ION-Israel Institute of Technology

COVERING A GRAPH BY CIRCUITS
by

Alon Itai* and Michael Rodeh ${ }^{* *}$
Technical Report \#104
July 1977

[^0]by

Alon Ital.
Technion, Is rael Institute of Technology, Halfa, Israel Mlchael Rodeh
IBM Israel Scientific Center, Halfa, Israel

Abstract

A circuit cover is a set of circults which cover all the edges of a graph; Its length is the sum of the lengths of the circuits. In analyzing irrigation systems and electrical circults it is necessary to find a short clrcuit cover. It is shown that every bridge-free connected undirected graph with n vertices and e edges has a circult cover the length of which is less than or equal to e+2nlogn. A probabllistic algorlthm for finding such a cover is presented; its expected running time is $O\left(n^{2}\right)$, independent of the input graph. This constitutes one of the first examples of solving a graph-theoretical problem by a probabilistic algorlthm - the class of algorithms introduced by Rabin.

If the graph contalns two edge-disjolnt spanning trees then there exists a clrcult cover of length at most e+n-1.

The relationship of the circuit cover problem to the Chinese postman problem is also discussed.

1. INTRODUCTION

In analyzing irrigation systems by the Hardy Cross method [C] all the edges of a connected undirected graph must be covered by circuits. The set of resulting clrcuits is called a clrcult cover. Once found, a certain function must be computed along these circuits. Since the computatlonal effort depends on the sum of the lengths of the circuits (the length of the cover)., it is worthwhlle to first find a short circult cover. A similar problem can arise in analyzing electrical circuits.

Thls problem is related to that of the Chinese postman [EJ] : to flnd the shortest tour such that each edge is traversed at least once. (That is, the postman must dellver mall along each edge of a graph and return to his starting point.) A circult cover can be easily converted to a tour, which need not be the shortest. However, not every Chlnese postman tour can be decomposed into a circult cover, even if such a cover exists. For example, the tour lllustrated in Flgure 1 can not be converted to, a circult cover because a circuit may not contain an edge more than once.

Fig. 1

A graph has a circuit cover if and only if it does not contain any brldge (an edge the deletion of which increases the number of connected components). Henceforth, we assume that all the input graphs are connected and brldge-free. (These propertles can be checked in linear time [AHU],)

Note that an Euler circuit is a circult cover in which each edge is covered exactly once. Therefore, a connected graph $G=(V, E)$ with n vertices and e edges has a circuit cover of length e if and only if it is an Euler graph (equivalently, the degree of each vertex is even). Note also that the edges of each of the faces of a planar graph form a circult cover which covers every edge exactly twice.

Let T be a spanning tree of a graph $G=(V, E)$. Each edge (u,v) of G-T together with the unique path from u to v in T form a circult. These $e-(n-1)$ clrcuits are called the fundamental circults of the graph with respect to. T. Obviausly, the fundamental circults form a circult cover. However, the length of such a cover may be as large as $0\left(n^{3}\right)$ (e.g. for the complete graph with n vertices).

We prove that any brldge-free graph has a circuit cover the length of which is at most $e+2 n \operatorname{logn}$. A probabllistic algorithm (an algorithm which contains some random cholces) for finding such a cover is presented. It takes $O\left(n^{2}\right)$ time on the average, independent of the input graph. This algorithm may not terminate (with probability zero) and as such it belongs to Rabin's third category of probabilistic algorithms [R]. In fact it constitutes one of the first examples of using probabilistic algoritikms for
graph-theoretical problems. A deterministic version of the algorlthm requires at most $0\left(n^{3}\right)$ time. We also show that every graph which contains two edge-disjoint spanning trees has a circult cover of length $e+n-1$.

Both the circuit cover and the Chinese postmian problems can be defined for strongly connected directed graphs. However, a solution for one of the problems directly ylelds a solution for the other. A shortest tour may be found in $O\left(n^{3} \log n\right)$ time by constructing a Hitchcock transportation problem [EJ] and solving it using the scaling method of Edmonds and Karp [EK].
2. A REDUCTION TO SPARSE GRAPHS

To construct a cover of length $\mathrm{e}+\mathrm{O}(\mathrm{nlogn})$, we first cover at least e-n edges and then cover the remalnding edges by circuits contalned in an auxiliary subgraph. In fact, every undirected graph G contalns subgraphs H and F such that:
(1) H is connected, bridge-free and has n vertices and at most 2n-3 edges.
(ii) F is a forest contained in H.
(iil) Each connected component of G-F is an Euler graph.
Therefore, $G-F$ is a set of edge-disjoint clrcuits. This set can be extended to a circult cover of G by adding a set of circuits in H which covers every edge of F.

