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Abstract. Secret sharing has been a subject of study for over twenty
years, and has had a number of real-world applications. There are several
approaches to the construction of secret sharing schemes. One of them
is based on coding theory. In principle, every linear code can be used to
construct secret sharing schemes. But determining the access structure
is very hard as this requires the complete characterisation of the minimal
codewords of the underlying linear code, which is a difficult problem. In
this paper we present a sufficient condition under which we are able to de-
termine all the minimal codewords of certain linear codes. The condition
is derived using exponential sums. We then construct some linear codes
whose covering structure can be determined, and use them to construct
secret sharing schemes with interesting access structures.

1 Introduction

Secret sharing schemes were first introduced by Blakley [6] and Shamir [13] in
1979. Since then, many constructions have been proposed. The relationship be-
tween Shamir’s secret sharing scheme and the Reed-Solomon codes was pointed
out by McEliece and Sarwate in 1981 [I1]. Later several authors have considered
the construction of secret sharing schemes using linear error correcting codes.
Massey utilised linear codes for secret sharing and pointed out the relationship
between the access structure and the minimal codewords of the dual code of
the underlying code [910]. Unfortunately, determining the minimal codewords
is extremely hard for general linear codes. This was done only for a few classes
of special linear codes.

Several authors have investigated the minimal codewords for certain codes
and characterised the access structures of the secret sharing schemes based on
their dual codes [TJT2|2I3/T4]. In this paper, we first characterise the minimal
codewords of certain linear codes using exponential sums, and then construct
some linear codes suitable for secret sharing. Finally we determine the access
structure of the secret sharing schemes based on the duals of those linear codes.
The access structures of the secret sharing schemes constructed in this paper are
quite interesting.
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2 A Link between Secret Sharing Schemes and Linear
Codes

An [n, k,d; q] code C is a linear subspace of F; with dimension k& and minimum
nonzero Hamming weight d. Let G = (g0, g1, - - -,8n—1) be a generator matrix of
an [n, k, d; g] code, i.e., the row vectors of G generate the linear subspace C. For
all the linear codes mentioned in this paper we always assume that no column
vector of any generator matrix is the zero vector. There are several ways to
use linear codes to construct secret sharing schemes [912]. One of them is the
following.

In the secret sharing scheme constructed from C, the secret is an element of
Fy, and n — 1 parties P;, P, -+, P,,—1 and a dealer are involved.

To compute the shares with respect to a secret s, the dealer chooses randomly
a vector u = (ug,...,ux—1) € Ff; such that s = ugp. There are altogether ¢"~!
such vectors u € F’;. The dealer then treats u as an information vector and
computes the corresponding codeword

t = (t07t17~-~7tn—1) =uG.

He then gives t; to party P; as share for each ¢ > 1.
Note that tg = ugp = s. It is easily seen that a set of shares {t;,,t;,,..., %, }
determines the secret if and only if g¢ is a linear combination of g;,,..., g, .
So we have the following lemma [9)].

Proposition 1. Let G be a generator matriz of an [n, k; q] code C. In the secret
sharing scheme based on C, a set of shares {t;,, ti,,...,t;  } determine the secret
if and only if there is a codeword

(1,0,...,0,¢;,,0,...,0,¢;,,,0,...,0) (1)

in the dual code C+, where ci; # 0 for at least one j, 1 <ig < ... <ip <n—1
and 1 <m<n-—1.

If there is a codeword of (I]) in C*, then the vector g is a linear combination of

Lirs -y B SAY,
m
go = § Tj8ij; -
Jj=1

Then the secret s is recovered by computing

m
s = E .’Ejtij.
j=1

If a group of participants can recover the secret by combining their shares,
then any group of participants containing this group can also recover the secret.
A group of participants is called a minimal access set if they can recover the
secret with their shares, any of its proper subgroups cannot do so. Here a proper
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subgroup has fewer members than this group. Due to these facts, we are only
interested in the set of all minimal access sets. To determine this set, we need
the notion of minimal codewords.

