
s,

PHYSICAL REVIEW E, VOLUME 63, 016206
Covering dynamical systems: Twofold covers
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We study the relation between a dynamical system, which is unchanged~equivariant! under a discrete
symmetry groupG and another locally identical dynamical system with no residual symmetry. We also study
the converse mapping: lifting a dynamical system without symmetry to a multiple cover, which is equivariant
underG. This is done inR3 for the two element rotation and inversion groups. Comparisons are done for the
equations of motion, the strange attractors that they generate, and the branched manifolds that classify these
strange attractors. A dynamical system can have many inequivalent multiple covers, all equivariant under the
same symmetry groupG. These are distinguished by the value of a certain topological index. Many examples
are presented. A new global bifurcation, the ‘‘peeling bifurcation,’’ is described.

DOI: 10.1103/PhysRevE.63.016206 PACS number~s!: 05.45.2a
m
an

om
m
om
si-
m

i
is
er
o

th

nd
w

ti
o
is

th

-
y

o
nt
of

an

cal
n-

ec-
c-
s.
d

o-
ade
gen-
en-

in
ne

ith
e
ogi-
-
m-
try
al

ed
ac-
ac-

tion
nd

sit
I. INTRODUCTION

Many dynamical systems are properly described by a
plitudes~optics, classical electrodynamics, quantum mech
ics, quantum optics, laser physics!, but only intensities are
measured. It is then possible to infer chaotic dynamics fr
the behavior of the intensities. However, at the level of a
plitudes, the chaotic dynamics that takes place is more c
plicated. Some information is ‘‘squared away’’ in the tran
tion from an amplitude description to a description in ter
of intensities. More properly speaking, intensity dynamics
an ‘‘image’’ of amplitude dynamics; amplitude dynamics
a ‘‘multiple cover’’ of intensity dynamics. The present pap
is designed to respond to the question: ‘‘What spectrum
dynamical behavior of the amplitudes is compatible with
observed chaotic behavior of the intensities?’’

This is an important particular case of the ‘‘cover a
image’’ dynamical system problem. It has long been kno
that there is a 2→1 relation between the Lorenz@1# and
Rössler @2# dynamical systems@3#. In fact, Rössler intro-
duced his equations in order to simplify the study of chao
dynamics. He viewed his equations as ‘‘the square root’’
the Lorenz equations, in analogy with Dirac’s view of h
equations as ‘‘the square root’’ of the Schro¨dinger equation.
In this sense, the Lorenz system is a double cover of
Rössler system. Conversely, there is a 2→1 mapping of a
Lorenz strange attractor down to a Ro¨ssler-like strange at
tractor. This 2→1 projection is most easily visualized b
viewing the Lorenz attractor along thex5y axis. From this
perspective, the two foci and their associated lobes fall
top of each other. There appear to be only two fixed poi
and the attractor takes on the qualitative appearance
Rössler attractor.

In this paper, we discuss the relation between cover
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image dynamical systems. We do this only for dynami
systems inR3, and only for covering dynamical systems u
changed by~equivariant under! a discrete symmetry groupG
of order two. The general setup for the cover-image proj
tion is presented in Sec. II. In Sec. III we describe proje
tions ofRz(p) equivariant systems to their image equation
This is done explicitly for the Lorenz and the Burke an
Shaw systems. These procedures are applied toP ~inversion!
invariant systems in Sec. IV, specifically to the induced L
renz and to the Kremliovsky systems. Comparisons are m
between the equations, the strange attractors which they
erate, and the templates, or branched manifolds, which id
tify these strange attractors@4#.

The inverse problem~‘‘lift problem’’ ! of creating a cov-
ering dynamical system with symmetry groupG from an im-
age dynamical system without symmetry is discussed
Secs. V and VI. In Sec. V we construct the equations for o
of the rotation equivariant double covers of the Ro¨ssler sys-
tem. An image can have many inequivalent covers, all w
the same symmetry groupG. These inequivalent covers ar
distinguished among themselves by the values of a topol
cal indexn. Four inequivalent two fold covers with symme
try group Rz(p) are created for the Smale horseshoe te
plate in the remainder of Sec. V, three covers with symme
groupP are constructed in Sec. VI. In Sec. VII, a new glob
bifurcation is described.

