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Abstract

We study the coverage properties of Bayesian confidence intervals for the smooth component

functions of generalized additive models (GAMs) represented using any penalized regression spline

approach. The intervals are the usual generalization of the intervals first proposed by Wahba and

Silverman in 1983 and 1985, respectively, to the GAM component context. We present simulation

evidence showing these intervals have close to nominal ‘across-the-function’ frequentist coverage

probabilities, except when the truth is close to a straight line/plane function. We extend the

argument introduced by Nychka in 1988 for univariate smoothing splines to explain these results.

The theoretical argument suggests that close to nominal coverage probabilities can be achieved,

provided that heavy oversmoothing is avoided, so that the bias is not too large a proportion of the

sampling variability. Otherwise, because the Bayesian intervals account for bias and variance, the

coverage probabilities are surprisingly insensitive to the exact choice of smoothing parameter. The

theoretical results allow us to derive alternative intervals from a purely frequentist point of view,

and to explain the impact that the neglect of smoothing parameter variability has on confidence

interval performance. They also suggest switching the target of inference for component-wise

intervals away from smooth components in the space of the GAM identifiability constraints. Instead

intervals should be produced for each function as if only the other model terms were subject to

identifiability constraints. If this is done then coverage probabilities are improved.

Key words: Bayesian confidence interval; Generalized additive model; Penalized regression spline.

1 Introduction

This paper is about the coverage properties of confidence intervals for the components of generalized

additive models (GAMs), when the components are represented using penalized regression splines, and

the smoothing parameters are estimated as part of fitting. Firstly we provide a novel adaptation of

Nychka’s (1988) analysis of the one dimensional smoothing spline case, to explain why the commonly
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used Bayesian confidence intervals for GAM components should have close to nominal ‘across-the-

function’ coverage probabilities, in most cases. This also allows us to derive alternative intervals from

a purely frequentist point of view, and to explain the impact that the neglect of smoothing parameter

variability has on confidence interval performance. Secondly our analysis shows that we can expect

component wise intervals to perform poorly in the case when the true component is ‘close to’ the null

space of the component’s smoothing penalty. Thirdly guided by the previous two results we provide

a proposal to partially alleviate the cases that give poor interval performance. Finally we provide

a simulation study which supports our findings, and illustrate the confidence intervals using a real

dataset.
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Figure 1: Results for component-wise Bayesian intervals for Bernoulli simulated data at three sample sizes. Observations
were generated as logit{E(Yi)} = α+ zi + f1(x1i)+ f2(x2i)+ f3(x3i)+ f4(x4i), where Yi followed a bernoulli distribution
and uniform covariates on the unit interval with correlations equal to 0.5 were employed (see section 4.1 for details). The
function definitions are given in Table 1. The functions were scaled to have the same magnitude in the linear predictor
and then the sum rescaled to produce probabilities in the range [0.02,0.98]. 1000 replicate datasets were then generated
and GAMs fitted using penalized thin plate regression splines (Wood, 2003) with basis dimensions equal to 10, 10, 10
and 20, respectively, and penalties based on second-order derivatives. Multiple smoothing parameter selection was by
generalized AIC (Wood, 2008). Displayed in the top row are the true functions, indicated by the black lines, as well
as example estimates and 95% Bayesian confidence intervals (gray lines) for the smooths involved. The bottom row
summarizes the interval coverage probability results. • represents the mean coverage probability from the 1000 across-
the-function coverage proportions of the intervals, vertical lines show ±2 standard error bands for the mean coverage
probabilities, and dashed horizontal lines show the nominal coverage probabilities considered.

Figure 1 illustrates our findings in one figure. Its 4 columns relate to the 4 functional components

of a GAM for some simulated binary data, with the thick black curves in the upper panels showing the

true component functions. Overlaid on each upper panel are example Bayesian confidence intervals

for each component. The lower panels illustrate the realized across-the-function coverage probabilities
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for such intervals over 1000 replicate datasets, at each of 3 sample sizes. Coverage properties are good

for all components, except for f2, where the truth is close to a function in the smoothing penalty null

space for the term. In this case the function is often estimated to be in the null space of the penalty

(as in the confidence interval shown for f2 in the figure). When combined with the identifiability

constraints necessary for GAM estimation, estimates in the penalty null space often have confidence

intervals that are of zero width at some point. Zero or narrow width implies that the estimation bias

exceeds its variance, and this in turn leads to a breakdown in the theoretical argument that underpins

close to nominal interval coverage. (Interestingly it appears that this is the only situation in which

the results show substantial sensitivity to smoothing parameter estimation.) A solution to this poor

coverage problem is to modify the target of inference. Rather than basing intervals on estimates

of the component functions in the null space of the identifiability constraints, we can base them on

estimates of the function in the space in which the component of interest is unconstrained, while

all identifiability constraints are carried by the other model components. Such intervals never have

vanishing width, and consequently display closer to nominal coverage probabilities in simulations.

The remainder of this paper develops these results more fully. Section 2 specifies the model

framework in more detail and establishes notation. Section 3 then presents the theoretical arguments

for close to nominal component wise coverage properties in general, but poor coverage properties

when ‘close to’ the penalty null space. It also suggests how to avoid poor interval coverage. Section

4 then presents the results of a simulation study supporting our findings, whereas Section 5 illustrate

the confidence intervals using data on diabetes in Pima Indian women.

2 Preliminaries

This section covers some standard but essential background on GAM estimation. A GAM (Hastie

and Tibshirani, 1990) is a generalized linear model (GLM; McCullagh and Nelder 1989) with a linear

predictor involving smooth functions of covariates:

g{E(Yi)} = X∗
i θ

∗ +
J
∑

j

fj(xji), i = 1, . . . , n (1)

where g(·) is a smooth monotonic twice differentiable link function, Yi is a univariate response that

follows an exponential family distribution, X∗
i is the ith row of X∗, which is the model matrix for any

strictly parametric model components, with corresponding parameter vector θ∗, and the fj are smooth

functions of the covariates xj , which may be vector covariates (so xji denotes the ith observation of

the jth covariate). The fj are subject to identifiability constraints, such as
∑n

i fj(xji) = 0 for all j.