Definition 1. The support of a vector ¢ € Fy is defined to be
{0<i<n-—1:¢ #0}.

A codeword co covers a codeword cy if the support of co contains that of ¢1. A
codeword c is called normalised if its first coordinator is 1. A minimal codeword
is a normalised codeword that covers no other normalised codeword.

If a nonzero codeword ¢ covers only its multiples, but no other nonzero code-
words, then it is called a minimal vector. Hence a minimal codeword must be a
minimal vector, but a minimal vector may not be a minimal codeword.

From Proposition [l and the discussions above, it is clear that there is a
one-to-one correspondence between the set of minimal access sets and the set
of minimal codewords of the dual code C*. In this paper, we shall consider the
secret sharing schemes obtained from the dual codes of some linear codes whose
minimal codewords can be characterised.

3 The Access Structure of the Secret Sharing Schemes
Based on Linear Codes

Proposition 2. Let C be an [n, k;q] code, and let G = [go, &1, "+ ,&n—1] be its
generator matriz. If each nonzero codeword of C is a minimal vector, then in
the secret sharing scheme based on C-, there are altogether ¢~ minimal access
sets. In addition, we have the following:

1. If g; is a multiple of go, 1 <1 < n —1, then participant P; must be in every
minimal access set. Such a participant is called a dictatorial participant.

2. If g; is not a multiple of go, 1 <1 < n — 1, then participant P; must be in
(g —1)¢"=2 out of ¢"~! minimal access sets.

Proof. We first prove that the total number of minimal access sets is ¢*~1. At
the very beginning of this paper, we assumed that every column vector of any
generator matrix is nonzero. Hence gy # 0. Thus the inner product ugg takes
on each element of F, exactly ¢"~! times when u ranges over all elements of F’;.
Hence there are altogether ¢® — ¢*~' codewords in C whose first coordinator is
nonzero. Since each nonzero codeword is a minimal vector, a codeword covers
another one if and only if they are multiples of each other. Hence the total
number of minimal codewords is (¢¥ —¢*~1)/(¢—1) = ¢*~!, which is the number
of minimal access sets.

For any 1 <: <n —1,if g; = ago for some a € Fj, then ugy = 1 implies
that ug; = a # 0. Thus Participant P; is in every minimal access set. For any
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1 <i<n-—1,if gy and g, are linearly independent, (ugp,ug;) takes on each
element of Fg ¢"~2 times when the vector u ranges over F’;. Hence

[{u:ugy #0 and ug; # 0)}| = (¢ — 1)%¢* 2

and
[{u:ugy=1and ug; Z0)} = (¢ — 1)(]’“_27

which is the number of minimal access sets in which P; is involved.

In view of Proposition[2] it is an interesting problem to construct codes where
each nonzero codeword is a minimal vector. Such a linear code gives a secret
sharing scheme with the interesting access structure described in Proposition 21

4 Characterisations of Minimal Codewords

4.1 Sufficient Condition from Weights

If the weights of a linear code are close enough to each other, then each nonzero
codeword of the code is a minimal vector, as described by the following propo-
sition.

Proposition 3. In an [n,k;q] code C, let wpin and Wpmas be the minimum and
mazximum nonzero weights respectively. If
Wmin > q — 1

wma:c q

)

then each nonzero codeword of C is a minimal vector.

