Covering Arrays on Graphs

Karen Meagher

Department of Mathematics and Statistics University of Regina

CanaDAM, June 2013

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

room \backslash test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

room \backslash test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

room \test:	1	2	3	4	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

room \test:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Testing Systems

You have installed a new light switch to each of four rooms in your house and you want to test that you did it right.

A complete test would require $2^{4}=16$ tests!

room \test:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
bedroom	0	0	1	1	1
hall	0	1	0	1	1
bathroom	0	1	1	0	1
kitchen	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Covering Arrays on Graphs

A covering array on a graph G

- a $|V(G)| \times n$ array and each row corresponds to a vertex in the graph.
- with entries from $\{0,1, \ldots, k-1\}$ (k is the alphabet),
- rows for adjacent vertices contain all possible pairs.

1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	0	1
4	0	0	1	1	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Master Plan

The goal is to build a covering array with the fewest possible columns for a graph.

Master Plan

The goal is to build a covering array with the fewest possible columns for a graph.

So I tried to make the biggest graph on which I can still make a small covering array.

Master Plan

The goal is to build a covering array with the fewest possible columns for a graph.

So I tried to make the biggest graph on which I can still make a small covering array.

- The vertices are possible rows that can go into a covering array,

Master Plan

The goal is to build a covering array with the fewest possible columns for a graph.

So I tried to make the biggest graph on which I can still make a small covering array.

- The vertices are possible rows that can go into a covering array,
- and two are adjacent if they contain all possible pairs.

Master Plan

The goal is to build a covering array with the fewest possible columns for a graph.

So I tried to make the biggest graph on which I can still make a small covering array.

- The vertices are possible rows that can go into a covering array,
- and two are adjacent if they contain all possible pairs.

What are all rows that can go into a covering array?

When are the rows adjacent?

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

$$
000111222 \text { or } 012012012
$$

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

$$
\begin{array}{lllllllllllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \quad \begin{array}{llllllll}
0 & 1 & 2 & 0 & 1 & 2 & 0 & 1
\end{array} 2
$$

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

$$
\begin{aligned}
& 000111222 \text { or } 012012012 \\
& 123456789 \quad 123456789 \\
& \text { 123|456|789 } \\
& \text { 147|258|369 }
\end{aligned}
$$

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

$$
\begin{aligned}
& 000111222 \text { or } 012012012 \\
& 123456789 \quad 123456789 \\
& 123|456| 789 \\
& 147|258| 369
\end{aligned}
$$

- Vertices are all partitions of $\{1,2, \ldots, n\}$ into k parts.
- Two partitions $P=\left\{P_{1}, \ldots, P_{k}\right\}$ and $Q=\left\{Q_{1}, \ldots, Q_{k}\right\}$ are adjacent if

$$
P_{i} \cap Q_{j} \neq \emptyset \quad \text { for all } i, j
$$

Larger Alphabets

The rows of a covering array with a k-alphabet and n columns determine k-partitions of an n-set.

$$
\begin{aligned}
& 000111222 \text { or } 012012012 \\
& 123456789 \quad 123456789 \\
& 123|456| 789 \\
& 147|258| 369
\end{aligned}
$$

- Vertices are all partitions of $\{1,2, \ldots, n\}$ into k parts.
- Two partitions $P=\left\{P_{1}, \ldots, P_{k}\right\}$ and $Q=\left\{Q_{1}, \ldots, Q_{k}\right\}$ are adjacent if

$$
P_{i} \cap Q_{j} \neq \emptyset \quad \text { for all } i, j
$$

(Called this qualitatively independent .)

Qualitative Independence Graph

Define the qualitative independence graph $Q I(n, k)$ as follows:

Qualitative Independence Graph

Define the qualitative independence graph $Q I(n, k)$ as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,

Qualitative Independence Graph

Define the qualitative independence graph $Q I(n, k)$ as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.

Qualitative Independence Graph

Define the qualitative independence graph $Q I(n, k)$ as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.
The graph $Q I(5,2)$:

Qualitative Independence Graph

Define the qualitative independence graph $Q I(n, k)$ as follows:

- the vertex set is the set of all k-partitions of an n-set with every class of size at least k,
- and vertices are connected if and only if the partitions are qualitatively independent.
The graph $Q I(5,2)$:

By construction, it is possible to build a covering array on $Q I(n, k)$ with n columns and a k alphabet.

Why is $Q I(n, k)$ Interesting?

