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ABSTRACT 

~ A ctrcutt cover ts a set of clrcutts which cover all the 

edges of a graph; Its length ts the sum of the lengths of the 

circlJits. In analyzing irrigation systems and electrical circuIts 

it Is necessary to find a short circuit cover. It Is shown ,that 

...	 every· b rl dge-fre~ connected und i rected graph wI th n~ vert Ices and e 

edges has.a c]rcult cover the length of whIch Is less than or 

equal to e+2nlogn. ,A probab"lllsttc algorithm for flndl'ng such' a ,	 . 
cover Is presented; Its expected running time Is O(n~) , 

Independent of th~ Input graph. This constltute~ one of the first 

examples of soLving a graph-theoretIcal. , problem by a probabn Isttc 

algorIthm - the claSs of al~ortih~s Introduced by Rabln~ 

If the graph contaJns two edge-dIsjoint s-pannlng trees then 
( 

there' exls'ts a circuIt cover of length a~ most e+n-l. 

The rel~tionshlp of the ctrcu~t cover problem. to the Chinese 

~qstman problem Is also dIscussed • 

.. 

~ 
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1. INTRODUCT ION.,. 
I.n analyzing irrigation systems by the Hardy Cross method eCl 

~ 

all the edges of a connected undirected graph must .be cove~~d by 

circuits. The set of resulting circuits Is called a cIrcuIt covet. 

.once found, a cePt~In functIon mu.st be computed along t.h~se 

circuIts. SInce the computational' effort' depends on the sum of the 

lengths of the cIrcuIts (the length of the coved" it is 

worthwhile to first fInd a short ,circuit cover. A similar problem 

can arise in analyzIng electrIcal circuIts. 

This problem is related to that of the Chtnese postman lEJl :, 

to fInd the shortest tour such that each edg~ ls travers~d at 

least once .. (That Is, the postr.nan must t deliver maq along each .
 
edge of	 a graph and return to hIs' starting point .. J A clrcutt cover 

<IC	 , 
can be easily converted to a tour~ whIch need not be the shortest. 

•	 However, not ev~ry ChInese postman tour can be decpmposed into a 

circuIt cover, everi If such a cove~ exists. For example, the tour 

illustrated in Figure 1 can not be converted to a circuIt cover 
I 

because a circuIt may not contatn an eage more than once .., . 
_.... ------

~. 

Fig. 1 ..... 

iif 
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A graph.	 has' a cIrcuIt cover if and only If It. 'does not 
'" contain	 any brIdge (an edge the deletIon of which jncreas~s the 
p	 number of connected compo'"!ents). Henceforth, we assume that all 

the Input graphs are connected and bridge-free. (These prope~tles 

can be checked in linear time [AHU],) 

Note ~hat an Euler cIrcuit Is a cir.cult cover In whicn each 

edge Is covered exactly once. Therefore, a connected graph G~(V,E) 

with n vertices and ~ edges has a circuIt cover·of length e If' and / 

only If It is an Euler graph (e~ulvalently, the d~gree of each 

vertex Js even). Note a'lso that the edges of each of the faces of 

a planar graph form a circuit cover which covers every edge
t "	 ~ 

exact 1y twl ce.
 

Let T be a spanning tree of a graph G=(V,E). Each ~dge (u~v)
 

a; 

of G-T toget'her wi th the .uni que path from u to v In T form a
 

I~	 circuit. These e-(n-l) cIrcuIts are called the fundam¢ntat 

circuits of the graph wIth respect to. T. 'Obviously, the 

fundamental cIrcuIts form a circuIt cover. However, the length 'of 

such a cover may be as large as O(n~) (e.g. for the comp.ete graph 

with n vertices). 
. 

We prove that any brIdge-free graph has a circuit cover the 

length of whIch Is at most e+2~10gn. A probabllistJc algorithm (an 
rio" ~ 

algorithm whIch contains some rando~ chotces) for finding such a 

cover is presented. It takes 0(n 2 
) time on the average, 

independent of the input graph. This algorithm may not terminate 

(with probabil ity zero) and as such It belongs to Rabin's third 

category of probabilistic algorithms [R]. In fact It constltute~ 

.c, one of ~he first examples of using probabll istic algorithms for 

J&. 
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graph-theoretical problems. A deter~lnistic versIon of the ..	 I • 

algor1thm requIres at most O(n~) tlme~ We also sho~ that every 

III g~aph which conta)ns two edge-disjoint spanning trees has a 

circuit cover of length e+n-l. 

