygon

Floor
Edge

EventIn
Ceiling

Edge

Figure 11. In Event.

Recall that an event is a vertex of a polygon and some
additional information; speci�cally, the event struc-
ture contains the location of the event, its type, and
pointer(s) to the edge (or edges) that is (are) associated
with it. The event structure has up to two types of point-
ers to edges: 
oor pointers and ceiling pointers. An IN

event's ceiling pointer points to the next edge emanating
from the event and the 
oor pointer points to the previ-
ous edge terminating at the event. See Figure 11. Con-
versely, the OUT event's 
oor pointer points to the next
edge emanating from it and the ceiling pointer points to
the edge terminating at the event. A CEILING event only
has a ceiling pointer which points to the edge emanating
from the event' a FLOOR event only has a 
oor pointer
which points to the edge terminating at the event.

When considering a particular polygon, the algorithm
�rst �nds the IN event of the polygon. The algorithm
walks through the vertex list of a polygon until it en-
counters the left-most vertex. This vertex, and its re-
lated information, is inserted into an events list. Since
the vertices are ordered in a counter clockwise fashion,
the next sequence of vertices are CEILING events. Recall
that although these vertices correspond to the underside
of the polygon, and they are CEILING events because
they correspond to the ceiling of the cell that is imme-
diately below the polygon.

The algorithm walks through the polygon list, insert-
ing each vertex as a CEILING event, until the algorithm
encounters the right-most vertex. This vertex, and its
associated information, is inserted into the events list as
an OUT vertex. The remaining vertices correspond to
FLOOR events.

As the events are encountered, they are inserted into
an ordered events list sorted by the x-coordinate of the
event. The insertion process is O(n logn) where n is the
total number of edges (or vertices) in polygonal environ-



ment.

5.2 Cells

A cell can be represented by two lists: a list of 
oor
edges and a list of ceiling edges, both of which bound the
cell. Therefore, the cell structure contains two pointers
to a lists of edges: a 
oor pointer and a ceiling pointer.
The cell structure also contains a linked list of pointers
to neighboring cells. Finally, the cell structure has two

ags: visited and cleaned, which are used later on in the
algorithm.

The cells of the boustrophedon decomposition are
computed in an incremental manner via a sweepline ap-
proach. Sweeping the environment is akin to visiting, in
order, each of the events of the events list because the
events list is already sorted.

The �rst cell is the left-most cell. It is assumed in
our implementation that the left most cell is arti�cially
opened before the actually sweeping procedure (i.e.,
sweeping starts to the left of the left-most IN event). It
is also assumed that the environment is bounded above
by an edge and bounded below by an edge. So, the �rst
cell's 
oor and ceiling pointers point to these bounding
edges.

The �rst real event is IN event. At the IN event,
the intersection of the slice and 
oor and the intersec-
tion of the slice and the ceiling of the current cell are
determined. Denote these points at f and c. See Fig-
ure 8. Typically, the 
oor and ceiling of the current cell
have multiple edges, so the intersection points f and c

are the end points of the last 
oor and ceiling edges, re-
spectively, of the current cell. Now, all of the 
oor and
ceiling segments of the current cell are determined and
the cell is considered to be closed.

Next, two new cells are to be opened: a bottom cell
and a top cell. The starting point of the �rst edge in the

oor of the bottom cell is the point f and the starting
point of the �rst edge in the ceiling of the bottom cell
is the event. The 
oor pointer of the bottom cell is set
to the 
oor pointer of the previously closed cell and the
ceiling pointer of the bottom cell is set to the ceiling
pointer of the open event. Conversely, for the top cell,
the starting point of the �rst edge in the 
oor is the event
whereas the starting point of the �rst edge in the ceiling
is the point c. Here, the new 
oor pointer is set to the

oor pointer of the event and the new ceiling pointer is
set to the ceiling pointer of the previously closed cell.

When a FLOOR event is encountered, the 
oor pointer
of the current cell is updated. Speci�cally, the 
oor edge
associated with the event is added to the 
oor edge list
of the current cell. Similarly, when a CEILING event is
encountered, the ceiling edge associated with the event
is added to the ceiling edge list.

Finally, when an OUT event is encountered, two cells

are closed and a new cell is opened. Again, let the bot-
tom cell and the top cell denote the two cells that are
closed at the OUT event and the new cell denote the cell
that is opened at the IN event. Let f be the intersection
of the current slice with the current edge in the 
oor list
of the bottom cell, and let c be the intersection of the
current slice with the current edge in ceiling list of the
top cell. The point f is the end point of the last segment
in the 
oor list of the bottom cell and the event location
is the end point of the last segment in the ceiling list of
the bottom cell. Likewise, the event location is the end
point of the last segment in the 
oor list of the top cell
and c is the end point of the of the last segment in the
ceiling list of the top cell. Once all of the 
oor and ceil-
ing segments of the bottom and top cells are determined,
the bottom and top cells are closed. See Figure 9.
Next, a new cell is to be opened. The starting point of