Proof. Suppose c1=(ug,u1,...,U,—1) covers ca = (vg,v1,...,U5—1), and ¢ is
not a multiple of c5. Then

Winin < w(ca) < w(c1) < Wmax

For any t € F}, let m; = #{i : v; # 0,u; = tv;}. By definition

E my = Way.

teF:
Hence there exists some ¢ such that m; > q“fl. For the codeword ¢y — tco,
(10} Wmin q Wmin
w(cy —tcy) <w; — — <w - ——— Wmin — = Wi
(1 2)_ 1 1= max q—l q—l min q—l min

This means that the nonzero codeword c; —tco has weight less than wy,, which
is impossible. The conclusion then follows.
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4.2 Sufficient and Necessary Condition Using Exponential Sums

Let p be an odd prime and let ¢ = p¥. Throughout this paper, let ¥ denote the
canonical additive character of Fy, i.e., x(z) = exp ( 28 Tr(x) ). It is well known

that each linear function from F,« to F, can be written as a trace function. Hence
for any [n, k; p] linear code C with generator matrix G, there exists g1, g2, ... gn €
Fqr such that

co = (Tr(gra), ..., Tr(gna)) (2)
Thus any linear code has a trace form of (2).

We now consider two nonzero codewords ¢, and cg, where 3/a & F,. If
B/a € Fp, then the two codewords would be multiples of each other. Let S, be
the number of coordinates in which ¢, takes on zero, and let T,, 3 be the number
of coordinates in which both ¢, and cg take on zero.

By definition, S, > T, . Clearly, ¢, covers cg if and only if S, = T, .
Hence we have the following proposition.

Proposition 4. Va € F, ¢, is a minimal vector if and only if V3 € F with g
§_Z Fp, Sa > Taﬁ.

We would use this proposition to characterise the minimal vectors of the
code C. To this end, we would compute the values of both S, and T, g. But this
is extremely hard in general. Thus we would give tight bounds on them using
known bounds on exponential sums.

By definition,

:#{i'Tr(gi )=0,1<i<n}

_2 :2 : 'L—cTrgL

=1 (:EF,[7
1 n
=-|n+ Z ZX(CQM) ) (3)
p cEFy i=1
Similarly,
To,p = #{i: Tr(gia) = 0,Tr(g;3) = 0}

_ Z Z i "uTr(giOz) l Z 61'277'1)Tr(gia)

ueF veF,
1 n
== |nt D D xlgiluatup) |- (4)
(u,v)€F2\{(0,0)} i=1

As can be seen from the expressions of S, and T, g, when c or u, v is fixed,
the inner sum for both expressions is

> x(gia)
i=1
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for some fixed a, where x is the canonical additive character over F,. However,
most known bounds on exponential sums are summed over the whole F,, and may
not be used to give bounds on S, and T, g. However, if the set G = {g1,...gn}
constitutes the range of some function defined over F,, and each element in this
range is taken on the same number of times by this function, we will be able to
derive bounds for S, and Ty g using known bounds on exponential sums. This
will become clear in later sections.

5 Bounds on Exponential Sums
In this section, we introduce the following bounds on exponential sums which
will be needed later. Their proofs can be found in [8] Chapter 5].

Definition 2. Let v be a multiplicative and x an additive character of Fy. Then
the Gaussian sum G(, x) is defined by

G, x) = > v(o)x(o).
ceF?
It is well known that if both v and x are nontrivial, |G(¢¥, x)| = /4.

Proposition 5. Let F, be a finite field with ¢ = p°®, where p is an odd prime
and s € N. Let i be the quadratic character of F, and let x be the canonical
additive character of F,. Then

B (_1)371(]1/2 if p=1 mod 4,
G(77»X) - { (_1)871 /_1Sq1/2 ifp = 3 mod 4. (5)

Proposition 6. Let x be a nontrivial additive character of F,, n € N, and
d =ged(n,q —1). Then

> xlac" +b)| < (d—1)g"? (6)

ceFy,
for any a,b € F, with a # 0.

Proposition 7. Let x be a nontrivial additive character of F, with q odd, and
let f(x) = asz® + a1z + ag € Fylx] with az # 0. Then

D x(f(e) = x(ao — ar*(4az) " )n(a2)G(n, x) (7)
ceF,
where 1 is the quadratic character of F.