Both the circuit cover and the Ch1nese postman problems can 

be def1ned for strongly connected directed graphs. However, a 

\	 solut1on for one of the problems directly yIelds a solutIon ~or 

the other. A shortest tour may be foynd 1n O(n~logn) time by 

constructing a Hltchc'ock tr.ansportatlon problem [EJ] and salviRg 

it using the scaling method of Edmonds and Karp (EK]. 

2. A REDUCTION TO SPARSE GRAPHS 

To construct a cover of length e+O(nlogn), we first cover at 
"" least e-n edges and then cover the femainding edges by circuits 

-. contained in an auxill<;lry subgraph. In fact, every undirected 

graph G ~ontalns s~bgraphs Hand F such that: 

(I) H Is connected, bridge-free and has n vertices and at most 
, 

2n-3 edges. 

(f f) F i s a fore s t cont a ~ ned i n H. 

( I i I) Each connected component of G·F I s an Euler graph. 

Therefore, G-F is a set of edge-disjoint circuits. This set 

can be extended to a cIrcuit cover of G by addIng a set of 

circuits 1n H whIch cover~ every edge of F. 

T~ find Hand F, let T be a depth-first-search (OFS) spanning 

tree of G [AHU]. N~w conduct a DFS on T. Each tree-edge Is 

traversed twice, once in the forward directIon and once backwards. 

A When traversing the tree-edge (u,v) backwards from v to u, if the 

...., 
,
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, 
degree of· v In G Is odd, then delete the edge (u,v) from G. Let F 

~ be the set of the deleted edges. F Is ~ f,orest since 'It Is a 

subgraph of the tree T. Each connected compon~nt of the graph ~-F 

Is an Euler graph since the .degree of each vertex Is even. Let H 

be a subgraph of G whIch contaIns T .and,- . In addItIon, at· most one 

back edge from each vertex: for each ver·tex v from which back 

edges emanate we choose the back edge wh ich ,1 eads to the lowest 

vertex (the vertex fIrst vIsited by the DFS). H is connected, 

bridge-free, and has n vertrees 'and at most 2n'-3 edges, since H 

contains n-! tree-edges and at most n-2 ~ack edges, (back edges may 

emanate from arl the vertIces except the root and its sons). A 

cover for F In H and' an Euler circuit for every connected 

::- CQmponent of G-F yields a circuIt cover for G. FIgure 2 

Illustrates a graph G, a DFS tree Tt the correspondIng forest F, 

and the subgraph H of G. 

'
 

b c b c b c b c 

/\ 
o -0

f e e f e e 

G T F 

Fig. 2 

f~ f 

H' 

'i 

, 
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A 3. COVERING THE FOREST F 

~ A generalized circuit (g-clrcuit) is a union of edge-disjoint 

simple circuits. A set B of g-circuits is an E-cQyer if ev~ry edge 

Qf F belQngs tQ at least Qne g-circuit of B. B Is a 

g-minlmum E-cQver If It Is an F-cover with the smallest number of, 

g-circuits. A ~ubset S of an E-cover B is exact (wrt~ respect to 

F) If there exists at least one edge In F which belongs to all the 

g-circults of S and to nQ. g-cfrcult of B-S. An F-cover Is 

irredyclbl~ if alt Its nonempty subsets are exact. 

We cover F by a set of g-circults. The Initial, E-cover Is the 

set of fundamental circuits obtained from the spannfng tree T. We 

then try to reduce the number of g-clrcufts. The baSic tqol fQr 
.. reducing the numb~r of g-clrcults In a gIven F-cover B Is the 

proced'u r'e REDUCE. REDUCE tB, S) accepts an F-cover B and a s ubs.et ,S....\ 
. .	 of B.; I·f Sis not exac~ then B fs updated and Its cardinality Is , ~

decreased	 by one. 

proCedure REDUCE(B,S); 

begin comment let S·tc4' •• ~'Cs}; 

If ~ =1 .t.h!ul 

1." begl n li every edge of c1 is covered by B-S ~ B:=B-S ~ 

2. ~	 begin s':=rCi(f.c~+1 11"1<53:' 
, 

3.	 If (B-S)US' Is an F-cover then B:=(B.-S)uS' 

.fUll! 

jillQ 

To implement REDUCE ,we prepare a list NCTEB which for ~v~ry. 
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edge f~F contains the numbe~ of g~clrcults in the current F-cover 

B which pass thro,ugh f~ Initially' the list can be computed In 

0(n2 
) time, ~nd then upd~ted wlt~out affecting the asymptdtic 

running time. 

