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ii) A [51; 41]2 code. TheM part is 1B6, 193, 1CC, 187, 1F6, F7,
16E, 140, 3C, 296, 22F, 303, 381, 365, 11D, 1A3, 274, 2F2, 254,
56, F, 41, 357, 208, 34, 329, 28D, 31D, 3D5, 129, 3D7, B7, 3EC,
2E2, 23C, AD, 34E, 155, 2E6, 371, D4.

iii) A [32; 8]10 code. TheM part is 6AD83A, 656BB6, 17DA79,
35E589, E9B825, 2E157F, 96FED5, EC01F9.

The ADS of the code in i) and the binary Golay code produces a
[45; 20]8 code. This is a new code.
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Covering Codes With Improved Density

Michael Krivelevich, Benny Sudakov, and Van H. Vu

Abstract—We prove a general recursive inequality concerning ( ),
the asymptotic (least) density of the best binary covering codes of radius

. In particular, this inequality implies that ( ) ( log +
log + log log + 2), which significantly improves the best known
density2 ( + 1) !. Our inequality also holds for covering codes
over arbitrary alphabets.

Index Terms—Covering codes, density, probabilistic methods.

I. INTRODUCTION

Denote by n
2 the set of all(0; 1) strings of lengthn. A subsetK of

n
2 is acovering code of radiusR if for every elementy 2 n

2 there
is an elementx 2 K such that the Hamming distance betweenx and
y is at mostR. It is common to view n

2 as the set of vertices of the
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n-dimensional unit hypercube. From this point of view,K is a covering
code of radiusR if the Hamming balls with radiusR centered at the
elements ofK cover all the vertices of the hypercube. Covering codes
is a central object in coding theory and for more information we refer
to a monograph [1], by Cohen, Honkala, Litsyn, and Lobstein.

For any vertexx 2 n
2 , the Hamming ball with radiusR centered at

x contains exactly

V (n; R) =

R

i=0

n

i

vertices of the cube. Therefore,

jKj �
2n

V (n; R)
:

The quantityjKj= 2
V (n;R)

is called the density ofK. Denote by
�(n; R) the minimal density of a covering code of radiusR in n

2 .
Define

��(R) = lim sup
n!1

�(n; R)

the asymptotic (least) density for the best covering of a given radius.
This quantity plays a central role in the theory of covering codes. From
the definition, it is clear that for any fixedR, ��(R) � 1. One of
the fundamental problems in coding theory is to settle the following
conjecture [1, Ch. 12].

Conjecture 1.1: For any fixedR, ��(R) = 1.

The conjecture has been confirmed forR = 1, but is open for all
other cases. For a genericR, it seems very hard. The best upper bound
on��(R) for a generalR that we know is [1, Theorem 12.4.3]

��(R) �
2RRR(R+ 1)

R!
: (1)

By Stirling’s formula, for largeR, the right-hand side in (1) is ap-
proximately(2e)R R=2�, wheree is the base of natural logarithm.
In this correspondence, we shall significantly improve upon this bound.
Our main result is the following recursive inequality.

Theorem 1.2:Given a pair of positive integersR > R1 � 1

��(R) �
yR ( y

y�1
)R�R R

R

�1
x

1� e�xyR
��(R1) (2)

holds for any pair of positive constantsx andy satisfyingy > 1 and
1 � e�xyR > 0.

With a particular choice ofR1; y; andx, we can derive the fol-
lowing.

Corollary 1.3: ForR � 2, ��(R) � e(x0 + 1), wherex0 is the
largest root of the equationex = (x + 1)RR.

Proof: ChoosingR1 = 1, we have

��(R) �
y( y

y�1
)R�1 x

R

1� e�xyR
: (3)

Next, sety = R and notice that( R

R�1
)R�1 � e. Then (3) yields

��(R) �
ex

1� e�xRR
:

We now optimize

f(x) =
ex

1� e�xRR

overx. The derivative off(x) is e 1�(x+1)e R

(1�e R )
. Conditioned on

1�e�xRR> 0, f(x) reaches it minimum at the larger rootx0 of the
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equation1�(x+1)e�xRR =0 (it is easy to check that this equation
has two roots). By definition,e�x RR= 1

x +1
and by substituting this

in the formula off(x) we havef(x0) = e(x0 + 1).