In this paper we concentrate on the case in which the fj are represented using regression spline type

bases, with associated measures of function roughness that can be expressed as quadratic forms in the

basis coefficients (see Wood, 2006a for an overview). Given such bases the GAM is in principle just a

parametric GLM and can be estimated as such, but to avoid overfitting it is necessary to estimate such

models by penalized maximum likelihood estimation, in which the roughness measures are used to

control overfit. In practice, the penalized likelihood is maximized by penalized iteratively reweighted
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least squares (P-IRLS), so that the GAM is fitted by iterative minimization of the problem

‖
√

W[k](z[k] −Xβ)‖2 +
∑

j

λjβ
TSjβ w.r.t. β.

k is the iteration index, z[k] = Xβ[k]+G[k](y−µ[k]), µ
[k]
i is the current model estimate of E(Yi), G

[k] is

a diagonal matrix such that G
[k]
ii = g′(µ

[k]
i ), W[k] is a diagonal matrix given by W

[k]
ii = [G

[k]2
ii V (µ

[k]
i )]−1

where V (µ
[k]
i ) gives the variance of Yi to within a response distribution scale parameter, φ, X includes

the columns of X∗ and columns representing the spline bases for the fj , while β contains θ∗ and

all the smooth coefficient vectors, βj . The Sj are matrices of known coefficients such that βTSjβ

measures the roughness of fj . The λj are smoothing parameters that control the trade-off between

fit and smoothness. Smoothing parameter selection can be achieved, for example, by minimizing

the Generalized Cross Validation score (GCV; Craven and Wahba, 1979) if a scale parameter has to

be estimated, or the generalized Akaike’s information criterion otherwise (AIC; Akaike, 1973). Fast

stable computational methods for multiple smoothing parameter estimation are provided in Wood

(2004, 2008).

Inference for univariate spline models can be effectively achieved using the Bayesian confidence

intervals proposed by Wahba (1983) or Silverman (1985). As theoretically shown by Nychka (1988), for

the case of univariate models whose Bayesian intervals have close to constant width, a very interesting

feature of these intervals is that they work well when evaluated by a frequentist criterion, provided

coverage is measured ‘across-the-function’ rather than pointwise. Specifically, consider the model

Yi = f(xi) + ǫi, ǫi ∼ N(0, σ2),

where f is a smooth function of xi and the ǫi are mutually independent. According to Nychka’s results,

if f is estimated using a cubic smoothing spline for which the smoothing parameter is sufficiently

reliably estimated (e.g. by GCV) that the bias in the estimates is a modest fraction of the mean

squared error for f(x), then the average coverage probability (ACP)

ACP =
1

n

n
∑

i=1

Pr[f(xi) ∈ BIα(xi)]

is very close to the nominal level 1−α, where BIα(x) indicates the (1−α)100% Bayesian interval for

f(x) and α the significance level. This agreement occurs because the Wahba/Silverman type intervals

include both a bias and variance component. Note that for convenience we define ACP only over the

design points, rather than the whole function (but this restriction makes no practical difference for a

smooth well sampled function).

Wahba/Silverman type intervals are straightforward to extend to non-Gaussian settings and GAM

components (e.g. Gu, 1992; Gu, 2002; Gu and Wahba, 1993; Ruppert et al., 2003; Wood, 2006b). For

example, by working in terms of the random vector z (the converged z[k]), it has been shown (Wood,
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2006b) that the large sample posterior distribution for the regression spline coefficients of a GAM is

β|y,λ, φ ∼ N(β̂,Vβ), (2)

where β̂ is the maximum penalized likelihood estimate of β which is of the form (XTWX+S)−1XTWz,

Vβ = (XTWX + S)−1φ, W is the diagonal weight matrix at convergence of the P-IRLS algorithm

used for fitting, and S =
∑

j λjSj . Notice that W and φ are equal to the identity matrix and σ2,

respectively, when a normal response is assumed and an identity link function selected; furthermore,

in the normal errors case, result (2) holds independently of asymptotic arguments.

While the extension of the Wahba/Silverman results to the GAM component setting is well es-

tablished, the coverage properties of the extension are unclear: Nychka’s (1988) analysis has not

previously been extended to the GAM component setting. The remainder of this paper therefore

attempts to provide such an extension, and to examine component wise coverage properties by simu-

lation.

3 Confidence Intervals

The aim of this section is to develop a construction of variable width component-wise intervals. The

primary purpose of this construction is to reveal the coverage properties of the usual component-wise

extension of Wahba/Silverman type intervals as discussed, for instance, by Gu and Wahba (1993),

Fahrmeir et al. (2004), Ruppert et al. (2003) and Wood (2006b), to name a few. The initial part

of Section 3.1 is similar to the construction that can be found in Ruppert et al. (2003, Section 6.4),

but thereafter we are forced to follow a line more similar to Nychka (1988) in order to establish

coverage properties (which the Ruppert et al. (2003) derivation does not reveal). Our theoretical

derivations explain why Wahba/Silverman type intervals work well in a frequentist setting, and show

why intervals for smooth components that are in the penalty null space are problematic. The good

coverage probabilities obtained using result (2) are hence explained and a remedy to the near-straight-

line/plane case is introduced. The theoretical arguments also allow us to derive alternative intervals

when a purely frequentist approach is adopted.

For clarity the normal error, identity link, case is covered first, with the generalization to GAMs

discussed subsequently. We need to start by establishing some preliminary results.

3.1 Estimation of E‖B(β̂ − β)‖2/nb, and σ2

The subsequent arguments will require that we can estimate the expected mean squared error of linear

transformations of the coefficient estimates β̂, so this needs to be addressed first.

Consider, then, an arbitrary linear transformation defined by a matrix of fixed coefficients B,

with nb rows. We seek an estimate for the expected mean squared error, E(MB), of Bβ̂. From

the Bayesian approach we have β|y,λ, σ2 ∼ N(β̂,Vβ). Taking expectations with respect to this

distribution implies

E(MB) =
1

nb
E‖B(β̂ − β)‖2 = 1

nb
tr(BTBVβ),
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but this relies on adopting a fully Bayesian approach in which the random variability is ascribed to

β rather than β̂, which will make it difficult to establish interval coverage properties. This section

shows how we can instead estimate E(MB) directly, or by making more limited use of some of the

prior assumptions underpinning the Bayesian smoothing model.

First let β̃ denote the unpenalized, and hence unbiased, estimate of β. Let F = (XTX+S)−1XTX

be the matrix such that β̂ = Fβ̃ (X is the full model matrix here). It follows immediately that

E(β̂) = Fβ. It is then routine to show that the mean square error can be partitioned into a variance

term and a mean squared bias term

E(MB) =
1

nb
E‖B(β̂ − β)‖2 = 1

nb
tr(BTBV

β̂
) +

1

nb
‖B(F− I)β‖2, (3)

where V
β̂
= (XTX+ S)−1XTX(XTX+ S)−1σ2. Two approaches to estimation are now possible.