In Sec. VIII we describe how to construct a branch
manifold that describes the twofold cover of a strange attr
tor starting from the branched manifold of the image attr
tor, the symmetry groupG, and the topological indexn. This
is done both from the diagram and the algebraic descrip
of the templates. Section IX contains a brief summary a
discussion of these results.

II. PROCEDURE

The system of dynamical equations

ẋ5F1~x,y,z! ~1a!
y,
©2000 The American Physical Society06-1
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CHRISTOPHE LETELLIER AND ROBERT GILMORE PHYSICAL REVIEW E63 016206
ẏ5F2~x,y,z!, ~1b!

ż5F3~x,y,z!, ~1c!

which is invariant under the groupG of order 2, is mapped
into a locally equivalent dynamical system

u̇5g1~u,v,w!, ~2a!

v̇5g2~u,v,w!, ~2b!

ẇ5g3~u,v,w! ~2c!

without any residual symmetry. This is done by construct
a nonlinear coordinate transformation

u5u~x,y,z!, ~3a!

v5v~x,y,z!, ~3b!

w5w~x,y,z! ~3c!

in which the coordinates (u,v,w) are invariant underG. The
coordinates (u,v,w) are linear combinations of elementa
polynomials in~x,y,z! of degree< uGu @5#, which are invari-
ant underG. The invariant dynamical system equationsu̇i
5gi(u) are determined in a straightforward way from

dui

dt
5

]ui

]xj

dxj

dt
5

]ui

]xj
F j~x!5gi~u!. ~4!

These equations are called the projected or image equat
It is possible to constructuGu fold covers of an invariant

dynamical system with symmetry groupG from an invariant
system~in ui! by inverting the Jacobian

dxi

dt
5

]xi

]uj

duj

dt
5S ]u

]xD
i j

21

gj~u!5Fi~x!. ~5!

These equations are called the lifted or covering equatio
The Jacobian (]u/]x) has zeroes along some curves or s
faces inR3. It is therefore necessary to treat the singularit
of (]x/]u) carefully. As a result of these singularities, a
invariant dynamical systemu̇i5gi(u) can have many differ-
ent covering dynamical systems, which are equivariant un
the same groupG. These inequivalent covers are disti
guished by a topological index.

Three inequivalent two element groupsG exist in R3.
These are the groups of

Reflections sz :~x,y,z!→~x,y,2z!,

Rotations Rz~p!:~x,y,z!→~2x,2y,z!,

Inversions P:~x,y,z!→~2x,2y,2z!.

In this paper we study only the latter two. The reason is t
strange attractors with reflection symmetry must be disc
nected. We are interested in the nontrivial case where
equivariant attractors are connected.
01620
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We study the projection—lift problem at three levels: t
equations themselves, the strange attractors generate
these equations, and the branched manifolds that charact
the attractors.

III. PROJECTIONS OF ROTATION EQUIVARIANT
SYSTEMS

The elementary polynomials in~x,y,z! of degree up to two
~5uGu! invariant underRz(p) arez, x2, xy, andy2 @5#. The
following coordinate transformation is convenient

u5x22y2, ~6a!

v52xy, ~6b!

w5z. ~6c!

This transformation ‘‘mods out’’ the rotation symmetry. W
now apply this projection transformation to two dynamic
systems with rotational symmetry.

A. Lorenz equations

The Lorenz equations@1#

ẋ52sx1sy, ~7a!

ẏ5Rx2y2xz, ~7b!

ż52bz1xy ~7c!

are equivariant underRz(p). An invariant image of the Lo-
renz system can be constructed using the image equation~4!
and the transformation~6!. This results in the ‘‘proto-Lorenz
equations’’@6#.

u̇5~2s21!u1~s2R!v1vw1~12s!r, ~8a!

v̇5~R2s!u2~s11!v2uw1~R1s!r2rw, ~8b!

ẇ52bw1 1
2 v, ~8c!

wherer5Au21v2.
The flows generated by the Lorenz and proto-Lore

equations are shown in Fig. 1. The branched manifo
which describe these flows, are also shown in this figure

The branched manifold shown for the Lorenz flow can
deformed to the more familiar branched manifold repres
tation by giving the right-hand lobe a half-twist, with the to
coming out of the page@4#. The branched manifold show
for the proto-Lorenz flow is equivalent to the branched ma
fold for a Smale horseshoe.