It is easy to see that forR � 3,x0 � R logR+logR+log logR+1,
so we have the following inequality, which improves the exponential
function in the right-hand side of (1) to an almost linear function. Here
and later the logarithms have natural base.

Corollary 1.4: For allR � 3

��(R) � e(R logR+ logR+ log logR+ 2):

In practice, one might be able obtain a good bound for��(R) where
R belongs to a special sequenceS. In such a case, we can use Theorem
1.2 to obtain a good bound for��(R) for allR close toS. For instance,
by settingR1 = R � 1, y = R=(R� 1), andx = 2 one can deduce
that

��(R) �
( R
R�1

)R�1x

1� e�x( R
R�1

)R
��(R� 1) <

2e

1=2
��(R� 1)

=4e��(R� 1) (4)

where, with a more careful choice ofx andy, one can replace4e by a
smaller constant.

Our bounds generalize to codes over an arbitrary alphabet. Consider
a finite alphabetA of cardinalityq. LetAn be the set of all strings of
lengthn formed by the elements ofA. Instead of��(R) we consider
its natural generalization��q(R). With only nominal changes, we can
repeat the proof of Theorem 1.2 to obtain the following.

Theorem 1.5:Given a pair of positive integersR > R1 � 1

��q(R) �
yR ( y

y�1
)R�R R

R

�1
x

1� e�xyR
��q(R1) (5)

holds for any pair of positive constantsx andy satisfyingy > 1 and
1 � e�xyR > 0.

Since it is known (see, e.g., [1, Corollary 12.4.9]) that��q(1) � 2
for any fixedq, we can obtain the following corollary.

Corollary 1.6: For anyR � 2, we have

��q(R) � e(x0 + 1)��q(1) � 2e(x0 + 1)

wherex0 is the larger root of the equationex = (x+ 1)RR.

Our proof of Theorem 1.2 provides an efficient algorithm that con-
structs a code satisfying the claimed bound (see Section IV for more
details). The rest of this correspondence is organized as follows. The
next two sections are devoted to the proof of Theorem 1.2. Section II
contains a few lemmas and Section III presents the rest of the proof. At
the end of Section III, we show how to modify the proof of Theorem
1.2 to prove Theorem 1.5. The final section, Section IV, contains sev-
eral concluding remarks.

II. L EMMAS

Lemma 2.1: Let(fn); (an); (bn)and(sn) be sequences of positive
numbers where

lim sup
n!1

fn � f; lim sup
n!1

an � a; lim sup
n!1

bn � b < 1

and

sn � anfbn=yc + bnsbn=yc (6)

wherey > 1 is a constant. Then

lim sup
n!1

sn �
af

1� b
:

Proof: As lim supn!1 bn < 1, it is clear that the sequence(sn)
is upper bounded, so itslim sup exists and will be denoted bys. By the
recursive inequality (6),s must satisfy

s � af + bs

which implies thats � af
1�b

, completing the proof.

The next lemma is purely graph theoretic. A graph consists of a
vertex setV and an edge setE, whereE is a subset of the set of all
unordered pairs ofV . If the pair(u; v) 2 E, we say that the verticesu
andv are adjacent. The degree ofu is the number of vertices adjacent
to u; G is d-regular if the degree of every vertex isd. For a vertexu,
N(u) denotes the union ofu with the set of vertices adjacent to it.

Given a graphG with vertex setV , for each subsetX of V set
N(X) = [u2XN(u). Furthermore, setN(X) = V nN(X).