Theorem (Meagher and Stevens - 2002)
An r-clique in $Q I(n, k)$ is a covering array with r rows, n-columns on a k alphabet.

Why is $Q I(n, k)$ Interesting?

Theorem (Meagher and Stevens - 2002)

An r-clique in $Q I(n, k)$ is a covering array with r rows, n-columns on a k alphabet.

Theorem (Meagher and Stevens - 2002)

A covering array on a graph G with n columns and alphabet k exists if and only if there is a graph homomorphism

$$
G \rightarrow Q I(n, k)
$$

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem can be use to determine many facts about $Q I(n, 2)$.

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem can be use to determine many facts about $Q I(n, 2)$.

- Maximum clique has size $\binom{n-1}{\left\lfloor\frac{n}{2}\right\rfloor-1}$

Facts for $Q I(n, 2)$

- The vertices of $Q /(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem can be use to determine many facts about $Q l(n, 2)$.

- Maximum clique has size $\binom{n-1}{\left\lfloor\frac{n}{2}\right\rfloor-1}$
- $\chi(Q I(n, 2))=\left\lceil\frac{1}{2}\binom{n}{\left[\frac{n}{2}\right)}\right\rceil$

Facts for $Q I(n, 2)$

- The vertices of $Q /(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem can be use to determine many facts about $Q l(n, 2)$.

- Maximum clique has size $\binom{n-1}{\left\lfloor\frac{n}{2}\right\rfloor-1}$
- $\chi(Q l(n, 2))=\left\lceil\frac{1}{2}\left(\left(\frac{n}{2}\right)\right\rceil\right.$
- A binary covering array on a graph can be assumed to have $\left\lceil\frac{n}{2}\right\rceil$ zeros in each row

Facts for $Q I(n, 2)$

- The vertices of $Q I(n, 2)$ are partitions with 2 parts,
- so they are equivalents to sets.

Sperner's Theorem and the Erdős-Ko-Rado theorem can be use to determine many facts about $Q l(n, 2)$.

- Maximum clique has size $\binom{n-1}{\left(\frac{n}{2}\right\rfloor-1}$
- $\chi(Q l(n, 2))=\left\lceil\left[\begin{array}{c}\frac{1}{2}\left(\frac{n}{2}\right)\end{array}\right\rceil\right.$
- A binary covering array on a graph can be assumed to have $\left\lceil\frac{n}{2}\right\rceil$ zeros in each row (we called these balanaced).

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set,

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- $Q I\left(k^{2}, k\right)$ is a vertex-transitive graph.

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- $Q I\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- $Q I\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.
- A clique in $Q I\left(k^{2}, k\right)$ is an orthogonal array.

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- QI $\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.
- A clique in $Q I\left(k^{2}, k\right)$ is an orthogonal array.
- The set of all partitions with 1 and 2 in the same class is an independent set

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- QI $\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.
- A clique in $Q I\left(k^{2}, k\right)$ is an orthogonal array.
- The set of all partitions with 1 and 2 in the same class is an independent set of size $\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}$.

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- QI $\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.
- A clique in $Q I\left(k^{2}, k\right)$ is an orthogonal array.
- The set of all partitions with 1 and 2 in the same class is an independent set of size $\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}$.

$$
123|456| 789 \quad 127|458| 369
$$

Facts for $Q I\left(k^{2}, k\right)$

The next graph to consider is $Q I\left(k^{2}, k\right)$.

- Vertex set is the set of uniform k-partitions of a k^{2}-set, (call this set $U\left(k^{2}, k\right)$.)
- $Q I\left(k^{2}, k\right)$ is a vertex-transitive graph.
- $Q I\left(k^{2}, k\right)$ is an arc-transitive graph.
- A clique in $Q I\left(k^{2}, k\right)$ is an orthogonal array.
- The set of all partitions with 1 and 2 in the same class is an independent set of size $\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}$.

$$
123|456| 789 \quad 127|458| 369
$$

Is this set the largest independent set in $Q I\left(k^{2}, k\right)$?

Eigenvalues

- For every k,

Eigenvalues

- For every k,

$$
(k!)^{k-1},
$$

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound,

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound, if $-\frac{(k!)^{k-1}}{k}$ is the least eigenvalue, then

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound, if $-\frac{(k!)^{k-1}}{k}$ is the least eigenvalue, then

$$
\alpha\left(Q I\left(k^{2}, k\right)\right) \leq \frac{\left|U\left(k^{2}, k\right)\right|}{1-\frac{(k!)^{k-1}}{-\frac{(k!)^{k-1}}{k}}}=\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}
$$

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound, if $-\frac{(k!)^{k-1}}{k}$ is the least eigenvalue, then

$$
\alpha\left(Q I\left(k^{2}, k\right)\right) \leq \frac{\left|U\left(k^{2}, k\right)\right|}{1-\frac{(k!)^{k-1}}{-\frac{(k!)^{k-1} k}{k}}}=\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}
$$

(this is the number of partitions that have $\{1,2\}$ in the same part).