To find H and F, let T be a depth-first-search (DFS) spanning tree of G [AHU]. Now conduct a DFS on T. Each tree-edge is traversed twice, once in the forward direction and once backwards. When traversing the tree-edge (u, v) backwards from v to u, if the
degree of v in G is odd, then delete the edge (u, v) from G. Let F be the set of the deleted edges. F is a forest since it is a subgraph of the tree T. Each connected component of the graph G-F is an Euler graph since the degree of each vertex is even. Let H be a subgraph of G which contains T and, \ln addition, at most one back edge from each vertex: for each vertex v from which back edges emanate we choose the back edge which leads to the lowest vertex (the vertex first visited by the DFS). H is connected, bridge-free, and has n vertices and at most $2 n-3$ edges, since H contains $n-1$ tree-edges and at most $n-2$ back edges, (back edges may emanate from all the vertices except the root and its sons). A cover for F in H and an Euler circult for every connected component of G-F yields a clrcult cover for G. Figure 2 lllustrates a graph G, a DFS tree T, the corresponding forest F, and the subgraph H of G.

Fig. 2

A generallzed circuit (g-circuit) is a union of edge-disjoint simple circuits. A set B of g-circuits is an F-cover if every edge of F belongs to at least one g-circuit of B. B is a g-minimum F-cover if it is an F-cover with the smallest number of g-circuits. A subset S of an F-cover B is exact (with respect to F) if there exists at least one edge in F which belongs to all the g-circuits of S and to no.g-circult of $B-S$. An F-cover is irreducible if all its nonempty subsets are exact.

We cover F by a set of g-circuits. The Initlal. F-cover is the set of fundamental circuits obtained from the spanning tree T. We then try to reduce the number of g-circuits. The basic taol far reducing the number of $g-c i r c u l t s$ in a given F-cover B is the procedure REDUCE. REDUCE (B, S) accepts an F-cover B and a subset S of B. If S is not exact then B is updated and its cardinality is decreased by one.
procedure REDUCE (B, S);
begin comment let $S=\left\{c_{1}, \ldots, c_{s}\right\}$;
If $s=1$ then

1. begin if every edge of C_{1} is covered by $B-S$ then $B:=B-S$ end
2. else begin $S^{\prime}:=\left\{c_{i}{ }^{\oplus} c_{i+1} \mid 1 \leqslant i<s\right\} ;$
3. If $(B-S) \cup S^{\prime \prime}$ is an F-cover then $B:=(B-S) S^{\prime}$
end
end

To implement REDUCE we prepare a list NCTE E_{B} which for every
edge $f \in F$ contiains the number of g-circuits in the current f-cover B which pass through f. Initlally the list can be computed in $O\left(n^{2}\right)$ time, and then updated without affecting the asymptotic running time.

Lemma 1: The execution time of $\operatorname{REDUCE}(B, S)$ is $O(n|S|)$. Proof: Llne 1 can be done simply by checking. whether $\operatorname{NCTE}_{B}(f)>$, for every $f \in c_{1}$. Line 2 requires $O(n|S| j)$ time (remember that the number of edges in H is at most $2 n-2$). Line 3 can be exeçuted by checking whether every entry in the updated $N C T E_{B}$ is non-zero. Q.E.D.

Lemma 2: Every g-minimum F-cover is irreducib1e.
Proof: Assume to the contrary that $\$$ is a non-exact subset of a g-milnimum F-cover B. Apply. $\operatorname{REDUCE}(B, S)$. The resultant F-cover has fewer g-circults than the original one, contradicting the g-minimality of B. Q.E.D.

Note that not every Irreducible f-cover is g-minimum, e.g. the F-cover B_{1} for F and G as in Figure 3 is an Irreducible F-cover but not g-minimum since B_{2} contains fewer g-circuits,

G

F

Fig. 3

Lemma 3: Every F-cover contalins at most $n-1$ exact subsets.
Proof: For every exact subset S of an F-cover B, there exists at least one edge $f_{S} \in F$ which is covered by all g-circuits of S and by no other g-circuit of B. These edges are all distinct. Since F contains ąt most $n-1$ edges, B may contain at most $n-1$ such subsets. Q.E.D.

Lemma_ 4: Every irreducible F-cover contains at most [logn」 g-circuits.

Proof: Let B be an irreducible F-cover. By Lemma 3, B contains at most $n-1$ exact subsets. By definition every nonempty subset of B is exact. Therefore, $2^{|B|}-1 \leqslant n-1$ or $|B| \leqslant\lfloor\log n \mid$. Q.E.D.

Theorem 1: Let G be a bridge-free graph with n vertices and e edges. Then G has a circuit cover the length of which is no more than $e+(2 n-3)\lfloor\log n\rfloor$.