B. Burke and Shaw equations

The Burke and Shaw equations@7#

ẋ52S~x1y!, ~9a!

ẏ52y2Sxz, ~9b!
6-2
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COVERING DYNAMICAL SYSTEMS: TWOFOLD COVERS PHYSICAL REVIEW E63 016206
ż5Sxy1V ~9c!

are also equivariant underRz(p). Under the transformation
~6! the image equations are

u̇52~S11!u2S~12w!v1~12S!r, ~10a!

v̇5S~12w!u2S~11w!r2~S11!v, ~10b!

ẇ5
S

2
v1V, ~10c!

wherer5Au21v2.. The flows generated by the Burke an
Shaw dynamical system~9! and its image~10! are shown in
Fig. 2. The branched manifolds, which describe these stra
attractors, are also shown.

The branched manifold for the projected system is tha
a Smale horseshoe with an additional half-twist in the ret
flow. This is equivalent to a reverse horseshoe.

IV. PROJECTIONS OF INVERSION EQUIVARIANT
SYSTEMS

The elementary polynomials in~x,y,z! of degree up to
two, which are invariant underP, arexy, yz, zx, x2, y2, and
z2. The following coordinate transformation is convenien

u5x22y2, ~11a!

v52xy, ~11b!

w5~x2y!z. ~11c!

FIG. 1. Top: Strange attractors generated byRz(p) equivariant
Lorenz equations~7! and invariant image equations~8!. Parameter
values:s510.0,R528.0, andb58/3. Bottom: Branched manifolds
for these two strange attractors.
01620
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This transformation ‘‘mods out’’ the inversion symmetr
We apply this projection to two dynamical systems with i
version symmetry.

A. Induced Lorenz system

The induced Lorenz system@3# occurs naturally in all
attempts to analyze scalar data,s(t), behaving like thex or y
variable in the Lorenz system. Specifically, if a different
embedding is used to construct a three-dimensional ph
space according to

X5s~ t !, ~12a!

Y5 ṡ~ t !, ~12b!

Z5 s̈~ t ! ~12c!

then the derivative coordinates obey the equations

Ẋ5Y, ~13a!

Ẏ5Z, ~13b!

Ż5bs~R21!X2b~s11!Y2~b1s11!Z

2X2Y2sX31
Y@~s11!Y1Z#

X
, ~13c!

The apparent singularity in Eq.~13! is not a difficulty if
Y@(s11)Y1Z#'O(X) as X→0. That is, the flow passe
through the straight lineY@(s11)Y1Z#50 in the X50
plane. The invariant image equations of the induced Lor
system are too complicated to present here. The flows g

FIG. 2. Top: Strange attractors generated byRz(p) equivariant
Burke and Shaw equations~9! and invariant image equations~10!.
Parameter values:V54.271, andS510.0. Bottom: Branched mani
folds for these two strange attractors.
6-3
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CHRISTOPHE LETELLIER AND ROBERT GILMORE PHYSICAL REVIEW E63 016206
erated by the induced Lorenz system and the invariant im
are shown in Fig. 3. The branched manifolds, which char
terize these flows, are shown in the same figure.

B. Kremliovsky equations

Kremliovsky modified the Ro¨ssler equations@cf. Eq. ~15!
below# by modifying the ż equation @b→bx, w(u2c)
→z(x22c)# to construct a three-dimensional dynamical s
tem @8#

ẋ52y2z, ~14a!

ẏ5x1ay, ~14b!

ż5bx1z~x22c!, ~14c!

which is equivariant under (x,y,z)→(2x,2y,2z). The in-
variant image of this dynamical system is also too com
cated to present here. The flows generated by the Krem
vsky system~14! and its invariant image are shown in Fig.
In this figure we also present the branched manifolds
characterize these strange attractors.

V. LIFTS TO ROTATION INVARIANT SYSTEMS

A double cover for the Ro¨ssler system

u̇52v2w, ~15a!

v̇5u1av, ~15b!