1. Plugging β̂ into the right hand side of (3) yields the obvious estimator

Ê(MB) =
1

nb
tr(BTBV

β̂
) +

1

nb
‖B(F− I)β̂‖2. (4)

2. Alternatively, we could seek to estimate (3) by assuming that the mean and variance assumptions

of the Bayesian model hold and using the corresponding expected value of the right hand side

of (3) as the estimator of E(MB).

Progress in this direction is most easily made by re-parameterizing using a ‘natural’ Demmler-

Reinsch type parameterization (e.g. Wood, 2006a, 4.10.4). Forming the QR decomposition

X = QR and the eigen decomposition R−TSR−1 = UDUT (where U is the orthogonal matrix

of eigenvectors and D the diagonal matrix of eigenvalues), then the reparameterization leads

to the new smooth coefficient vector UTRβ and matrix of fixed coefficients BR−1U. In this

parameterization the most important matrices are diagonal, for exampleVβ/σ
2 = F = (I+D)−1

and V
β̂
= (I+D)−2σ2. The prior assumptions then become E(β) = 0, var(βk) = D−1

kk σ
2, unless

Dkk = 0 (in which case the variance turns out to be immaterial), and the covariances are zero.

It is then routine to show that

1

nb
E‖B(F− I)β‖2 = 1

nb
tr(BTBH)σ2,

where H is a diagonal matrix with elements Hkk = Dkk/(1 +Dkk)
2. Recognizing that Hσ2 =

Vβ −V
β̂
, and substituting into (3) we have the estimate

Ê(MB) =
1

nb

̂
E‖B(β̂ − β)‖2 = 1

nb
tr(BTBVβ).

Reversing the re-parameterization confirms that this is simply

Ê(MB) =
1

nb
tr(BTB(XTX+ S)−1)σ2 (5)
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in the original parameterization. The point here is that if we are prepared to accept the Bayesian

prior mean and variance assumptions as a reasonable model, then (5) follows as an estimate of

E(MB).

If B = X then (5) leads easily to the usual estimator

σ̂2 =
‖y −Xβ̂‖2
n− tr(F)

. (6)

Alternatively, if we use (4), then we obtain

σ̂2 =
‖y −Xβ̂‖2 − ‖X(Fβ̂ − β̂)‖2

n− 2tr(F) + tr(FFT)
. (7)

3.2 Intervals

Having completed the necessary preliminaries, we now consider the construction of intervals for some

component function, f(x), of a model. f(x) is one of the functions fj(xj), but to avoid clutter the

index j is dropped here. Suppose that the vector of values of f evaluated at the observed covariate

values can be written as [f(x1), f(x2), . . . , f(xn)]
T ≡ f = Xβ. Here X is the model matrix for just one

model component: the matrix mapping the vector of all model coefficients to the evaluated values of

just one smooth component (so, many of the columns of X may be zero). Our approach will modify

Nychka’s (1988) construction in order to obtain intervals of variable width, which are also applicable

in the case where the function is only a component of a larger model.

Given some convenient constants, Ci, we seek a constant, A, such that

ACP =
1

n
E

{

∑

i

I(|f̂(xi)− f(xi)| ≤ zα/2A/
√

Ci)

}

= 1− α, (8)

where I is an indicator function, α is a constant between 0 and 1 and zα/2 is the α/2 critical point from

a standard normal distribution. To this end, define b(x) = E{f̂(x)}−f(x) and v(x) = f̂(x)−E{f̂(x)},
so that f̂ − f = b + v. Defining I to be a random variable uniformly distributed on {1, 2, . . . , n} we

have

ACP = Pr
(

|b(xI) + v(xI)| ≤ zα/2A/
√

CI

)

= Pr
(

|B + V | ≤ zα/2A
)

by definition of the randomised scaled bias and scaled variance, B =
√
CIb(xI) and V =

√
CIv(xI),

respectively. Approximation of the distribution of B + V is central to the following argument.

Let [b(x1), b(x2), . . . , b(xn)]
T ≡ b = E(f̂)− f . Hence, defining c = (

√
C1,

√
C2, . . . ,

√
Cn)

T, we have

E(B) =
∑

i

1

n
b(xi)

√

Ci = cT(E(f̂)− f)/n.

This quantity is the average bias across the component function and in practice tends to be very

7



small, unless heavy oversmoothing is employed. In any case it can be estimated as

Ê(B) = cT(
ˆ̂
f− f̂)/n = cTX(Fβ̂ − β̂)/n. (9)

Now consider V . Defining [v(x1), v(x2), . . . , v(xn)]
T ≡ v = f̂ −E(f̂), we have E(v) = 0, and hence

E(V ) =
∑

i

1

n
v(xi)

√

Ci = 0.

The covariance matrix of v is, V
f̂
= XV

β̂
XT, the same as that of f̂ . Hence

var(V ) =
∑

i

1

n
E{v(xi)2Ci} = tr(CV

f̂
)/n,

where C is the diagonal matrix with leading diagonal elements Ci. Now since v ∼ N(0,V
f̂
) (multi-

variate normality of v following from multivariate normality of f̂), V is a mixture of normals, which

is inconvenient unless [CV
f̂
]ii is independent of i. If this constant variance assumption holds then

V ∼ N(0, tr(CV
f̂
)σ2/n) (and the lack of dependence on i implies a lack of dependence on b(xi),

implying independence of B and V ).

It is the distribution of B+V that is needed. E(B+V ) = E(B) and by construction var(B+V ) =

E(M)− E(B)2 where

M =
1

n

∑

i

Ci{f̂(xi)− f(xi)}2 = ‖
√
C(f̂ − f)‖2/n = ‖

√
CX(β̂ − β)‖2/n.

Now we can exactly re-use Nychka’s (1988) argument: provided B is small relative to V then B + V

will be approximately normally distributed, i.e. approximately

B + V ∼ N(E(B),E(M)− E(B)2).

The assumption that B is small relative to V is examined in more detail in the Appendix. We can

estimate E(B) (either as 0 or using (9)) and E(M) (using (4) or (5)). So, defining σ̂2
bv = Ê(M)−Ê(B)2,

we have the approximate result

B + V ∼ N(Ê(B), σ̂2
bv).