Proposition 8. (Weil’s Theorem) Let f € F,[x] be of degree n > 1 with ged(n, q)
=1 and let x be a nontrivial additive character of F,. Then

S ()] < (0 - 1) (8)

ceFy
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6 Secret Sharing Schemes from Irreducible Cyclic Codes

6.1 The General Case

Definition 3. Let p be a prime, and let ¢ = p*. Suppose N|q—1, andnN = q—1.
If 0 is a primitive n-th root of unity in Fy, then the set C of n-tuples

c() = (Tr(€), Tr(€0), ..., Tr(€6" 1)), £ € Fy

is an irreducible cyclic [n, ko] code over F,, where ko divides k and Tr(§) =
E4+EP+. .+ £pk_1 is the trace function from F, to F,.

For these codes we have {g1,92,...,gn} = {1,60,...,0" 1} in @). We consider
those irreducible cyclic codes where ky = k, and would determine their minimal
vectors. To this end, we will give tight bounds on S, and T g for two nonzero
codewords ¢, and cg, where o/ & F.

Bounds on S:

Using (B), we have

Sa:% n—i—Z%Zx(cowN)

CGF;; mGF(’;

1 1
=5 n+2ﬁ Zx(caxN)—l

ceFy z€F,

:Nip qg—p+ Z Zx(caxN)

(:EF;‘ reFy

1
— — (g—p+ A,
Np(q p+ Agy)

where

Aa = Z Z X(CCKL'N)

ceFy xeFy

Applying the bound of (@) to A, above, we have

[Aal < >0 1D xleaz™)| < (p - DN - 1)vq
cEF) |zEF,

Combining this with the formula for S, above yields

Nip@—p—(p—l)(fv—lm) <5, < Nip<q—p+<p—1><N—1>¢a>
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Bounds on T, g:

Using (@), we have

1
Top=— — Z (uc + vB)z™)
p F2\{(0 0)} xEF*
1 N
== (n 3 xl(ua+ o)) - 1
(u ’U)EFQ\{(O 0)} \z€F,
1
= N2 -’ +q+ Z Z ((ua 4+ vB)z™)
p (u,v)€FZ\{(0,0)} z€Fy
1
= Np? (q—p2 +Bo¢,ﬁ)a
where

Bapg = Z Z ((ua +vB)2™)

(u,v)€FZ\{(0,0)} z€Fy

Note that we assumed that both o and 8 are nonzero and that o/5 & Fp.
Hence for any pair (u,v) # (0,0), ua + v # 0. Thus after applying the bound
of (@), we have

|[Bag| < > > x((ua +vp)a™)

(u,0)EF2\{(0,0)} |zEF,
< (p* = DN =)V
Combining this inequality and the formula for T, g above, we get

1

W(g—p2—<p2—1><N—1>ﬂ>STa,ﬁ<ﬁ@ P+ (5~ DN — )ya)

Proposition 9. For the irreducible cyclic code C with parameters [n, k], when

Va
N -1
<2p—|—17

each nonzero codeword of C is a minimal vector.

Proof. When the above inequality holds, S, > T, g is satisfied because of the
bounds on S, and T, 3 developed before. The conclusion then follows from
Proposition [4.
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Proposition 10. Let C be the [n, k] irreducible cyclic code, where N—1 < 219%

In the secret sharing scheme based on Ct, the n— 1 participants are divided into
two subgroups. The first subgroup comprises of ged(n, p—1)—1 dictatorial parties,
i.e., each of them must be in every minimal access set; the rest participants form
the second subgroup, and each of them serves in (p—1)p*~2 minimal access sets.