the �rst 
oor segment is f and the starting point of the
�rst ceiling segment is c. The 
oor pointer of the new
cell is set to the 
oor pointer of the previous bottom cell
and the ceiling pointer of the new cell is set to the ceiling
pointer of the previous top cell.
The cell neighbor list is also incrementally con-

structed. Recall, each cell has a pointer to a list of neigh-
boring cells which is updated at the IN and OUT events.
The goal is to insert the neighboring cells into the neigh-
bor list so that neighboring cells are in counter-clockwise
order around the current cell. At an IN event, the cur-
rent cell is split into two new cells: a bottom and a top.
First, a pointer to the top cell is inserted to the front of
the current cell's neighbor list and then a pointer to the
bottom cell is inserted to the front of the new neighbor
list. The result is

neighborlist = bottom ! top ! old neighborlist:

At an OUT event, a bottom and a top cells are merged
into a new cell. First, a pointer to the top cell is inserted
to the end of the neighbor list of the new cell and then
a pointer to the bottom cell is inserted to the end of the
neighbor list. The result is

neighborlist = old neighborlist! top ! bottom :

This process produces a neighbor list whose elements
are adjacent cells ordered in a counter clockwise fashion
starting from the lower right of the current or new cell.
After all of the events in the events list are visited, all

of the cells and their adjacency relationships are com-
puted; in e�ect, the boustrophedon decomposition and
its adjacency graph have been determined.

5.3 Coverage

With the decomposition and adjacency graph, the robot
can now plan a path that covers the environment. This is



done in two steps: a path is found in the in the adjacency
graph that visits each node, and then the explicit robot
motions are computed within each cell (i.e., node).

The determination of an optimal path that visits each
node in a generic graph is the classical traveling salesman
problem which is an NP-complete problem. A path list, a
list that represents an exhaustive walk through the adja-
cency graph, is computed using a depth-�rst-like search
algorithm.

1. Start with any cell in the decomposition. Insert it
into the path list. Mark it as visited.

2. Go to the �rst unvisited cell in the neighbor list of
the current cell (i.e., go to the �rst counter-clockwise
unvisited cell). Insert this cell into the beginning of
the path list and mark it as visited.

3. Repeat this procedure (i.e., goto step 2) until a cell
with all visited neighbors is encountered.

4. At this point, back track until a cell with unvis-
ited neighbors is encountered. This back tracking is
achieved by walking forward through the path list,
inserting each element that is visited to the front

of the path list, until an element with an unvisited
neighbor is encountered. Insert this element to the
front of the path list and repeat the above procedure
(i.e., goto step 2).

5. If no cell with an unvisited neighbor is found dur-
ing the back-tracking process, then all cells in the
adjacency graph have been visited.

Using the path list, the motions for the robot are com-
puted in a two-step process. First, if a cell is not cleaned,
the cell is marked cleaned and the actual boustrophedon
(back and forth) motion for the robot is computed for
the cell. Typically, the step size (i.e., the distance be-
tween two parallel line segments) for the boustrophedon
motion is about the width of the robot. Second, a path
to the next cell in the path list is determined. If the cell
is already cleaned, then a path to the next cell in the
path list is planned.

6 Simulation and Experiments

Figure 12 contains a 
oor plan of two obstacles. Fig-
ure 13 and 14 contains intermediate results of the 
oor
coverage algorithm. In Figure 13, two cells are already
covered and in Figure 14, all but two cells are covered.
The �nal coverage result can be seen in Figure 15.

It can be seen in Figure 15 that this approach has
some problems near obstacle edges that form acute an-
gles with the boustrophedon back and forth paths. To
partially alleviate this problem, when the robot trav-
els through a cleaned cell, it travels near the boundary
of an obstacle. Future implementation will include one

Figure 12. Floor plan bounded above and
below by line segments. Black poly-
gons are obstacles.

Figure 13. Two
cells have been
covered.

Figure 14. Coverage
almost complete.

additional pass where each obstacle is specially circum-
navigated. For applications such as vacuuming, this ad-
ditional approach is reasonable because most vacuuming
applications require a di�erent sucking mechanism near
the boundary of the environment.
The algorithm was also run on a Nomadic Technolo-

gies mobile robot base in a carpeted environment with
cardboard obstacles that was represented by the above
simulation. The implementation works in small envi-
ronments but had some problems with dead reckoning
in larger ones. In particular, not all lines were per-
fectly parallel. This approach can bene�t from the vision
based techniques used in the Demeter project [Ollis and
Stentz, 1996]. Also, out experiments showed that this
approach is extremely sensitive to initial conditions and

Figure 15. Complete coverage.



thus future work must make this procedure robust to
small changes in initial conditions.