Routine manipulation then results in

f̂(xi)− Ê(B)/
√

Ci ± zα/2σ̂bv/
√

Ci, (10)

as the definition of intervals achieving close to 1 − α ACP (i.e. A = σbv). Intuitively, it is the

fact that the convolution of B and V is close to a normal that leads the intervals to have good

across-the-function coverage.

So far the choice of Ci has not been discussed, but the constant variance requirement, for [CV
f̂
]ii

to be independent of i, places strong restrictions on what is possible here. Two choices are interesting:
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1. C−1
i = [V

f̂
]ii ensures that the constant variance assumption is met exactly. Note that in this

case, if we use (5) as the expected mean squared error estimate,

Ê(M) =
σ̂2

n

∑

i

[XVβX
T]ii

[V
f̂
]ii

.

In effect the resulting intervals are using the frequentist covariance matrix V
f̂
, but ‘scaled up’

to the ‘size’ of the Bayesian covariance matrix Vf = XVβX
T. Alternatively using (4) we have

Ê(M) = 1 + ‖
√
CX(Fβ̂ − β̂)‖2/n, (11)

and combining this with estimator (5) yields intervals

f̂(xi)− Ê(B)
√

[V
f̂
]ii ± zα/2

√

{

Ê(M)− Ê(B)2
}

[V
f̂
]ii. (12)

2. C−1
i = [Vf ]ii. If [V

f̂
]ii ≈ γ[Vf ]ii for some constant γ, then this choice approximately meets

the constant variance assumption. If we use the (typically accurate) approximation Ê(B) ≈ 0,

along with the mean squared error estimate (5), then the resulting intervals are exactly Bayesian

intervals of the Wahba/Silverman kind, i.e.

f̂(xi)± zα/2σ̂
√

[Vf ]ii. (13)

So, we arrive at the key result. Given the derivation of the intervals started from (8), we expect

component-wise Wahba/Silverman type intervals to have close to nominal coverage properties across

the function.

Notice the limited role of smoothing parameter selection in the above:

1. The requirement for B to be smaller than V , requires that we choose smoothing parameters so

as not to oversmooth too heavily, but otherwise the choice of smoothing parameter is rather

unimportant.

2. Accuracy of Ê(B) depends on f̂ being close to f , but this is exactly what smoothing parameter

selection methods try to achieve. In any case this term is typically small enough to be practically

negligible.

3. E(M) will be more reliably estimated by (4) if f̂ is close to f : again this is what smoothing

parameter selection tries to achieve. Similarly E(M) will be more reliably estimated by (5) if

the prior variance assumption for β is plausible. This variance is controlled by the smoothing

parameter for f , which the smoothing parameter selection method is designed to approximate

well.

The forgoing immediately suggests the circumstances under which the intervals will behave poorly.

If smoothing parameters are substantially over-estimated, so that we substantially oversmooth some
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component, then the requirement for B to be smaller than V will be violated. Two situations are

likely to promote oversmoothing. Firstly, if a true effect is almost in the penalty null space then

the estimated smoothing parameter may tend to infinity, forcing the estimate into the penalty null

space, and as we will see below, this can be problematic. A second possibility is that highly correlated

covariates are likely to mean that it is difficult to identify which corresponding smoothing parameters

should be high and which low. For example if one covariate has a very smooth effect, and another a

very wiggly effect, but they are highly correlated, it is quite possible that their estimated effects will

have the degrees of smoothness reversed. This means that one of the covariate effects is substantially

oversmoothed. There is some evidence for this effect in the simulation results shown in figure 7, but

it seems to be a less serious issue than the first problem.

In summary: we have shown that Bayesian component-wise variable width intervals, or our pro-

posed alternative, for the smooth components of an additive model should achieve close to nominal

across-the-function coverage probability, provided only that we do not oversmooth so heavily that

average bias dominates the sampling variability for a term estimate. Beyond this requirement not to

oversmooth too heavily, the results appear to have rather weak dependence on smoothing parameter

values, suggesting that the neglect of smoothing parameter variability should not significantly degrade

interval performance. Note however, that our results rely on several heuristic assumptions: i) that

E(B) is negligible, or can be reasonably well estimated by (11), (ii) that E(M) can be reasonably

well estimated by (4) or (5), (iii) that B is generally substantially smaller than V and, for Bayesian

intervals, iv) that [V
f̂
]ii ≈ γ[Vf ]ii. All are highly plausible, but are difficult to treat more rigorously.

3.3 Generalized additive model case

The results of sections 3.1 and 3.2 can be routinely extended to the generalized additive model case.

In the case of section 3.1 the results follow as large sample approximations with the substitutions

V
β̂

= (XTWX+ S)−1XTWX(XTWX+ S)−1φ, (14)

Vβ = (XTWX+ S)−1φ, (15)

F = (XTWX+ S)−1XTWX, (16)

and
√
WX = QR. Then (5) becomes

Ê(MB) =
1

n
tr(BTB(XTWX+ S)−1)σ2.

Similarly, (6) becomes

φ̂ =
‖
√
W(y −Xβ̂)‖2
n− tr(F)

,

while the generalization of (7) is

φ̂ =
‖
√
W(y −Xβ̂)‖2 − ‖

√
WX(Fβ̂ − β̂)‖2

n− 2tr(F) + tr(FFT)
.
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Section 3.2 also follows as before, but again with the substitutions (14) – (16). The key requirement

that v ∼ N(0,V
f̂
) is now a large sample approximation, which follows from the large sample normality

of β̂, which can readily be established (e.g. Wood, 2006b).

3.4 What the results explain

Our results explain the success of Bayesian, component-wise, variable width intervals, which is evi-

denced in the simulation study of the next section. More interestingly, they explain the cases where

the Bayesian intervals fail. The major failure, evident from simulations (see Figure 1), occurs when

a smooth component is close to a function in the null space of the component’s penalty (i.e. to a

straight line or plane, for the examples in this paper) and may therefore be estimated as exactly such

a function. The component will have been estimated subject to an identifiability constraint, but when

intervals are constructed subject to such a constraint, the observed coverage probabilities are poor.

The preceding theory explains why. For example, when a term is estimated as a straight line but

subject to an identifiability constraint then the associated confidence interval necessarily has width 0

where the line passes through the zero line. In this case the sampling variability must be smaller than

the bias over some interval surrounding the point, and the assumption that B is less than V will fail,

given also that the Ci associated with this interval will be very large.

The theory also suggests a remedy to this problem: compute each term’s interval as if it alone

were unconstrained, and identifiability was obtained by constraints on the other model terms (see

section below).