Proof: In the previous section we obtalned a sparse subgraph H and a forest $F=5 H$. All the edges of $G-F$ may be covered by exactly one g-circuit the length of which is at most e. Since H is bridge-free it has a g-minimum F-cover B. By Lemmas 2 and 4, B is irreducible and contains at most [logn」 g-circuits. Since each of these g-circuits is contained in H and H has at most $2 n-3$ edges, the length of each g-circult is at most $2 n-3$. Therefore, the length of the F-cover is at most ($2 n-3$) Llognl which completes the proof. Q.E.D.

A graph G with n vertices is dense if it contains at least $n \operatorname{logn}$ edges.

Corollary 1: Every dense graph has a circuit cover the length of which is linear in the number of edges.
4. FINDING IRREDUCIBLE F-COVER

To produce an Irreducible F-cover we proceed in two steps: First we use the procedure LG to construct an F-cover consisting of at most $[\operatorname{lognl} g-c i r c u l t s$. Then we apply the procedure $I R$ to obtain an irreduclble f-cover.

procedure LG;

begin $B: x$ the set of fundamental circuits of H w.r.t. T;

1. whlle $\binom{|B|}{2} \geq 2 n$ do
2. begln $S:=a$ random subset of B of cardinallty 2;
3. call REDUCE (B, S) end;
4. whlle $|B|>\lceil\operatorname{logni}$ do
5. begin $S:=a$ random non-empty subset of B of cardinality at most 「lognl;
6. call REDUCE(B,S) end
end

The procedure LG is próbabllistic. Theoretically, it may loop forever without finding a non-exact subset S of B. Lemma 5 implies that in practice this does not happen. Later the lemma is used to estimate the behav́lor of the algorithm.

Lemma 5: The probability is less than or equal to $1 / 2$ that the
subset S of B chosen at random In Line 2 or Line 5 of LG is exact. Proof: At Line 2, $\binom{(\mathrm{Bl}}{2} \geq 2 n$. Since there are at most $n-1$ exact subsets (Lemma 3) the probability of choosing one is at most $(n-1) / 2 n<1 / 2$ 。

At Line 5, $|B| \geqslant 1+\lceil\log n\rceil$. Therefore, the number of non-empty subsets of B with cardinallty at most llognt is $\sum_{i=1}^{\lceil\log n\rceil}\binom{\operatorname{lB|}}{i} \geqslant \sum_{i=1}^{\Gamma \log n\rceil}\binom{i+\lceil\log n\rceil}{ i}=2^{\lceil\log n 7+1}-2 \geqslant 2 n-2$. Therefore, the probability of choosing an exact subset in line 5 is at most $(n-1) /(2 n-2)=1 / 2 . \quad$ Q.E.D.

Lemma 6: The average execution time of LG is $O\left(n^{2}\right)$.
Proof: Since the probability of choosing an exact subset either in Line 2 or in Line 5 is less thạn or equal to $1 / 2$ (Lemma 5) we conclude that REDUCE will not be invoked more than twlce on the average without reducing the cardinality of B. Therefore, Line 3 is, executed no more than twice on the average until, $|B|$ decreases. Since $|B|<n-1$, Lines $2-3$ are repeated no more than $2(n-1)=0(n)$. times on the average. By Lemmia 1 , each invocation of REDUCE in Line 3 requires $O(n \mid S f)=O(2 n)=O(n)$, time. Therefore, the average execution time of Lines $1-3$ is bounded by $O\left(n^{2}\right)$.

At Line $4 \quad\binom{|B|}{2}<2 n$ and thus $|B|(|B|-1)<4 n$ which implies $|B|<1+2 \sqrt{n}$. Since REDUCE is called no more than twice on the average, until $|B|$ decreases, LInes $5-6$ are repeated $2(1+2 \sqrt{n})=0(\sqrt{n})$ times on the average. By Lemma 1 each invocation of Line 5 requires $O(n \log n)$ time, hence the loop of Lines 5-6 requires at most $O\left(n^{1.5} \operatorname{logn}\right) \leqslant O\left(n^{2}\right)$ time on the average. Q.E.D.

LG is a probabilistic algorlthm which produces an F-cover B
with cardinality at most flognl. The final step is to obtain an Irreducible F-cover using the deterministic algorithm IR(B) below.

procedure $1 R(B)$;

1. begin while there exists a nonempty subset S of B do 2: call REDUCE (B, S)
end

Let $B=\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}^{*}$ and $p=2^{b}-1$. Let $S_{1}, S_{2}, \ldots, S_{p}$ be the 1 ist of nonempty subsets of B sorted in lexicographic order. Let NCTE be a list which records the number of g-circuits of S covering every edge f of $F . S$ is exact if and only if there exists an edge f of F for which $\operatorname{NCTE}_{B}(f)=\operatorname{NCTE}_{S}(f)=|S|$. To produce $\operatorname{NCTE}_{S_{i}}$ we úse $\operatorname{NCTE}_{S_{i-1}}$. The time needed for such a computation is $0\left(n\left|S_{i-1} \oplus S_{i}\right|\right)$. Therefore, the total execution time of Line 1 for a given B is at mos, $O\left(n \sum_{i=2}^{p}\left|S_{i-1} \oplus S_{i}\right|\right)$. For the lexicographic order, this expression is $O(n p)$.