Lemma 2.2: For every positive constantx and ad-regular graph
G on m vertices, there is a setX of vertices of cardinality at most
xm=(d + 1) such that

jN(X)j � e�xe m:

Proof: Pick uniformly at random a setX of k = bxm=(d+ 1)c
vertices. A vertexv belongs toN(X) if and only if X andN(v) are
disjoint. The probability of this event is precisely

PPP =
m�d�1

k
m
k

=
(m� d� 1) � � � (m� d� k)

m � � � (m� k + 1)

� 1�
d+ 1

m

k

� 1�
d+ 1

m

�1

� e�( )( �1) = e�xe :

Here, we used the trivial fact thate�z � 1 � z for any z between
0 and1. It follows that expectation ofjN(X)j is at moste�xe m

and, therefore, there exists a setX such thatjN(X)j � e�xe m,
completing the proof.

III. PROOF OFTHEOREM 1.2

Lety be an arbitrary positive constant larger than1. For a pair(n; R)
setn1 = bn=yc and let1 � R1 < R, n01 = n � n1, andR01 =

R�R1. Given two stringss0 2
n
2 ands 2 n

2 , s0 � s denotes the
concatenation ofs0 ands. Clearly,s0�s is a string in n

2 . Furthermore,
for two setsS0 �

n
2 andS � n

2 , define

S0 � S = fs0 � sjs0 2 S0; s 2 Sg:

View
n
2 as the vertex set of a graph, where two vertices are adjacent

if their Hamming distance is at mostR01. Clearly, this graph hasm =

2n vertices and all degrees equald = V (n01; R
0
1)� 1. Consider a set

X �
n
2 as in Lemma 2.2. The parameterx, which depends onR,

but does not depend onn, will be later optimized.
Next, we give a recursive construction for a covering code with small

density, inspired by a construction of Cooper, Ellis, and Kahng [2].
Let K1 andK2 be optimal covering codes inn2 of radii R1 and

R, respectively. By definition, it is easy to see that the set

K = (X �K1) [ (N(X)�K2)

is a covering code of radiusR in n
2 . AsK1 andK2 are optimal, their

cardinalities are

�(n1; R1)
2n

V (n1; R1)
and �(n1; R)

2n

V (n1; R)
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respectively. So the cardinality ofK is at most

x
2
n

V (n01; R
0
1)

�(n1; R1)2
n

V (n1; R1)
+ e�xe 2n

�(n1; R)2n

V (n1; R)

= x
�(n1; R1)2

n

V (n01; R
0
1)V (n1; R1)

+
�(n1; R)2n

V (n1; R)
e�xe :

On the other hand, by the definition of�(n; R)

jKj � �(n; R)
2n

V (n; R)

so

�(n; R)
2n

V (n; R)
�

2n

V (n01; R
0
1)V (n1; R1)

x�(n1; R1)

+
2n

V (n1; R)
e�xe �(n1; R) (7)

which implies

�(n; R) �
V (n; R)

V (n01; R
0
1)V (n1; R1)

x�(n1; R1)

+
V (n; R)

V (n1; R)
e�xe �(n1; R): (8)

Now we are in position to apply Lemma 2.1;�(n; R); �(n1; R1);
V (n;R)

V (n ;R )V (n ;R )
x; and V (n;R)

V (n ;R)
e�xe play the roles ofsn, fn,

an, andbn, respectively.
First of all, we have (by definition) that

lim sup
n!1

�(n1; R1) = lim sup
n !1

�(n1; R1) = ��(R1)

and

lim sup
n!1

�(n; R) =��(R):

Next, for all large enoughl

V (l; R) =

R

i=0

l

R
�

l

R
�

lR

R!
:

Moreover,R01 = R�R1, limn!1
n
n

= y andlimn!1
n
n

= y
y�1

.
So

lim
n!1

V (n;R)

V (n01; R
0
1)V (n1; R1)

= lim
n!1

nR

nR1 n
0R

1

R1!R
0
1!

R!

= yR
y

y�1

R�R
R

R1

�1

: (9)

Similarly

lim
n!1

V (n; R)

V (n1; R)
= lim

n!1

n

n1

R

= yR (10)

and, finally

lim
n!1

e = 1

(recall thatm = 2n andd + 1 = V (n01; R
0
1) � m). Lemma 2.1

yields

��(R) �
yR ( y

y�1
)R�R R

R

�1
x

1� e�xyR
��(R1) (11)

for any constanty > 1 and any positive constantx satisfying1 �
e�xyR > 0. This concludes the proof.