( 

Lemma 1: The execution time of REDUC~(B,S) is O(nISI>' 

Pro6f: Line 1 can be done simply by checkin~ wheiher NCTEb(f~>l 

for every f~c". Line Z requires O(nISI'> time (remember that tl)e' 

number qf edges In H Is at most 2n-2). Line 3 can be exe~uted by 

checking whether every entry in the updated NCTE B IS,non-zero! 

Q.E.D~ 

~\. 

Lemma 2: ~very g-mlnimum F-cover Is irreducible. 

Proof: Assume to the contrary that S is a non-exact subset of a 

g-m!nimum F-cover B. Apply REDUCE(~,S). The resultant F-cover has 

fewer g-clrcurts than the original one, cqntradicting the 

g-mrnrmality of B. Q.E.D. 

Note that not every irreducible F-cover is g-minlmum~ ~.g. 

the F-cover B1. for F and G as in Figure 3 Is an Irreducible 

F-cov~r bU,t not g-m In 1mum s I nee B,2, conta i ns fewer g-c I rcu its, 

hl ./
-J. -

'" 

B1 = {c 1	 = {a,b,c,d,k,g,:l}, 

= {a,b,j,e,f,g,h}.,c2 
c = {i ,c,d,e,f,g,h}}
3 

8 = {c~= {a,b,c,d,e~fJg,h},2 
Cs = {i ,j ,k/9"h}}. 

/ 

• G	 F
Fig. 3 

Technion - Computer Science Department - Technical Report  CS0104 - 1977



8
 

..	 LeOJDa 3.: Every F-cover conta I ns at most n-1 exact subsets • 

PrQof: FQr every exact subset S of an F-cover B, ther~ exists at 
~ 

1east Qne edge fs E: F which 'I s covered by all g-cl rcui ts of S and by~ 

no other g-ci.rcuit Qf B. These edges. are all distinct. Since F 

cont.alns qt mostn-1 edges, B may cQntain at mQst n-1 such 
"\ 

subs·ets. Q.E.D. 

Lemma 4: Every irreducible F-cover CQnta i ns a t mas t 11 ognJ 

g-circults. 

prQQf: Let B be an irreducible F-cover. By Lemma 3, B contains·tat 

mQst n-1 exac~ subsets. By definitiQn every nQnempty subset of. B 

is exact. TherefQre, 21~'-1~n-1 Qr IBI'llognj. Q.E.D. 

TheQrem	 1: Let G be a bridge-free graph with n vertices and e 

a	 edges. Then G has a circuit cover the length Qf which is nQ mQre 

than e+(2n-3)L1Q&nJ. 
/ 

PrQQf: In the previQus se~tlon we Qbtalned a sparse subgraph Hand 

a fQrest FsH. All the edges of G-F may be cQvered oy exactly Qne 

g-clrcuit the length Qf which is at most e. Since'H is bridge-free 

·It has a g-minimum F-cQver B. By Lemmas 2 and 4, B is irreduclbre 

and cQntains at most llQgnJ g-circuits. Since each Qf these 

g-circuits, fs cQntained' in Hand H has at mQst 2n-3 edges, the. 
length 9f eacn g-circult is at most 2n-3. Therefore, the length 'of 

the F-cQyer is at most (2n-3)L1QgnJ which cQmpletes the prQQf. 

Q.E.D. 

A graph G with n vertices is dense if it cQntains at least 

!11Qgn edges. 
\"'q 
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Corollary 1: Every dense graph has a circuit cover the length of 
~ 

which is linear in the number of edges. 

4. FINDING IRRED~CIBLE F-COVER 

To produce an lrredu~ible F-cover .we proceed In tWQ steps: 

First w~ use the procedure LG to construct an F-cover consisting 

of at most rlognl g-clrcults. THen we apply the pro~edure IR to 

obtain an irreducible F-cover. 

procedure LG;" 

begin B:-the set of fundamental circuits of H w.r.t, T; 
... r ~I

1. while ( ~ )~2n ~ 
\ 

.. 2• begin S:=a random subset of B of cardinality 2; 

3. ~ REDUCE(B,Sr ..e.n..d.l. 