ẇ5b1w~u2c! ~15c!

FIG. 3. Top: Strange attractors generated byP equivariant in-
duced Lorenz equations~13! and invariant image equations. Param
eter values:s510.0, R528.0, and b58/3. Bottom: Branched
manifolds for these two strange attractors.
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can be constructed using the lift equations~5! and the trans-
formation ~6!. The resulting dynamical system equatio
with twofold rotational symmetry are

ẋ5
1

2r2 @2r2y1x~2ay22z!#, ~16a!

ẏ5
1

2r2 @r2x1y~2ax21z!#, ~16b!

ż5b1z~x22y22c!, ~16c!

wherer5Ax21y2. The strange attractors generated by t
Rössler equations~15! and the twofold cover~16! are shown
in Fig. 5. Also shown in this figure are the branched ma
folds for these two strange attractors.

This is not the only double cover of the Ro¨ssler system
with Rz(p) rotation symmetry. Many other double cove
can be constructed, all invariant underRz(p), all topologi-
cally inequivalent to the one shown in Fig. 5 and with ea
other. We now explain how this can come about.

The transformation~6! mapping (x,y,z)→(u,v,w) is 2
→1 everywhere except on thez andw axes, where it maps
(0,0,z)→(0,0,w) in a 1-1 way. The Jacobian of the transfo
mation]ui /]xj , is singular on thez axis. Within the image
space (u,v,w), there is no singularity along thew axis. This
allows one to construct several inequivalent covers with
same symmetry group for an invariant dynamical system

We illustrate this idea for invariant dynamical system
that generate strange attractors classified by a Smale h
shoe template~e.g., the Ro¨ssler equations!. This template is
shown in Fig. 6. Each branch contains one unstable pe

FIG. 4. Top: Strange attractors generated byP equivariant
Kremliovsky equations~14! and invariant image equations. Param
eter values:a50.911; b50.9547623431;c52.192954632. Bot-
tom: Branched manifolds for these two strange attractors.
6-4
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COVERING DYNAMICAL SYSTEMS: TWOFOLD COVERS PHYSICAL REVIEW E63 016206
one orbit. These orbits are shown by heavy lines. The pe
one orbits and the branches that contain them are indexe
the same labels. In the present case this is the global tor
of the orbit and the branch in which it resides: 0 or 1.

Also shown in Fig. 6 are four possible rotation ax
(u,v,w)5(0,0,w). Each of these axes links the two perio
one orbits in different ways. If we calln0 , n1 the linking
numbers of the period one orbits 0 and 1 with thew axis
~closed by a return at̀ !, the four cases shown are~0,0!,
~0,1!, ~1,0!, and~1,1!.

The branched manifold, which describes a double co
of the Smale horseshoe template, has four branches.
sider a closed orbit in this covering branched manifold. If
linking number with thez axis isn, then the linking number
of the image orbit with thew axis is 2n. If n51, the orbit in
the double cover goes around thez axis once while its image
goes around thew axis twice. In particular, ifn151, then the
period one orbit 1 in the Smale horseshoe template canno
the image of a closed orbit in the cover template. If the or
in the cover space does not link thez axis, its image orbit
does not link thew axis, and vice versa.

In Fig. 7 we show the four double covers of the Sma
horseshoe template, which correspond to the four choice
thew axis shown in Fig. 6. Each double cover is equivaria
underRz(p).

Each of the branched manifolds in Fig. 7, which cove
SH, is invariant underRz(p) and has four branches. Thes
are labeled by an integer~0 or 1!, a subscript~l or r!, and
another symbol~ˆ or !̄. The integer identifies whether th
branch in the cover is mapped into branch 0 or 1 inSH. The
subscript identifies whether the branch is on the left-or rig
hand side of the cover. UnderRz(p), l→r and r→ l . The
extra symbol has a topological significance. It indica

FIG. 5. Top: Strange attractors generated by Ro¨ssler equations
~15! and twofold cover equivariant underRz(p) ~16!. Parameter
values:a50.415,b52.0, andc54.0. Bottom: Branched manifold
for these two strange attractors.
01620
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whether the image links the rotation axis once (ˆ) or not at
all ( )̄ .