To prove Theorem 1.5, we only need to make few nominal changes,
which are due to the fact thatjAnj = qn and a Hamming ball with
radiusR now has

R

i=0

(q � 1)i
n

i
� (q � 1)R

nR

R!

vertices. The presence ofq does not really matter; a careful look at
(7)–(10) reveals that the terms containingq cancel each other and the
whole analysis remains the same.

IV. REMARKS

A slightly better bound. Corollary 1.3 can be improved slightly by
optimizing the estimate in (3) as a two-variable function inx andy
(instead of fixingy = R and optimizingx). Consequently, we could
also improve Corollary 1.4 slightly. However, the details are a little bit
technical and we prefer to present these corollaries in the current form
for the sake of clarity.

Algorithmic aspects. Our proof provides an efficient randomized al-
gorithm to find codes with improved densities. Notice that in order to
find a code with radiusR satisfying the bound in Corollary 1.3, the
codesK1 andK2 in Section III do not need to be optimal. It is suffi-
cient that they both satisfy the bound in Corollary 1.3 (as we use in-
duction). The only place where randomness is involved is Lemma 2.2.
It is simple to show that a random setX satisfies the requirements of
the lemma with positive constant probability.

When it becomes important to have a deterministic algorithm, we
can derandomize the proof of Lemma 2.2 by the standard “conditioning
method” (see [3]). The setX in Lemma 2.2 can be produced by the
following deterministic algorithm: Order the vertices of the graph as
v1; v2; . . . ; vm. Assume thatv1; . . . ; vi�1 have been considered and
a subsetXi�1 has been selected (X0 is the empty set). IfjXi�1j = k,
let X = Xi�1 and outputX. Otherwise, considervi and compute
the (conditional) expectations ofjN(X)j with respect to one of the
following two cases

i) vi is chosen inX and the rest ofX is chosen randomly from
vi+1; . . . ; vn;

ii) vi is not chosen inX and the rest ofX is chosen randomly from
vi+1; . . . ; vn.

If the first expectation is not larger than the second, choosevi and set
Xi = Xi�1 [ fvig. Otherwise, do not choosevi and setXi = Xi�1.
Continue withvi+1.

The calculation of the expectations is straightforward. For example,
let us consider the first expectation. Assume thatX 0

i�1 = Xi�1[fvig
hasl elements. The (conditional) expectation ofjN(X)j is

y2N(X )

PPP y 2 N(X)

wherePPP y 2 N(X) (similar to the calculation in the proof of Lemma
2.2) is the probability thatN(y) does not contain any element of a
random set of sizek � l chosen uniformly from all sets of this size
contained infvi+1; . . . ; vng.

One-sided codes. In a recent paper, Cooper, Ellis, and Kahng [2]
introduced the notion of one-sided codes. Forx; y 2 n

2 , we write
x � y if xi � yi for all 1 � i � n. The one-sided ball with radius
R centered atx consists of those verticesys wherex � y and the
Hamming distance betweenx andy is at mostR. A subsetK of n

2 is
a one-sided code of radiusR if the one-sided balls of radiusR centered
at the vertices ofK cover n

2 . For a fixedR and largen, the dominating
part of the one-sided balls has volume approximatelyn=2

R
, so a one-

sided code of radiusR has at least(1+o(1))2n= n=2
R

elements. (Here
and later, the asymptotic notation is used under the assumption that



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003 1815

n ! 1.) Naturally, we definejKj= 2

( )
as the density ofK. Now

we can define��os(R) as the counterpart of��(R).
The authors of [2] proved (in a somewhat different formulation) that

for all fixed R there is a constantc(R) such that��os(R) � c(R).
The constantc(R) was not computed explicitly, but a careful reading
reveals that it should be at leastaR for some constanta > 1. Repeating
the proof of Theorem 1.2 for one-sided codes (a minor modification is
needed) we can prove the statement of Theorem 1.2 for��os(R) and
(consequently) improve the bound on��os(R) to orderR logR.