Notice that the interval failure in the constrained straight line/plane case is not just the result of

failing to meet the original Nychka (1988) constant width assumption: variable width intervals are

quite acceptable under our extension of Nychka’s argument: the problem occurs when the interval

width shrinks to zero somewhere.

The poor component-wise coverages reported in Wood (2006b) are also explained by our results.

The reported simulations were performed (in 2001/2) with the original smoothness selection method

proposed in Wood (2000), and using uncorrelated covariates. This method alternated Newton updates

of the smoothing parameters with a computationally cheap global search for an ‘overall’ smoothing

parameter. While superficially appealing, this global search can miss a shallow minimum altogether,

and place one or more smoothing parameters in a part of the smoothing parameter space in which the

smoothness selection criteria is completely flat. Once smoothing parameters are at such a point, then

they can only return by accident, in another global search, and this rarely happens. The upshot is that

too many straight line/plane are estimated, and as we have seen this degrades the performance of the

associated intervals. Step guarding procedures were eventually introduced in the code implementing

Wood (2000) in the R package mgcv, but the importance of then repeating the simulations in Wood

(2006b) was not appreciated by the second author, until now. The bootstrapping method proposed

by Wood (2006b) to improve interval coverage appears to have actually been fixing an artefact of

the smoothing parameter selection method, rather than a real deficiency in the confidence interval

methods.
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3.5 Component interval computation

As already mentioned we can improve interval performance by changing the target of inference, a little.

For each component smooth term, intervals can be constructed by applying identifiability constraints

to all other model components, but allowing the component of interest to ‘carry the intercept’. This

yields improved coverage probabilities, especially for the near straight line/plane case (see section

below), and in the authors’ experience also produces intervals that correspond more closely to the

way in which users tend to interpret component-wise intervals. Specifically, assume that the linear

predictor is

ηi = X∗
iβ

∗ +
∑

j

fj(xji)

where
∑

i fj(xji) = 0 for all j. Suppose that βj is the coefficient vector for fj , so that the complete

coefficient vector is β = (β∗T,βT

1 ,β
T

2 , . . .)
T, with Bayesian covariance matrix Vβ. Let α = 1TX∗β∗/n

define the intercept. We are interested in inference about f̃j(xj) = α+ fj(xj).

Now let X denote the full n× p model matrix, and assume that its first p∗ columns are given by

X∗. Further, let Xj denote the matrix X with all columns zeroed, except for those corresponding to

the coefficients of fj , and the first p∗: these are modified to Xj
ik =

∑

iXik/n for 1 ≤ k ≤ p∗. Then

Xj is the model matrix for f̃j , i.e. [f̃j(xj1), f̃(xj2), . . . , f̃(xjn)]
T ≡ f̃j = Xjβ. Then the Bayesian

covariance matrix for f̃j is just XjVβX
jT and interval computation is straightforward.

This fix is quite important since the near straight-line/plane case is the one that is most important

to get right for model selection purposes, both for deciding on which terms should be removed from a

model, and which should be treated purely parametrically. In other words, the problem fixed by the

preceding theory is of some importance in practice.

Notice that this proposal is not the same as basing intervals on the standard error of overall model

predictions, with all but the covariate of interest held constant (e.g. Ruppert et al., 2003 Chapter 8).

Such intervals are typically much wider than our proposal. Also note that trying to reduce the near

straight-line problem by using alternative constraints will unnecessarily widen confidence intervals,

since only the given constraint results in f̂j ⊥ 1.

4 Simulation study

A Monte Carlo simulation study was conducted to compare the practical performance of several

component-wise variable width confidence intervals. Specifically, based on equation (10), three kinds

of intervals were considered:

1. Standard Bayesian intervals: the Wahba/Silverman type Bayesian intervals for smooth functions

subject to identifiability constraints derived employing. i.e. (13) using (6).

2. Bayesian intervals with intercept: the same intervals as the previous ones but re-defining the

model matrix X as discussed in section 3.5.

3. Alternative intervals with intercept: these intervals are derived using the model matrix of section

3.5, and are given by (12) using (7).
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For the cases in which non-Gaussian data were considered, the substitutions of section 3.3 were

carried out. Under a wide variety of settings, and employing the test functions displayed in Figures

1 and 2, the confidence intervals were compared in terms of coverage probabilities.

x z

f

f5(x, z)

x z

f

f7(x, z)

Figure 2: Two of the three two-dimensional test functions used in the linear predictor η2,i. f6(x, z) is omitted since it
is not informative.

f1(x) = 2 sin(πx)
f2(x) = e2x

f3(x) = 0
f4(x) = x11{10(1− x)}6 + 10(10x)3(1− x)10

f5(x, z) = 0.7e−{(−3x+3)2+0.7(3z−3)2}/5

f6(x, z) = 0

f7(x, z) = 0.075e−
(x−0.3)2

0.32
−(z−0.3)2 + 0.094e−

(x−0.8)2

0.32
−

(z−0.8)2

0.42

Table 1: Test function definitions. f1 - f4 are plotted in Figure 1, and f5 and f7 in Figure 2.

4.1 Design

Two different linear predictors have been used for the simulation study. The first one was made up

of a parametric component, z, plus four one-dimensional test functions (see Figure 1 and Table 1)

η1i = α+ zi + f1(x1i) + f2(x2i) + f3(x3i) + f4(x4i).

The second one was made up of a parametric component plus three two-dimensional test functions

(see Figure 2 and Table 1)

η2i = α+ zi + f5(x5i, x6i) + f6(x7i, x8i) + f7(x9i, x10i).

Uniform covariates on (0, 1) with equal correlations were obtained using the algorithm from Gentle

(2003). For instance, using R, three uniform variables with correlations approximately equal to ρ could

be obtained as follows:

library(mvtnorm)

cor <- array(c(1,rho,rho,rho,1,rho,rho,rho,1),dim=c(3,3))

var <- pnorm(rmvnorm(n,sigma=cor))
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x1 <- var[,1]; x2 <- var[,2]; x3 <- var[,3]

This procedure was employed to obtain correlation among all covariates involved in a linear predictor.