We describe in some detail the relation between
branched manifold shown in Fig. 7~b! and its image, the
Smale horseshoe template shown in Fig. 6. The cover t
plate has four branches: one (0l̄) entirely in the left lobe, its
image (0̄r) underRz(p), one branch (1ˆ

l) extending from the
left lobe to the right lobe, and its image (1ˆ

r) underRz(p).
Under projection, the image of the two branches 0l̄ ,0̄r in the
cover template is the branch 0 in the Smale horseshoe
plate. The branches 1ˆ

l ,1̂r both map to the branch 1 in th
horseshoe template. The period one orbit in 0l̄ and its coun-
terpart in 0̄r do not link thez axis (n50). Both map to the
period one orbit 0 in the horseshoe template, which does
link thew axis (n050). There is one period two orbit 1ˆ

l 1̂r in
the cover template. This links thez axis once (n51). This
period two orbit maps twice onto the period one orbit 1
the horseshoe template (1ˆ

l 1̂r→11), which links thew axis
twice (n52). The period one orbit 1 links thew axis once
(n151).

These arguments can be run backwards. Sincen050, the
period one orbit 0 in the horseshoe lifts to two symme

FIG. 6. Two branch Smale horseshoe template. The period
orbit in each branch is shown by a heavy line. Four possible ima
in (u,v,w) space of the rotation axis~0, 0, z! in ~x,y,z! space are
shown. They are labeled by their linking numbers (n0 ,n1) with the
two period one orbits. These axes have been chosen to be dis
from the strange attractor’s branched manifolds: 0 or 1.~a! The
three cases~0,0!, ~0,1!, and ~1,1! are shown.~b! In the case~1,0!,
the rotation axis passes behind branch 1, in front of branch 0,
through the hole in the middle of the attractor and behind b
branches.
6-5
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CHRISTOPHE LETELLIER AND ROBERT GILMORE PHYSICAL REVIEW E63 016206
related orbits, 0̄l and 0̄r , which do not link thez axis. Since
n151, the period one orbit 1 in the horseshoe lifts to ‘‘half
closed orbit’’ 1̂l or 1̂r , which is then closed by adding th
complementary symmetry related segment~1̂r or 1̂l!. This
closed orbit 1ˆ l 1̂r in the cover links thez axis withn51. That
is, the period ‘‘two’’ orbit 11, withn5n11n152, lifts to the
period two orbit 1ˆ l 1̂r with n51.

The relation between cover and image branched m
folds for other choices of the topological index (n0 ,n1) are
described similarly. Since the four 4-branched manifo

FIG. 7. Branched manifolds for four inequivalent double cov
of the Smale horseshoe template. Each cover is equivariant u
rotations byp around an axis through3. The four different double
covers are identified by their topological index (n0 ,n1).
01620
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shown in Fig. 7 are not topologically equivalent, the dynam
cal systems they represent are also inequivalent. The lift w
(n0 ,n1)5(0,0) is disjoint and not interesting.

VI. LIFTS TO INVERSION INVARIANT SYSTEMS

The nonlinear transformation~11! has an invariant set
which consists of the union of thez axis and the planex
2y50. The z-axis component of this invariant set can b
treated in exactly the same way as thez axis in the rotational
invariant case. Thex2y50 plane does not provide an ob
struction to the flow. In Fig. 8 we show three inequivale
double covers of the Smale horseshoe manifold. Each
inversion symmetry and is connected.

VII. A NEW GLOBAL BIFURCATION: PEELING

In Fig. 7~d!, the double cover with (n0 ,n1)5(1,1) exhib-
its dynamics similar to the strange attractor for the Duffi
oscillator @9#. The four branches in this coverD are
(0̂l ,1̂l ,1̂r ,0̂r). The double cover with (n0 ,n1)5(0,1) @Fig.

s
er

FIG. 8. Branched manifolds for three inequivalent connec
covers with inversion symmetry of the Smale horseshoe branc
template.
6-6
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COVERING DYNAMICAL SYSTEMS: TWOFOLD COVERS PHYSICAL REVIEW E63 016206
7~b!# is topologically equivalent to the Lorenz system@1#.
The four branches in this coverL are (0̄l ,1̂l ,1̂r ,0̄r). Finally,
the double cover with (n0 ,n1)5(0,0) consists of two iden-
tical copies of the image branched manifold related by ro
tion symmetry@Fig. 7~a!#. The four branches in this discon
nected double cover 2SH are (0̄l ,1̄l) in the copy on the left
and (1̄r ,0̄r) for the copy on the right.

