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Testing Systems

You have installed a new light switch to each of four rooms in
your house and you want to test that you did it right.

A complete test would require 24 = 16 tests!

room \ test: 1 2 3 4 5
bedroom 0 0 1 1 1
hall 0 1 0 1 1
bathroom 0 1 1 0 1
kitchen 0 1 1 1 0
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Covering Arrays on Graphs

A covering array on a graph G

I a |V (G)| × n array and each row corresponds to a vertex in
the graph.

I with entries from {0,1, . . . , k − 1} (k is the alphabet),
I rows for adjacent vertices contain all possible pairs.

1 0 0 1 1 1
2 0 1 0 1 1
3 0 1 1 0 1
4 0 0 1 1 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
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Master Plan

The goal is to build a covering array with the fewest possible
columns for a graph.

So I tried to make the biggest graph on which I can still make a
small covering array.

I The vertices are possible rows that can go into a covering
array,

I and two are adjacent if they contain all possible pairs.

What are all rows that can go into a covering array?

When are the rows adjacent?
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Larger Alphabets

The rows of a covering array with a k -alphabet and n columns
determine k -partitions of an n-set.

0 0 0 1 1 1 2 2 2 or 0 1 2 0 1 2 0 1 2
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1 2 3 | 4 5 6 | 7 8 9 1 4 7 | 2 5 8 | 3 6 9

I Vertices are all partitions of {1,2, ...,n} into k parts.
I Two partitions P = {P1, . . . ,Pk} and Q = {Q1, . . . ,Qk} are

adjacent if
Pi ∩Qj 6= ∅ for all i , j .

(Called this qualitatively independent .)
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Qualitative Independence Graph

Define the qualitative independence graph QI(n, k) as follows:

I the vertex set is the set of all k -partitions of an n-set
with every class of size at least k ,

I and vertices are connected if and only if the partitions are
qualitatively independent.

The graph QI(5,2):

0010101011

01001

00111

00110

01101

01010

01100

00011

01110

By construction, it is possible to build a covering array on
QI(n, k) with n columns and a k alphabet.
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Why is QI(n, k) Interesting?

Theorem (Meagher and Stevens - 2002)

An r-clique in QI(n, k) is a covering array with r rows,
n-columns on a k alphabet.

Theorem (Meagher and Stevens - 2002)

A covering array on a graph G with n columns and alphabet k
exists if and only if there is a graph homomorphism

G→ QI(n, k).
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Facts for QI(n, 2)

I The vertices of QI(n,2) are partitions with 2 parts,

I so they are equivalents to sets.

Sperner’s Theorem and the Erdős-Ko-Rado theorem can be
use to determine many facts about QI(n,2).

I Maximum clique has size
( n−1
b n

2 c−1

)
I χ(QI(n,2)) =

⌈
1
2

( n
d n

2 e
)⌉

I A binary covering array on a graph can be assumed to
have dn

2e zeros in each row (we called these balanaced).
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Facts for QI(k2, k)

The next graph to consider is QI(k2, k).

I Vertex set is the set of uniform k -partitions of a k2-set,

(call
this set U(k2, k).)

I QI(k2, k) is a vertex-transitive graph.
I QI(k2, k) is an arc-transitive graph.
I A clique in QI(k2, k) is an orthogonal array.
I The set of all partitions with 1 and 2 in the same class is an

independent set of size |U(k2,k)|
k+1 .

1 2 3 | 4 5 6 | 7 8 9 1 2 7 | 4 5 8 | 3 6 9

Is this set the largest independent set in QI(k2, k)?
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Eigenvalues

I For every k ,

(k !)k−1, − (k !)k−1

k

are eigenvalues of QI(k2, k).

I By the ratio bound, if − (k!)k−1

k is the least eigenvalue, then

α(QI(k2, k)) ≤ |U(k2, k)|
1− (k!)k−1

− (k!)k−1
k

=
|U(k2, k)|

k + 1

(this is the number of partitions that have {1,2} in the
same part).

I If k is a prime power then this is the largest independent
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What are all the eigenvalues of QI(k2, k)?

For k = 3 it is easy to calculate all the eigenvalues.

(Mathon and Rosa, 1985) There is an association scheme on
the uniform 3-partitions of a 9-set that contains QI(9,3).

Table of eigenvalues:
1 27 162 54 36 1
1 11 -6 6 -12 27
1 6 -6 -9 8 48
1 -3 12 -6 -4 84
1 -3 -6 6 2 120



What is this association scheme and does it work for general k?
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Wreath Products

I The subgroup of Sym(k`) that is the stabilizer of a uniform
k -partition is called the wreath product Sym(`) o Sym(k).

k

... .........!
|Sym(`) o Sym(k)| = `!kk !

I Each uniform k -partition of a k`-set corresponds to a coset
in Sym(k`)/(Sym(`) o Sym(k)).

I The group Sym(k`) acts on the cosets, so we have a
representation, indSym(`k)(1Sym(`)oSym(k)).

I We have an association scheme if and only if this
representation has no repeated irreducibile
representations in its decomposition.
(Such a representation is called multiplicity free .)
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Multiplicity Free Representations

Theorem (Godsil and M. 2006)

indSym(`k)(1Sym(`)oSym(k)) is multiplicity-free if and only if (`, k) is
one of the following pairs:

(a) (`, k) = (2, k);
(b) (`, k) = (`,2);
(c) (`, k) is one of (3,3), (3,4), (4,3) or (5,3);

QI(k2, k) is in an association scheme only if k = 3.

We actually found all subgroups G of Sym(n) such that
indSym(n)(1G) is multiplicity free.
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Other Directions

1. Sperner’s theorem and the Erdős-Ko-Rado theorem give
significant information about QI(n,2):

1.1 Can Sperner’s theorem be extended to partitions?
1.2 Can the Erdős-Ko-Rado theorem be extended to partitions?
1.3 There are two ways to define intersection (one works, the

other is still open)
1.4 There is a huge amount of work on extending the EKR

theorem to other objects.
2. What are the largest independent sets in QI(k2, k)?

2.1 Do we have the least eigenvalue of QI(k2, k)?
2.2 What are the largest independent sets in QI(n, k)?

3. What are the interesting features of the association
schemes from the subgroups of Sym(n)?
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