4. while IBI>rtognl.Q.Q 

S. begin S:=a:random non-empty subset of B of cardinal tty at 

most nognl;
 

'6. ££ll REDUCECB,S) ~
 
1 

~ 

. . 
The procedure LG Is prpbabilfstlc. Theoretically, it may loop

/.' ... ~ 

'forever without finding a non-exact" sub'set S of B. Lenvna 5 Implies 

that in practice this does not happen. Later the lemma is used to 

'estimate. the behavior ,of- the al god thm. 

'10< 

Lemma 5: rhe prob~bility is less than or equal to 1/2 that the 

#., 
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.. 
subset S of B chosen at random In Line 2 or Line 5 of LG Is exa~t. 

~ Proof": At LI ne 2, (l~t)~2n. Since there are at most n-1 ex~ct 

s.ubsets ( Lemma ~) the prqbabil fty of choosing one Is at mpst, 

(n-1)/2n<1/2. 

At Li'ne 5, IBI)l+rlognl. Therefore, the number of non-empty 

subs'ets of B with cardinality at most flogn'. Is 
rloi n1 1~1 r\o.9nl1.'+no~nl r'lo,9nl""l
.L (.) ~!. ( :. ) = 2 -2l2n-2.. Therefore, tlie 
1.= I 1. 1 i= I ., 

,probability of choo~lng an exact subset in Line 5 ~s at most 

(n-~)/{2n-2)=1/2. Q. E• D'. 

Lemma 6: The average execution time of LG is O(n~). 

Proof: S'I nce the probab 11 I ty of choos I ng an exact' subset e I t her ,1 n 

line 2 or In Line 5 i~ less th~n or equal to 1/2 (Lemma 5) we 
,

conclude that REDUCE will not ~e invoked more than twice on the 

• i 
,- average without reduci~g the cardinality of B. Therefore, line 3 

is,executed no more than twIce on the ave'rage until, IBI decreases .. 

Since IBI<n-1, LJn~s 2-3,.are repeated no more than 2(n-1)-0[n)· 

times, on the average. By Lemma 1, each Invocation of REDUCE in 
Is:" 

I 

Line 3 reQu]res O(nlS~)=O(2n)=O(n) time. T~erefore, the averag~ 
\ 

execution time of lines 1-3 Is bounded by 0(n2 
). 

At Line 4 ( I ~I ) <2nand thus I ~ I ( I B1-1 )< 4n which I mpl res 

I B1<1+2 ..fi1'• S i nceREDUCE I s called no more than twice on the 
< t 

average until IBt decreases, Lines 5-6 are rep~ated 2(1+2fn)=O!rn) 
, 

times on the average. By Lemma 1 each Invocation of line 5 

requires O(nlogn) time, hence the loop of Lines 5-6 requires at 

most O(n1. 51ogn)~0(n2.) time on' the average. Q.r:.D • 

... 
\ 

, '...til.l.s a "probab ,I 1 istic algorithm which produces an F-co,ver B 
~ 
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• with ca~dinal ity at most' rlognl. The fInal step is to obtain an 
. . . '. 

Irredu91ble F-cover using the getermlnlstlc algorithm IR(B) below. 
~• 

prOcedure IR{B); 

1. begin while there exists a nonempty subset S of B do 

2~ ~ REDUCE(~,S) , 

M.d. 

b
let B=~c1:,c;l", ••• ,Cb3 and p=2 -1,. let S1,S2,1••• ,Sp be the list 

of nonempty subsets of B sorted in lexicographic order. let NCTE's 

be a list which records the number of g-clrcults of S ~overlng 

every edge f of F. S Is exact If and only if there exLsts an edge 

f of F ,for which "NCTE$(f)=NCTEs (f)=I'S[ .. To prod~ce NCTEsi. we lise 

NCTE S" • The time needed for such a c'omputatlon' is O(n[Si_, (±)Sil)~ 
'I.-I 

.Therefore, the total execution t Ime of Ll ne 1 for a given B Is at 
p , 

mos,t O( n i?-Z lSi _I Cf.lSi I ,.~ For the lex I cogra 8h Ic order, this 

expression is O(np). 

wti en a ,non-exac t subs.et I s found, the 'Va 1ue of pis ha 1ved .. 