The cases in which ρ was set to 0, 0.5 and 0.9 were considered. The functions were scaled to have

the same range and then summed. Data were simulated under four error models at each of three

signal to noise ratio levels, at each of three sample sizes, n = 200, 500, 2000 (further details are given

in Table 2). One-thousand replicate data sets were then generated at each sample size, distribution

and error level combination, and generalized additive models fitted using penalized thin regression

splines (Wood, 2003) based on second-order derivatives and with basis dimensions equal to 10, 10,

10 and 20 respectively for the first linear predictor, and with basis dimensions equal to 20, 20 and

50 for the second linear predictor. The smoothing parameters were chosen by GCV in the normal

and gamma cases and by generalized AIC in the Poisson and binomial cases (Wood, 2004, 2008).

For each replicate, 90%, 95% and 99% confidence intervals for the linear predictor as well as for each

smooth function, evaluated at the simulated covariate values, were obtained. Then for each value

of ρ, test function, sample size, signal to noise ratio, error model and 1 − α level, an overall mean

coverage probability from the resulting 1000 across-the-function coverage proportions was taken, and

its standard deviation calculated.

binomial gamma Gaussian Poisson

g(µ) logit log identity log
l ≤ η ≤ u [0.02, 0.98] [0.2, 3] [0, 1] [0.2, pmax]

s/n nbin= 1, 3, 5 φ = 0.6, 0.4, 0.2 σ= 0.4, 0.2, 0.1 pmax = 3, 6, 9

Table 2: Observations were generated from the appropriate distribution with true response means, laying in the specified
range, obtained by transforming the linear predictors by the inverse of the chosen link function. l, u and s/n stand for
lower bound, upper bound and signal to noise ratio parameter, respectively. The linear predictor for the binomial case
was scaled to produce probabilities in the range [0.02, 0.98]; observations were then simulated from binomial distributions
with denominator nbin. In the gamma case the linear predictor was scaled to have range [0.2, 3] and three levels of φ
used. For the Gaussian case normal random deviates with mean 0 and standard deviation σ were added to the true
expected values, which were then scaled to lay in [0, 1]. The linear predictor of the Poisson case was scaled in order to
yield true means in the interval [0.2, pmax].

4.2 Coverage probability results

To save space, not all simulation results are shown. Instead the most important examples chosen. We

have been careful to choose plots that are representative of the results in general, so that intuition

gained from the plots shown fairly reflects the intuition that would be gained from looking at all the

plots from the study.

Figures 3, 4 and 6 show coverage probability results when covariates are moderately correlated

(ρ = 0.5) and data are generated using linear predictor η1,i. Figure 8 refers to the case when employing

η2,i. Figures 5 and 7 serve to show the impact that covariate correlation has on confidence interval

performance.
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4.2.1 Results for standard Bayesian intervals

The standard Bayesian intervals yield realized coverage probabilities that appear to be fairly close to

their nominal values in most cases, even at small sample sizes when the signal-to-noise ratio is not

too low. The exception is for function f2(x) where the smoothing parameter methods tend to select

more straight lines than they should really be selecting. However, as explained in section 3.4, it is

because of the identifiability constraint that the confidence intervals are too narrow, and the coverage

probabilities are poor as a consequence of the violation of the assumption that B is less than V . It

is worth observing that when not much information is present in the data, it is likely to come up

with straight line estimates for smooth functions like f2(x). In combination with the identifiability

constraint this has a detrimental effect on confidence interval performance, which is why confidence

intervals should really be constructed including the intercept of the model.

4.2.2 Results for Bayesian intervals ‘with intercept’

As suggested in section 3.4, interval performance can be improved by allowing the component of

interest to ‘carry the intercept’. When this is done, the component-wise Bayesian intervals produce

overall better coverage probabilities, especially for the near straight line/plane case; see functions

f2(x) and f5(x, z).

4.2.3 Results for alternative intervals ‘with intercept’

The alternative intervals also exhibit good component-wise interval performance but with slower

convergence rate: this is probably because of the higher number of component quantities that have

to be estimated for these intervals.

4.2.4 Impact of covariate correlation

Covariate correlation has an impact on confidence interval performance. Figures 5, 6 and 7 show the

coverage probabilities obtained for Poisson data when correlated covariates were generated using ρ = 0,

0.5 and 0.9 respectively. It can be seen that although mild correlation does not spoil the coverage

probabilities, a heavier one degrades some of them. As explained in section 3.2, the confidence

intervals exhibit good practical performance if the smoothing parameters are chosen such that the

estimated smooth components are not too heavily oversmoothed, but this is less likely to happen

when covariates are heavily correlated. In this case, when ρ = 0.9 the covariates are quite confounded

and this may lead to heavy oversmoothing for some component function of a GAM (often with

some other component correspondingly undersmoothed, but this is less detrimental). Looking at the

coverage probability results from the standard Bayesian intervals and comparing the results across

the different values of ρ reveal that the coverages for f1(x) and f2(x) worsen. This means that

for these two functions a smoother estimate is often selected, and this is why interval performance

degrades. Specifically, the major failure evident from our results occurs for f2(x) where a substantial

number of straight line estimates are selected. On the other hand, it would be rather remarkable if

a smoothing method could select the right curve for a function which is so close to a straight line,
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Figure 3: Coverage probability results for binomial data generated using η1,i as a linear predictor. Covariate correlation
was equal to 0.5. Details are given in section 4. ◦, ⊕ and • stand for high, medium and low noise level respectively.
Standard error bands are not reported since they are smaller than the plotting symbols. Notice the improvement in the
performance of the component-wise intervals for f2(x), when the intercept is included in the calculations.

gamma − ρ=0.5

sample size

co
ve

ra
ge

 p
ro

ba
bi

lit
y

0.75
0.80
0.85
0.90
0.95
1.00

200 500 2000

Standard Bayesian Intervals

f 4
(x

)

200 500 2000

Bayesian Intervals with Intercept

f 4
(x

)

200 500 2000

New Intervals with Intercept

f 4
(x

)

Standard Bayesian Intervals

f 3
(x

)

Bayesian Intervals with Intercept

f 3
(x

)

0.75
0.80
0.85
0.90
0.95
1.00New Intervals with Intercept

f 3
(x

)

0.75
0.80
0.85
0.90
0.95
1.00 Standard Bayesian Intervals

f 2
(x

)

Bayesian Intervals with Intercept

f 2
(x

)

New Intervals with Intercept

f 2
(x

)

Standard Bayesian Intervals

f 1
(x

)

Bayesian Intervals with Intercept

f 1
(x

)

0.75
0.80
0.85
0.90
0.95
1.00New Intervals with Intercept

f 1
(x

)

0.75
0.80
0.85
0.90
0.95
1.00

Standard Bayesian Intervals

al
l

Bayesian Intervals with Intercept

al
l

New Intervals with Intercept

al
l

Figure 4: Coverage probability results for gamma data. Details are given in the caption of Figure 3.