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound, if $-\frac{(k!)^{k-1}}{k}$ is the least eigenvalue, then

$$
\alpha\left(Q I\left(k^{2}, k\right)\right) \leq \frac{\left|U\left(k^{2}, k\right)\right|}{1-\frac{(k!)^{k-1}}{-\frac{(k!)^{k-1} k}{k}}}=\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}
$$

(this is the number of partitions that have $\{1,2\}$ in the same part).

- If k is a prime power then this is the largest independent set,

Eigenvalues

- For every k,

$$
(k!)^{k-1}, \quad-\frac{(k!)^{k-1}}{k}
$$

are eigenvalues of $Q I\left(k^{2}, k\right)$.

- By the ratio bound, if $-\frac{(k!)^{k-1}}{k}$ is the least eigenvalue, then

$$
\alpha\left(Q I\left(k^{2}, k\right)\right) \leq \frac{\left|U\left(k^{2}, k\right)\right|}{1-\frac{(k!)^{k-1}}{-\frac{(k!)^{k-1} k}{k}}}=\frac{\left|U\left(k^{2}, k\right)\right|}{k+1}
$$

(this is the number of partitions that have $\{1,2\}$ in the same part).

- If k is a prime power then this is the largest independent set, because we have cliques of size $k+1$.

What are all the eigenvalues of $Q I\left(k^{2}, k\right)$?

What are all the eigenvalues of $Q I\left(k^{2}, k\right)$?

For $k=3$ it is easy to calculate all the eigenvalues.

What are all the eigenvalues of $Q I\left(k^{2}, k\right)$?

For $k=3$ it is easy to calculate all the eigenvalues.
(Mathon and Rosa, 1985) There is an association scheme on the uniform 3-partitions of a 9-set that contains $\operatorname{QI}(9,3)$.

What are all the eigenvalues of $Q I\left(k^{2}, k\right)$?

For $k=3$ it is easy to calculate all the eigenvalues.
(Mathon and Rosa, 1985) There is an association scheme on the uniform 3-partitions of a 9-set that contains $\operatorname{QI}(9,3)$.

Table of eigenvalues:

$$
\left(\begin{array}{ccccc|c}
1 & 27 & 162 & 54 & 36 & 1 \\
1 & 11 & -6 & 6 & -12 & 27 \\
1 & 6 & -6 & -9 & 8 & 48 \\
1 & -3 & 12 & -6 & -4 & 84 \\
1 & -3 & -6 & 6 & 2 & 120
\end{array}\right)
$$

What are all the eigenvalues of $Q I\left(k^{2}, k\right)$?

For $k=3$ it is easy to calculate all the eigenvalues.
(Mathon and Rosa, 1985) There is an association scheme on the uniform 3-partitions of a 9-set that contains $\operatorname{QI}(9,3)$.

Table of eigenvalues:

$$
\left(\begin{array}{ccccc|c}
1 & 27 & 162 & 54 & 36 & 1 \\
1 & 11 & -6 & 6 & -12 & 27 \\
1 & 6 & -6 & -9 & 8 & 48 \\
1 & -3 & 12 & -6 & -4 & 84 \\
1 & -3 & -6 & 6 & 2 & 120
\end{array}\right)
$$

What is this association scheme and does it work for general k ?

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$ 亿 $\operatorname{Sym}(k))$.

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$) $\operatorname{Sym}(k))$.
- The group $\operatorname{Sym}(k \ell)$ acts on the cosets,

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$) $\operatorname{Sym}(k))$.
- The group Sym $(k \ell)$ acts on the cosets, so we have a representation,

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$) $\operatorname{Sym}(k))$.
- The group $\operatorname{Sym}(k \ell)$ acts on the cosets, so we have a representation, $\operatorname{ind}_{\text {Sym }(\ell k)}\left(1_{\text {Sym }(\ell) i \operatorname{Sym}(k)}\right)$.