Therefore, the total execution time of line 1 I s bounded by 
Of: • 

rt(np.L. 2- 1 )=O(np).
'( 1= 0 

lemma i a nd I BI.~ rl ognl imply th~t the total execution time of 

Line 2 is bounded by O(nlog~n). 

r 100 'r")
Using pS2 - ~ 2n we conclude,: 

Theorem 2: An irreducible F-~over may be produced in O(n~) time on 

I~, the average. 

I~
I~ 

r 

" 
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,. 
SI mil arc0 ns I cl era t Ions , but 

probabll Istlc method~, yield the 

us rng de t e r mt,n rs tic 

followlDg result: 

Ins t ea d 0f 

Theor\em 3: 

t-t me. 

An irreducible F-cover may be produced In at most OCn$) 

5.COVERING' A GRAPH WH'ICH CONTAINS TWO EDGE-DISJOINT SPANNING· TREES 

.. 

i 

let G be a graph which contains two edge-disjoint spanning 

trees, T1 and, T2.. In Sec~'lon 2 a method was presented for deleting 

some of t he edges of q~ Spa nn I ng tree to y I e1dan Eul er' subgra-ph. 

We use the same me~Hod io cover G. First, we deret~m edges bf T~ 

and obta I n a connected Eul.er subgraph of G, wh Ich may be co'(erec;i 

by' e-m edges. Onl y m edges of T" have not yet been covered.' To 

cover them we apply t.he same method to the graph H consl'stlng of 

T2 and the uncovered edges of T1 • Since T~ Is a spanning tree of H 

deleting some edges of T2 yields a subgraph containing all the m 

uncovered edges. Moreover, each connected component, of th I s 

supgraph Is an Eul·er graph., The length of t'his cover is at most 

m+n-l. Como(ni'ng these two covers yields a r~sul t which ~overs 

every edge at most t~lce and whose length Is at most e+n-1. The 

running time of the method is bounded by O(ne) - the time required 

to find two disjoint spanning trees or show that no such two trees. . 
ex 1st [K]. 

:

...'t'" 
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;. 6. RELATiONsHIP TO THE CHINESE POSTMAN AND OPEN 'PROBLEMS 

; Every Euler circuIt induces a Chinese postman tour. On the 

other ha'nd, every postman' tour P of G defi nes an Euler mu1 t Igraph 

GI : G' contains -G and some additional copies of the edges of G, so 

that the multiplicity of every edge ~s equal to the number o~ 

times it is traversed In the tour. Let 0 be the set of edges which 

appear in G' but not In G. 

Lemma 7: 0 does not contain circuits. 

.. 

;r 

.'..,. 

Proof: Assume that D contains a circuit C. DeletIng C fr.om GI 

yields' a mu1tlgraph Gil which also cootains G.. SInce G,' is an 

Euler graph So is GI,I. Therefore, an E·u1er clrcu't ,for G" 
\ 

cpnstltutes a postman tour which is shorter than P, contradicting 
\ 

the mtnima1tty of .P. 

Coronary 2: The Ch,inese postman tour consists of at ',most e+n-l 

edges .. 

L 

IJ 

'. 

Note that this corollary holds even If the edges have 

positive weights (and the problem Is to find a tour of mi~lmuml 

weight). 

Every c i rcu it, cover induces a pos tman, tour. .I tis unknown to' 

us whethe~ a reduction In the opposite direction is possible, i ,e., 

given a postman tour, does there exIst a circuit cover in which 
" . 

each edge is covered the same num~~r of times as in tbe ~our. 

Weaker versions of thfs problem are:, . 

.. 
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<L>. boes every graph have a c~rcult cover of length ls less thaniI. 

or equal to e+n~l? ,	 " 

<11>	 Does ever.y .graph have a circui't cover in whlch each edge l·s 

cover~d at most twic~? 

Possibfe other extensions are- to find a cover of mintmum 

~ength and to investlgate the problem of finding a circuit cover 

of small w.eight iri a graph "with weights on the edges .. 

'\ 

... 

f~' 

'.	 
I 

~
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