When a non-exact subset is found, the value of p is halved. Therefare, the total execution time of Line 1 is bounded by $Q\left(n p \sum_{i=0}^{\infty} 2^{-i}\right)=O(n p)$.

Lemma 1 and $|B| \leq\lceil\operatorname{logn}\rceil$ imply that the total execution time of Line 2 is bounded by $O\left(n \log ^{2} n\right)$.

Using $p \leqslant 2^{\text {rloo } r} \leqslant 2 n$ we conclude:

Theorem 2: An Irreducible F-cover may bé produced in $0\left(n^{2}\right)$ time on the average.

Similar considerations, but using deterministic instead of probabilistic methods, yield the following result:

Theorem 3: An irreducible F-cover may be produced in at most $O\left(n^{3}\right)$ time.
5. COVERING A GRAPH WHंICH CONTAINS TWO EDGE-DISJOINT SPANNING TREES

Let G be a graph which contains two edge-disjoint spanning trees, T_{1} and T_{2}. In Section 2 a method was presented for deleting some of the edges of a, spanning tree to yield an Euler subgraph. We use the same method to cover G. First, we delete m edges of T_{1} and obtain a connected Euler subgraph of G, which may be covered by e-m edges. Only m edges of T_{1} have not yet been covered. To cover them we apply the same method to the graph H consisting of T_{2} and the uncovered edges of T_{1}. Since T_{2} is a spanning tree of H deleting some edges of T_{2} yields a subgraph containing ali the m uncovered edges. Moreover, each connected component of this subgraph is an Euler graph. The length of this cover is at most $m+n-1$. Combining these two covers yields a result which covers every edge at most twice and whose length is at most e+n-1. The running time of the method is bounded by $0(n e)$ - the time required to find two disjoint spannlng trees or show that no such two trees exist [K].

6. RELATIONSHIP TO THE CHINESE POSTMAN AND OPEN PROBLEMS

Every Euler circuit induces a Chinese postman tour. On the other hand, every postman tour P of G defines an Euler multigraph $G^{\prime}: G^{\prime}$ contalns G and some additional coples of the edges of G, so that the multiplicity of every edge is equal to the number of times it is traversed in the tour. Let D be the set of edges which appear in G^{\prime} but not in G.

Lemma 7: D does not contain circults.
Proof: Assume that D contalns a circuit C. Deleting C from G^{\prime} yields a multigraph G'' which also contains G. SInce G.' is an Euler graph so is G'!. Therefore, an Euler circult for G'I constitutes a postman tour which is shorter than P, contradicting the minimality of P.

Corollary 2: The Chlnese postman tour consists of at most e+n-1 edges.

Note that this corollary holds even if the edges have positive weights (and the problem is to find a tour of minimum weight).

Every circuit cover induces a postman tour. It is unknown to us whether a reduction in the opposite direction is possible, i.e., given a postman tour, does there exist a circuit cover in which each edge is covered the same number of times as in the tour.

Weaker versions of this problem are:
(i). Does every graph have a circult cover of length is less than or equal to $\mathrm{e}+\mathrm{n}-1$?
(ii) Does every graph have a circuit cover in which each edge is covered at most twice?

Possible other extensions are to find a cover of minimum length and to investigate the problem of finding a circuit cover of small weight in a graph with weights on the edges.

REFERENCES

|AHU| A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wंesley (1974).
|C| H. Cross, "Analysis of Flow In Networks of Condults of Conductors" Bull. No. 286, Univ. of Hllnois Engineering Experimental Station; Urbana, 111.(193.6).

IEJI J. Edmonds and E. L. Johnson, "Matching, Euler Tours and the Chinese Postman", Math. Prógramming -5(1973) 88-124.
|EK| J. Edmonds and R. M. Karp, "Theoretical Improvements in Algorlthmic Efficiency for Network Flow Problems", J. ACM 19(1972) 248-264.
|K| T. Kameda, "On Maximally Distant Spanning Trees of a Gra'ph", Computing 17(1976) 115-119.

ILI C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill (1968).
|R| M. O. Rabin, "Probabalistlc Algorithms". Proc. Syme on New Directions and Recent Results in Algorithms and Complexity, Carnegie-Mellon University, Academlc Press (April 1976).

[^0]: * Technion-Israel Institute of Technology, Computer Science Dept., Haifas Israel.
 ** IBM Israel Scientific Center, Haifá, Israel.