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$) $\operatorname{Sym}(k))$.
- The group $\operatorname{Sym}(k \ell)$ acts on the cosets, so we have a representation, ind Sym $(\ell k)\left(1_{\text {Sym }(\ell) i \operatorname{Sym}(k)}\right)$.
- We have an association scheme if and only if this representation has no repeated irreducibile representations in its decomposition.

Wreath Products

- The subgroup of $\operatorname{Sym}(k \ell)$ that is the stabilizer of a uniform k-partition is called the wreath product $\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)$.

$$
|\operatorname{Sym}(\ell) \imath \operatorname{Sym}(k)|=\ell!^{k} k!
$$

- Each uniform k-partition of a $k \ell$-set corresponds to a coset in $\operatorname{Sym}(k \ell) /(\operatorname{Sym}(\ell)$) $\operatorname{Sym}(k))$.
- The group $\operatorname{Sym}(k \ell)$ acts on the cosets, so we have a representation, ind Sym $(\ell k)\left(1_{\text {Sym }(\ell) i \operatorname{Sym}(k)}\right)$.
- We have an association scheme if and only if this representation has no repeated irreducibile representations in its decomposition.
(Such a representation is called multiplicity free .)

Multiplicity Free Representations

Theorem (Godsil and M. 2006)

$\operatorname{ind}_{\operatorname{Sym}(\ell k)}\left(1_{\operatorname{Sym}(\ell) \text { Sym }(k)}\right)$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:

Multiplicity Free Representations

Theorem (Godsil and M. 2006)

 $\operatorname{ind}_{\operatorname{Sym}(\ell k)}\left(1_{\operatorname{Sym}(\ell)(\operatorname{Sym}(k)}\right)$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:(a) $(\ell, k)=(2, k)$;
(b) $(\ell, k)=(\ell, 2)$;
(c) (ℓ, k) is one of $(3,3),(3,4),(4,3)$ or $(5,3)$;

Multiplicity Free Representations

Theorem (Godsil and M. 2006)

 $\operatorname{ind}_{\operatorname{Sym}(\ell k)}\left(1_{\operatorname{Sym}(\ell)(\operatorname{Sym}(k)}\right)$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:(a) $(\ell, k)=(2, k)$;
(b) $(\ell, k)=(\ell, 2)$;
(c) (ℓ, k) is one of $(3,3),(3,4),(4,3)$ or $(5,3)$;

Multiplicity Free Representations

Theorem (Godsil and M. 2006)

 $\operatorname{ind}_{\operatorname{Sym}(\ell k)}\left(1_{\operatorname{Sym}(\ell) \text { Sym }(k)}\right)$ is multiplicity-free if and only if (ℓ, k) is one of the following pairs:(a) $(\ell, k)=(2, k)$;
(b) $(\ell, k)=(\ell, 2)$;
(c) (ℓ, k) is one of $(3,3),(3,4),(4,3)$ or $(5,3)$;
$Q I\left(k^{2}, k\right)$ is in an association scheme only if $k=3$.
We actually found all subgroups G of $\operatorname{Sym}(n)$ such that $\operatorname{ind}_{S y m(n)}\left(1_{G}\right)$ is multiplicity free.

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)
1.4 There is a huge amount of work on extending the EKR theorem to other objects.

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)
1.4 There is a huge amount of work on extending the EKR theorem to other objects.
2. What are the largest independent sets in $Q /\left(k^{2}, k\right)$?

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)
1.4 There is a huge amount of work on extending the EKR theorem to other objects.
2. What are the largest independent sets in $Q I\left(k^{2}, k\right)$?
2.1 Do we have the least eigenvalue of $Q I\left(k^{2}, k\right)$?

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)
1.4 There is a huge amount of work on extending the EKR theorem to other objects.
2. What are the largest independent sets in $Q I\left(k^{2}, k\right)$?
2.1 Do we have the least eigenvalue of $Q I\left(k^{2}, k\right)$?
2.2 What are the largest independent sets in $Q I(n, k)$?

Other Directions

1. Sperner's theorem and the Erdős-Ko-Rado theorem give significant information about $Q I(n, 2)$:
1.1 Can Sperner's theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the other is still open)
1.4 There is a huge amount of work on extending the EKR theorem to other objects.
2. What are the largest independent sets in $Q I\left(k^{2}, k\right)$?
2.1 Do we have the least eigenvalue of $Q I\left(k^{2}, k\right)$?
2.2 What are the largest independent sets in $Q I(n, k)$?
3. What are the interesting features of the association schemes from the subgroups of $\operatorname{Sym}(n)$?