16



Poisson − ρ=0
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Figure 5: Coverage probability results for Poisson data for the case in which correlated uniform covariates were obtained
setting ρ = 0. Details are given in the caption of Figure 3.
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Figure 6: Coverage probability results for Poisson data for the case in which ρ was set to 0.5. Details are given in the
caption of Figure 3.
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Poisson − ρ=0.9
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Figure 7: Coverage probability results for Poisson data for the case in which ρ was set to 0.9. Details are given in the
caption of Figure 3. Notice how the confidence interval performance for f1(x) and f2(x) degrades when oversmoothing,
due to high covariate correlation, occurs.
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Figure 8: Coverage probability results for Gaussian data generated using η2,i as a linear predictor. Covariate correlation
was equal to 0.5. Details are given in the caption of Figure 3. Notice the improvement in the performance of the intervals
for f5(x, z), when the intercept is included in the calculations.
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when ρ = 0.9. The interval performance for f3(x) and f4(x) does not change significantly. Concerning

f3(x), straight line estimates and wiggly ones are selected, but always centered on the right level. For

this reason, interval performance does not degrade. Regarding f4(x), the smoothing parameter can

still be reasonably estimated as a result of the fact that the degree of complexity of this function is

not low and hence heavy oversmoothing is not likely to occur, even when ρ = 0.9. Obviously, the

Bayesian intervals ‘with intercept’ exhibit better coverage probabilities. Notice, once again, that as

the information contained in the data increases interval performance improves.

The following argument explains the counter-intuitive downward coverage probability pattern that

can be observed for a near-straight-line function like f2(x) (see Figure 7 for example). Let us consider

a situation in which a straight line estimate is always selected for f2(x). The confidence intervals for

the case in which n = 200 and the signal-to-noise ratio is low will be wider than the ones obtained for

the case in which n = 200 but the signal-to-noise ratio is high. This means that, for some functions

like the one being analyzed here, oversmoothing can become unimportant since the intervals will be

so wide that they will do a better job than the ones calculated when more information is contained in

the data. In other words, when the complexity of a function is not high and provided data are noisy

enough to get very wide confidence intervals, the violation of the assumption that B is less than V

can become irrelevant. However, as the signal-to-noise ratio and the sample size increase the intervals

become narrower and the conclusions drawn in this results section apply.

5 Example: Diabetes in Pima women

In this section, we show the results obtained by applying the confidence intervals discussed in the

paper to a dataset on diabetes in Pima Indian women.

The data were collected by the US National Institute of Diabetes and Digestive and Kidney

Diseases, and are provided with the MASS library in R. Women who were at least 21 years old, of

Pima Indian heritage and living near Phoenix, Arizona, were tested for diabetes according to World

Health Organization criteria. The aim of the analysis was to investigate the relationship between

presence of diabetes (defined as a binary variable) and different types of risk factors. The covariates

considered were age (in years), pedigree (diabetes pedigree function), mass (body mass index, weight

in kg/(height in m)2), triceps (triceps skin fold thickness, mm), pressure (diastolic blood pressure,

mm Hg), glucose (plasma glucose concentration in an oral glucose tolerance test), pregnant (number

of pregnancies). We used the 532 complete records.

Figure 9 shows the smooth function estimates, together with the three kinds of intervals considered

in this paper, obtained when fitting a GAM on the Pima Indian dataset. A Bernoulli distribution with

a logistic link function between the linear predictor and the mean was employed. Smooth functions

were represented using penalized thin regression splines based on second-order derivatives and with

basis dimensions equal to 10. The smoothing parameters were chosen by generalized AIC. Before

interpreting the empirical findings, it is important to stress that these confidence intervals have close

to nominal coverage probabilities when averaged across the observation points, but not necessarily

point-wise. This means that care must be taken not to over-interpret point-wise. Moreover, as
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Figure 9: Smooth function estimates (solid middle lines) obtained fitting a GAM on the Pima Indian dataset, with
corresponding 95% standard Bayesian intervals (solid lines), Bayesian intervals with intercept (dashed lines), and fully
frequentist intervals with intercept (dotted lines). The results are reported on the scale of the linear predictor. The
numbers in brackets in the y-axis captions are the estimated degrees of freedom of the smooth curves. The ‘rug plot’,
at the bottom of each graph, shows the covariate values. Note that in some cases the Bayesian and frequentist intervals
with intercept differ only minimally, hence they can hardly be distinguished. Further details are given in Section 5.

pointed out, e.g., by Hastie and Tibshirani (1990, p. 62), a confidence band is limited in the amount

of information it provides, in that the functions in the confidence set might exhibit features that are

not necessarily evident from the confidence band.

The intervals in Figure 9 all suggest no significant role for triceps and pressure, with no real

difference in interpretation between the alternative intervals (as we would expect for effects that are

really in the penalty null space). Inference about the strong, non-linear effects of age and mass are

essentially unchanged between the different intervals (as is expected for effects that are not ‘close

to’ the penalty null space). Interpretation of the remaining three covariates highlights the practical

difference in using the ‘with intercept’ intervals: for all three the interpretation changes somewhat

between the constrained intervals and the others, although the effects are not dramatic. For glucose

the ‘with intercept’ intervals admit the possibility of a mildly non-linear effect, as opposed to the

strictly linear effect of the constrained interval. For pregnant we see some weakening of the evidence

for any effect at all, in moving to the with intercept intervals. Similarly the evidence for a strong

initial positive effect of pedigree, is weakened, although there is still good evidence that the effect

is real. This example illustrates what we would expect to see in general: by using better calibrated

intervals, we are unlikely to see dramatic changes in overall interpretation, but will be somewhat less

likely to over-interpret.

6 Discussion

We have shown by simulation and extension of Nychka’s (1988) analysis, that the Wahba/Silverman

type Bayesian intervals for the components of a penalized regression spline based GAM have gen-
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erally close to nominal frequentist properties, across-the-function. As simulation evidence and our

theoretical arguments suggest, the exception occurs when components estimated subject to identifia-

bility constraints have interval widths vanishing somewhere as a result of heavy smoothing. Coverage

probabilities can be improved if intervals are only obtained for unconstrained quantities, such as a

smooth component plus the model intercept. The theoretical results also allow us to define alterna-

tive intervals from a purely frequentist approach, and these appear to perform almost as well as the

Bayesian intervals.