7 Conclusion and Future Work

This paper describes a new type of 
oor coverage algo-
rithm that is complete. That is, the robot, in theory, is
guaranteed to follow a path such that every point in the
environment is passed over by the robot. The algorithm
is based on a new type of exact cellular decomposition
approach termed the boustrophedon cellular decompo-
sition. Boustrophedon means the way of the ox; bous-
trophedon motion is back and forth ox-like motions. A
robot can easily plan a boustrophedon motion in each
cell of the boustrophedon decomposition. Once each cell
is covered, the entire environment is covered.
Experimental results on a mobile robot has validated

this approach and pointed out some avenues of future
work. This approach sometimes skips portions of the
environment near the boundaries of obstacles because
of the discretization of the side step. If the robot has
a shorter side step, these uncovered areas are reduced.
There is a tradeo� time/coverage here. Nevertheless, a
simple obstacle following algorithm, after the main cov-
erage is completed, will alleviate this problem. Such a so-
lution is consistent with normal vacuum cleaning where
the portion of the 
oor near the walls requires an addi-
tional pass with a vacuum cleaner.
Near-term research also includes improving the bous-

trophedon cellular decomposition by allowing for the def-
inition of bigger (and thus fewer) cells. For example,
in Figure 6 the bottom three cells can be merged into
one cell in which boustrophedonmotion can be planned.
Furthermore, since a cell is open or closed when there
is a change in the connectivity of the sweep line, this
algorithm can be easily modi�ed to environments with
curved obstacles.
Also, there are issues in optimization that need be

considered. The �rst issue deals with the development
of metrics which gauge heuristic graph searches of the
adjacency graph. Such metrics include: path length,
area of re-covered 
oor space, time, etc. Another opti-
mization issue deals with determining the angle for the
sweepline; some environments may be better suited to a
horizontal sweep line.
Another issue deals with material removal. In the

case of the vacuum cleaner, this point is not important.
However, in the case of snow removal, a snow remov-
ing robot may have to plan optimal paths to transfer
the snow from the coverage site. This suggests the use
of multiple robots: one robot to remove the snow from
the ground, and another robot to transfer the snow to a
central dumping zone.
The long-term goal of this work is in sensor based 
oor

coverage, which is the determination of a coverage path

from solely line of sight sensor information. Sensor based

oor coverage is useful even when full knowledge of the
world is available to the robot, but is too cumbersome to
input into the robot. For example, an automatic vacuum
cleaner would not be a marketable product if each user
had to program a house CAD model (if it existed) into
the robot. The sensor based approach will be based on
Rimon and Canny's roadmap work which uses critical
points to guarantee the connectivity of a roadmap.

References
[Canny and Lin, 1990] J.F. Canny and M.C. Lin. An Op-
portunistic Global Path Planner. In Proc. IEEE Int. Conf.
on Robotics and Automation, pages 1554{1559, Cincinnati,
Ohio, 1990.

[Canny and Lin, 1993] J.F. Canny and M.C. Lin. An Oppor-
tunistic Global Path Planner. Algorithmica, 10:102{120,
1993.

[Canny, 1988] J.F. Canny. The Complexity of Robot Motion
Planning. MIT Press, Cambridge, MA, 1988.

[Colegrave and Branch, 1994] J. Colegrave and A. Branch.
A Case Study of Autonomous Household Vacuum Cleaner.
In AIAA/NASA CIRFFSS, 1994.

[Hert et al., 1996] S. Hert, S. Tiwari, and V. Lumelsky. A
Terrain-Covering Algorithm for an auv. Autonomous
Robots, 3:91{119, 1996.

[Hofner and Schmidt, 1995] C. Hofner and G. Schmidt. Path
planning and guidance techniques for an autonomous mo-
bile cleaning robot. Robotics and Autonomous Systems,
14:199{212, 1995.

[Kurabayashi et al., 1996] D. Kurabayashi, J. Ota, T. Arai,
and E. Yoshida. Cooperative Sweeping by Multiple Mobile
Robots. In Int. Conf. on Robotics and Automation, 1996.

[Latombe, 1991] J.C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Boston, MA, 1991.

[Ollis and Stentz, 1996] M. Ollis and A. Stentz. First Re-
sults in Vision-Based Crop Line Tracking. In IEEE Inter-
national Conference on Robotics and Automation, 1996.

[Preparata and Shamos, 1985] F.P. Preparata and M. I.
Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985. p198-257.

[VanderHeide and Rao, 1995] J. VanderHeide and N. S. V.
Rao. Terrain coverage of an unknown room by an au-
tonomous mobile robot. Technical Report ORNL/TM-
13117, Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee, 1995.

[Zelinsky et al., 1993] A. Zelinsky, R.A. Jarvis, J.C. Byrne,
and S. Yuta. Planning Paths of Complete Coverage of an
Unstructured Environment by a Mobile Robot. In Proceed-
ings of International Conference on Advanced Robotics,
pages pp533{pp538, Tokyo Japan, November 1993.