Theorem 4.1:Given a pair of positive integersR > R1 � 1

��os(R) �
yR ( y

y�1
)R�R R

R

�1

x��os(R1)

1� e�xyR

holds for any pair of positive constantsx andy satisfyingy > 1 and
1 � e�xyR > 0.

Then we have the following.

Corollary 4.2: For allR � 3

��os(R) � e(R logR+ logR+ log logR+ 1)��os(1):

Notice that here we do not know whether��os(1) = 1.

The minor modification we need in the proof of Theorem 4.1 is due
to the fact that the one-side balls have different volumes. It is not hard,
however, to overcome this obstacle. By the binomial distribution, the
fraction of vertices of n

2 with weights more thann
2
+ 10R

p
n logn

or less thann
2
� 10R

p
n logn is o(1=nR) (10 can be replaced by a

smaller number), so it suffices to focus on the vertices with weights
betweenn

2
� 10R

p
n logn and n

2
+ 10R

p
n logn. The one-sided

balls centered at these vertices all have volume approximatelyn=2
R

.
We leave out the details which might serve as an exercise.

ACKNOWLEDGMENT

The authors wish to thank the Associate Editor S. Litsyn for several
useful comments.

REFERENCES

[1] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein,Covering Codes, ser.
North-Holland Mathematical Library. Amsterdam, The Netherlands:
North-Holland, 1997, vol. 54.

[2] J. Cooper, R. Ellis, and A. Kahng, “Asymmetric binary covering codes,”
J. Comb. Theory Ser. A, vol. 100, no. 2, pp. 232–249, 2002.

[3] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

Near-Ellipsoidal Voronoi Coding

Stéphane Ragot, Student Member, IEEE, Minjie Xie, and
Roch Lefebvre, Member, IEEE

Abstract—In this correspondence, we consider a special case of Voronoi
coding, where a lattice� in is shaped (or truncated) using a lattice
� = ( . . . ) ( . . . ) � for a fixed =
( . . . ) ( 0 1 ) . Using this technique, the shaping
boundary is near-ellipsoidal. It is shown that the resulting codes can be
indexed by standard Voronoi indexing algorithms plus a conditional mod-
ification step, as far as� is a sublattice of�. We derive the underlying
conditions on and present generic near-ellipsoidal Voronoi indexing al-
gorithms. Examples of constraints on and conditional modification are
provided for the lattices , ( 2) and 2 ( even 4).

Index Terms—Lattice, lattice codes, lattice indexing, Voronoi coding.

I. INTRODUCTION

We address the problem of designing (near-)ellipsoidal lattice codes
with fast indexing algorithms. The motivation for this work lies in
wide-band speech coding. More specifically, we are interested in de-
signing low-complexity high-dimensional algebraic spectrum coding
based on a Gaussian mixture model [6], which implies construction of
codes to quantize correlated Gaussian vector sources.

Lattices, which are extensively studied in [10], are linear discrete sets
of points. Without loss of generality, we will consider here only lattices
defined in n. A lattice code is defined by selecting a finite subset
of a lattice. Lattice codes find important applications, such as coded
modulation and vector quantization. They are known to yield potential
good performance–complexity tradeoffs and to be asymptotically good
in certain conditions.

Given a lattice, two important steps are required to implement a lat-
tice code.

1) Shape the lattice properly (i.e., define the support region of the
lattice code) and design the indexing algorithms to label code-
vectors.

2) Design a procedure to find the closest lattice pointwithin the
code, that is, the nearest codevector to any arbitrary point.

In this correspondence we deal only with the lattice shaping and in-
dexing problem. This problem is important, since an optimized lattice
shaping may bring significant performance gains compared to a base-
line shaping (e.g., scalar quantization in source coding applications)
[2], [13]. To be more specific, we will focus hereafter on lattice codes
defined by ellipsoidal truncation. As mentioned earlier, this restriction
is motivated by the need in certain applications to quantize correlated
Gaussian vector sources. Other shaping techniques, yielding, for in-
stance, codes definedonor insidespherical [11], [12] or pyramidal [7],
[14], [15] shapes, are not considered.
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