The results make a novel contribution in extending Nychka’s argument to the GAM component

case, thereby pinpointing the circumstances in which the intervals will and will not work, and ex-

plaining the role of smoothness selection as well as smoothing parameter uncertainty.

The findings are backed up with quite extensive simulation testing of the finite sample performance

of the three types of confidence intervals considered here. Specifically, our Monte Carlo investigation

allowed us to compare the component-wise intervals under a wide variety of setting. In this respect,

our simulation results show under which circumstances these intervals can reliably represent smooth

term uncertainty, given the smoothing parameter selection methods employed here, and may provide

applied researchers with some guidance about the practical performance of the intervals.

An obvious open question is whether the theory can be made more rigorous. Our theoretical

arguments clearly explain why the Bayesian intervals have close to nominal coverage properties, but

do so without actually proving that the intervals will always do so. As detailed in section 3, our

argument relies on some plausible assumptions, but substantial further work would be needed to

establish the exact conditions under which these will hold.

Finally note that several other approaches have also been proposed to produce inferential tools for

spline type smoothers and GAMs. Hastie and Tibshirani (1990) suggested using simple frequentist

approximations to produce approximate confidence intervals. Other frameworks include the use of

bootstrap methods as well as the fully Bayesian approach. For example, Härdle and Bowman (1988)

and Härdle and Marron (1991) used bootstrap to construct pointwise and simultaneous confidence

intervals. An under-smoothing approach has also been taken within the bootstrap framework, as a

devise for avoiding smoothing bias (Hall, 1992; Kaurmann and Opsomer, 2003). Direct bootstrapping

has been employed as well, as in Härdle et al. (2004) who make use of ‘Wild’ bootstrap methods.

As an alternative, Fahrmeir et al. (2004) and Fahrmeir and Lang (2001) adopted the fully Bayesian

approach, which employs MCMC for practical computations. Wang and Wahba (1995) compared the

Wahba/Silverman type confidence intervals with those derived using several variations of the bootstrap

approach. They found that the bootstrap framework can yield intervals that are comparable to the

Bayesian ones in terms of across-the-function coverage properties. However, they are computationally

intensive, a problem which may affect the fully Bayesian approach as well.
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Appendix: The relative magnitude of B and V

Our analysis suggests that the intervals will only work well if B is of substantially smaller magnitude

than V . Nychka (1988) provided simulation evidence that this would usually be the case for univari-

ate spline smoothing. This appendix provides some simulation evidence that this also holds in the

component wise case, as well as providing a limited theoretical exploration of the issue.

Empirical insight into the relative magnitude of B and V can be gained by examining the per-

centage mean squared bias and mean variance of the smooth components of a GAM. Table 3 reports

these two quantities, calculated according to the definitions in Section 3.2 with C−1
i = [Vfj

]ii for each

smooth component j, for some of the cases considered in our simulation study. Overall, the mean

squared bias is of substantially smaller magnitude than the mean variance, except for f2 where the

opposite happens. As explained in Section 3.4, when a true function is close to a term in the null

space of the component’s penalty, and the corresponding smooth function is estimated as a straight

line but subject to an identifiability constraint, the assumption that B is less than V will fail. These

results are consistent with our simulations, where poor coverage probabilities were obtained for f2.

Notice that this is not the result of failing to meet the assumption that the mean squared bias of

the parameters of a smooth is less than its mean variance. The fact that B is greater than V is due

to an ‘artifact’ induced by the identifiability constraint, an issue which can be explored only if using

the extended Nychka argument of this paper, where some constants Ci have to be used to derive

non-constant width intervals for GAM components. Recall that as a remedy, improved coverages are

obtained if each term’s interval is computed as if it alone were unconstrained, and identifiability was

obtained by constraints on the other model terms.

binomial gamma Gaussian Poisson

function b̄2
∗

v̄2
∗

b̄2
∗

v̄2
∗

b̄2
∗

v̄2
∗

b̄2
∗

v̄2
∗

f1 8.6 91.4 12.8 87.2 9.0 91.0 17.0 83.0
f2 76.5 23.5 90.4 9.6 62.5 37.5 94.9 5.1
f3 0.9 99.1 0.1 99.9 0.1 99.9 0.3 99.7
f4 15.4 84.6 26.5 73.5 13.4 86.6 17.5 82.5

Table 3: Percentage mean squared bias (b̄2
∗

) and mean variance (v̄2
∗

) results for the smooth components of GAMs
fitted to data simulated from four error models at medium noise level. Covariate correlation and sample size were 0.5
and 200 (see Section 4 for further details). b̄2

∗

= b̄2/(b̄2 + v̄2) ∗ 100 and v̄2
∗

= b̄2/(b̄2 + v̄2) ∗ 100, where b̄2 and v̄2 were
calculated following the definitions in Section 3.2, with C−1

i = [Vfj
]ii for each smooth component j. Notice that the

B < V assumption is comfortably met for all terms except for f2, which is the problematic case in the first columns of
Figures 3 - 7.

Some limited theoretical insight into the relative magnitude of B and V can be gained by examining

the mean squared bias and mean variance of the parameters of a smooth, in the Demmler-Reinsch

(or ‘natural’) parameterization as in Section 3.1. For simplicity, and without loss of generality, let us

consider the case of a smooth estimated by a penalized least squares fit to data with variance σ2. In

the new parameterization, provided the model is a reasonable fit, it is easy to find expressions for the
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mean variance and mean squared bias of the coefficients,

v̄2 =
1

p

∑

k

σ2

(1 +Dkk)2

and

b̄2 =
1

p

∑

k

σ2Dkk

(1 +Dkk)2
.

If M is the dimension of the null space of the smooth penalty then M of the Dkk will be zero. These

unpenalized coefficients contribute Mσ2/p to the mean variance, and nothing at all to the mean

squared bias. So for b̄2 to exceed v̄2 we require the remaining terms in the b̄2 to tend to exceed the

corresponding terms in v̄2 and to be substantial relative to Mσ2/p. This is difficult to achieve. The

largest term in b̄2 is bounded above by σ2/(4p), and is of the same size as the corresponding term in

v̄2. Later terms in b̄2 do become larger than the corresponding terms in v̄2, but at the same time they

rapidly become very small relative to Mσ2/p. Given that different smoothers will have different eigen

spectra, it is difficult to make this argument more precise, but it does go some way to explaining the

simulation results, and also makes the interesting prediction that the B less than V assumption will

tend to hold more strongly as the dimension of the penalty null space increases.
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