Proof. Note that g; is a multiple of gy if and only if §* € F,,. This is true if and
only if n|i(p — 1), i.e.,

n i p—1
ng(n7p - 1) ng(n7p - 1),
o)
ged(n,p— 1)

For 0 < ¢ < n, there are ged(n,p — 1) — 1 g;’s which are multiples of gy. The
conclusion then follows from Proposition

6.2 The Semi-primitive Case

In Section [6.1] we showed that all nonzero codewords of the irreducible cyclic
codes are minimal vectors under the condition that N —1 < 21‘7/51. In this case
the secret sharing scheme based on the dual code has the interesting access

structure, as described in Proposition [0l The condition N —1 < M9 g derived

2p+1
using bounds on both S, and T, g. If we can compute one of them or both
exactly, we could relax the condition N — 1 < V% Ty this section, we show

2p+1°
that this can be done for a special class of irreducible cyclic codes, i.e., the

semi-primitive irreducible cyclic codes.

Definition 4. [B] An irreducible cyclic [n, k] code is said to be semi-primitive if
n = (p¥ —1)/N and there exists a divisor j of k/2 for which p’ = —1 (mod N).

In the semi-primitive case, the code C has only two nonzero weights and its
weight distribution is determined [4]. The weights and their distributions are
closely related to cyclotomic numbers and Gaussian periods.

Definition 5. Let g be a power of a prime p, Nn =q — 1. Let g be a primitive
element of Fy. For all 0 < i < N, the Gaussian periods of order N over F, are
defined to be

n—1

i = Z i 5 T
=0

Lemma 1. [4] Let q be a power of a prime p, and N|g—1, N > 3. If —1 is
a power of p mod N, then q¢ = r2 for an integer r with r = 1 mod N, and one
Gaussian period takes on 1., and all other N — 1 Gaussian periods take on 1,

where n = T&l and ne =mn—r.
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By definition in the semi-primitive case there is a divisor j of % such that
N|p/ +1. Thus —1 = p’ mod N and the condition of Lemma [is satisfied. Hence
the N Gaussian periods take on only two different values.

If% is odd, then N|pj+1\p§ +1=\q+1.r=—/q0 = % for
some ¢, and 7; = _‘/]3_,_1 for all j # c.

If % is even, then N|pj+1|p2j—1|p§ —1=\/q-1.r=./q.n = %

for some ¢, and n; = ‘/?V_l for all j # c.

For any v € F;, if v = g™, 0 <t < n, 0 <i < N, by abuse of notation,
we define 77, = n;, then it’s easily seen Zwqu x(yxN) = Nn, + 1.
Let Sq, To,8, Aa and B, g be defined the same as in Section [6.1] Note that

Sa > T, is equivalent to By g — pAa < (p — 1)g.

We have
Ba,ﬂ - pAa = Z (Nnua+1)[3 + 1) —p Z (Nncoz + 1)
(u,0)EF2\{(0,0)} cEF:
p—1p—1 p—1
=p—14+N> D njgria) = N =1) ) ha
i=0 j—1 k=1

Because the Gaussian periods are two-valued,

(p— 1) (PN /G — /2), if £ is odd
Ba g —pAa < o2 9)
{ (p—1((p—-1)Nq+ /q), if % is even.
Proposition 11. If
1
N Yitl
p

all nonzero codewords of the semi-primitive cyclic code C are minimal vectors. In
the secret sharing scheme based on C*, the n—1 participants are divided into two
subgroups. The first subgroup comprises of ged(n,p — 1) — 1 dictatorial parties,
i.e., each of them must be in every minimal access set; the rest participants form
the second subgroup, and each of them serves in (p—1)p*~2 minimal access sets.
Proof. On easily verifies if N < \/EPH, the upper bounds @) on B, g — pAs in
both cases is less than (p — 1)g, so S, > Ty g for any o € Fj. The rest follows
from Proposition

7 Secret Sharing Schemes from Quadratic Form Codes

Let p be an odd prime, ¢ = p™. Let a; € F}. Consider f(z) = 22 + a2 defined
over F,. It is easily seen that

1. f(y) = f(—a1 —y) for any y;
2. f(0) = f(—a1) =0;
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3. y=—a; —yand f(y) = —‘1—? when y = —4-.

Let
2

G:Range(f)\{—%,o}.

Let n = ‘75—3, then |G| = n. Write G = {g1,92,...,9n}. We do not care about
the order here.
We define a linear code C as

C={cq = (Tr(ag1), Tr(agz),..., Tr(ags)) : a € Fg}
where Tr(z) is the trace function from F, to Fp.
Lemma 2. C is an [n,m;p| code.

Proof. First, there are m elements in G which are linearly independent over F,,.
This is because |G| = % > p™~1—1, which is the size of an (m—1)-dimensional
space over F,, excluding the zero element. Second, let {b1,bs,..., b} be a basis
of F, over Fp,, we prove ¢, €p,, . . ., ¢y, are linearly independent over F,,. W.l.o.g.
Suppose gi, g2, - - -, gm are linearly independent over F,. We only need to prove

the matrix
Tr(big1) Tr(big2) ... Tr(bigm)
Tr(bz2g1) Tr(bag2) ... Tr(bagm)

Tr(bmg1) Tr(bmge) - .. Tr(bmgm)

is nonsingular. Suppose there is a linear dependency among the column vectors,
i.e., there exist ¢1,¢a,...,cm € Fp sit. for 1 < i < m, ¢1Tr(big1) + c2Tr(big2) +
o e Tr(bigm)=0, i.e., Tr(bi(Z;":1 ¢;g5)) = 0. So Z;n:1 cjg; = 0. We get ¢1 =
cg = ... = ¢y = 0. So C has dimension m. This completes the proof of this
lemma.

Now we investigate the weights of C. Note for any a € F}, by ()

Salga =3 X @)

z€Fg\{—a1/2,0,—a1}

1 2
“3 | 3 et (5e) -2

z€F,

- 3 (x( @ @60 - x (-4a)) -1
I (—“‘f) (n(@)Gn ) — 1)~ 1 (10)

Let

Ca = Z ZX(glsa)

sEFy i=1
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then by (3])
1 —1qg—
w(cy) =n—58=n——-(n+Cq) =————--C, 11
(ca) it ) == (11)

To determine the weight of c,,, we need to compute C,,. In this paper we deter-
mine C, and the weights of the code C only for the case m being even.
Note that x(—aa?/4) =1 if Tr(—aa?/4) = 0 and x(—aa}/4) # 1 otherwise.

We have .
Z _Oz_a% _[r-1 if Tr(—aa?/4) =0
~ X\ —1, if Tr(—aa2/4) £ 0
S P

We have also

s€Fy
asa?
— % Z X (— - 1) [n(as)G(n,x) — 1] — (p — 1)
s€Fy
1 aa?\’
E (-%1) a6 - 11-w-1)

m_q
If m is even, let g be a primitive element of F, then F7 is generated by gppfl .

Because Z m:ll is even, all elements of F} are squares in F,. It then follows from

the formula above that

Co = { 3 (n(@)Gn,x) = 1)(p—1) = (p— 1), Tr(—%lz) —0
Ln(@)G(n,x) —1)(=1) = (p—1), Tr(—=2%=) #0

By @), C. can take four possible values, and from (II)) the code has four
possible nonzero weights:

wy = 2ip<p— 1)(q - va)

w2=2ip<¢a+1><p¢a—p—¢a>
1

w3 = 2—p(\/5— D(pva+p—+4)
1
=_—(p-1
wy 2p(p )(a+/q)
When p > 3 and m > 4 is even, because “miz = % — =V -, p=1 always

Wmax wyq q++/q p
holds, each nonzero codeword is a minimal vector.
Proposition 12. For all p > 3 and m > 4 even, each nonzero codeword of the
quadratic form code C is a minimal vector. In the secret sharing scheme based on
C*t, the number of dictatorial parties is at most p — 2. Each of the other parties
is in (p — 1)p™ =2 minimal access sets.
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Proof. The first half follows from the calculation above. The number of dictato-
rial parties is at most p—2 because the elements g1, go, . . . , g, are all distinct, and
#{gia:a € F,} = p — 1. The remaining conclusion follows from Proposition [2I

8 Secret Sharing Schemes from Another Class of Codes

8.1 A Generalisation of a Class of Linear Codes

Ding and Wang described a class of linear codes for the construction of authen-
tication codes [7]. Here we present a generalisation of their construction.

Let p be an odd prime, ¢ = p™, d < /g, and gcd(d, q) = 1. We consider the
linear code C over F, defined by

€= {er = (Tr(F0) Tr(F (@), Te(f (07" 72) )+ f(w) € FO[a]}
where « is a primitive element of F,, and

Ff]d)[x} ={f(x) =co+ 1z +con® + ...+ cqz® € Fylz],c; = 0 for all pli.}

Lemma 3. C is a [pm —1,md—m L%J ;p] code.

Proof. In the set {co,c1,...,cat, [%J + 1 of them are fixed as zero, all the others

can take on every value of F; = Fpm. So the size of ng) [] is p™~ L] Next

we prove ¢y, # cy, for any two distinct polynomials fi, fo € F,(Jd) [x]. Otherwise,

Tr(f1(x)) = Tr(fa(z)) forallz € Fy- Let g = fi1— f2, then Zcqu x(g(c)) = ¢q. On
the other hand, by assumption deg(g) < /g and ged(deg(g),q) = 1. By Weil’s
bound (&),

g="Y_ x(g(c)) < (deg(g) — 1)v/q < (va— 1)Va,

ceF,

which is impossible. So C has pm(d_ L5 distinct codewords. Thus its dimension
ism (d — {—J) This completes the proof of this lemma.

Now we give bounds on the weights in C. Let Sy denote the number of zeroes
of the codeword cy. Because Tr(f(0)) = 0,

Sf:#{fCGF 'Tr(f( ) =0} -1

= Z P25 (TH(f (@) _q

x€F, ceF,

:% 0+ 3 3 xlef@) | 1

c€F: z€F,
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Using (R,
¢—(p-Dd-vg o _at@-Dd-1yvg ,
p == P
Thus
q_q+(p—1;(d—1)ﬂSwmmgwmm<q_q—(p—l}))(d—l)\/a

Proposition 13. When

d—1< Va
2p—1

each nonzero codeword is a minimal vector. In addition, the secret sharing scheme
based on C* is democratic, i.e., every participant is involved in (p—l)])md*mt%J -2
minimal access sets.

Proof. 1t’s easily verified when d — 1 < 21‘)/?1, Z}’Z’ﬁ > =L 50 the first assertion
follows. To prove the scheme is democratic, we only need to prove that there does
not exist 3 € Fy, B # 1, s.t. for any possible f, Tr(f(1)) = 0 iff Tr(f(3)) = 0.
Suppose such a 3 exists. Yu € Fy, let gu(z) = ur — ur?® € ng) []. Then as u
ranges over Fy, Tr(g,(1)) = Tr(0) = 0 always holds, but Tr(g,(3)) = 0 cannot
be always true since g,(8) = u(3 — %) ranges over F;. So there is no such 3.
The conclusion then follows from Proposition 21

Remark 1. In the construction of Ding and Wang, functions of the form Tr(az +
brV) are used to construct the linear code and its corresponding authentication
code.

9 Conclusion and Remarks

We characterised the minimal vectors in linear codes, and described several
classes of codes in which each nonzero codeword is a minimal vector. We then
determined the access structure of the secret sharing scheme based on their du-
als. As described before, the access structures of these secret sharing schemes
are quite interesting.

Our characterisations of the minimal vectors of linear codes are generic. How-
ever, it involves the computation of incomplete character sums. This is a hard
problem in general, but can be done in certain cases. We shall work on this in a
future work.
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