We now describe the new global bifurcation. Choose
rotation axisw so that (n0 ,n1)5(1,1). Then displace thew
axis outward, so that it first intersects the branch 0 of
image Smale horseshoe templateSH, then branch 1. The
covering templates are shown in Fig. 9. As the rotation a
crosses branch 0 ofSH, outer orbit segments in this branc
encircle thew axis once, inner segments do not. In the cov
the branches 0ˆ

l ,r split into two pieces, 0ˆ
l ,r and 0̄l ,r , depend-

ing on where the image occurs under the diffeomorph
~i.e., outside or insidew!. The cover branched manifold re
mains invariant underRz(p) but now has six branches
(0̄l ,0̂l ,1̂l ,1̂r ,0̂r ,0̄r) @Fig. 9~a!#. This six-branch manifold
interpolates between the templateD with four branches and
the templateL, also with four branches.

A similar perestroika occurs as the rotation axisw crosses
branch 1 ofSH. The cover branches 1ˆ

l ,r split into two
pieces, 1ˆ l ,r and 1̄l ,r , depending on where the image occu
under the diffeomorphism. The covering branched manif
once again has six branches@Fig. 9~b!#. These are now

FIG. 9. Double covers ofSH with six branches. The lifts are
obtained when the symmetry axisw intersects the branch 0~a! or 1
~b! of SH.
01620
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(0̄l ,1̄l ,1̂l ,1̂r ,1̄r ,0̄r). This six-branch template interpolate
between the templateL with four branches and the discon
nected template 2SH, with two pairs of branches.

We exhibit this bifurcation explicitly for the Ro¨ssler sys-
tem of equations@2#. Instead of displacing the symmetr
axis, we equivalently modify the equations by displacing t
origin of coordinates (u,v,w)→(u1u0 ,v1v0 ,w1w0).
First, the Ro¨ssler is centered through a rigid displaceme
i.e., the inner fixed point is moved to the origin of the pha
spaceR3(u,v,w). In the translated coordinate system, t
equations for this image system are

u̇52v2w2v02w0 , ~17a!

v̇5u1av1u01av0 , ~17b!

ẇ5b1w~u1u02c!1w0u1w0~u02c!, ~17c!

where u052v05aw05(c2Ac224ab)/2 are the coordi-
nates of the inner fixed point of the original Ro¨ssler system.
The system may then be rewritten as

u̇52v2w, ~18a!

v̇5u1av, ~18b!

ẇ5b̃u1w~u2 c̃!, ~18c!

whereb̃5w0 and c̃5c2u0 .
When the origin of coordinates is displaced along theu

axis by a quantity equal tom, the equations for the imag
system in the translated coordinates are

u̇52v2w, ~19a!

v̇5u1av1m, ~19b!

ẇ5b̃~u1m!1w~u2 c̃1m!, ~19c!

We integrated these equations, and the covering equat
obtained from them using Eq.~3!, for (a,b,c)
5(0.432,2.0,4.0) and five values ofm. The covering equa-
tions are

ẋ5
1

2r 2 @2r 2y1x~2ay22z!1my#, ~20a!

ẏ5
1

2r 2 @r 2x1y~2ax21z!1mx#, ~20b!

ż5b̃~x22y21m!1z~x22y22 c̃1m!, ~20c!

wherer 5Ax21y2.
The results are shown in Fig. 10. The strange attrac

shown in Fig. 10~a!, 10~c!, and 10~e! all have four branches
and are the double covers of the Ro¨ssler attractor with topo-
logical indices (n0 ,n1)5(1,1), ~0,1!, and~0,0!. The strange
attractor shown in Fig. 10~b! has six branches and interpo
lates between the attractorsD and L with (n0 ,n1)5(1,1)
and~0,1!. The strange attractor shown in Fig. 10~b! also has
6-7
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FIG. 10. Five double cover strange attractors for the Ro¨ssler
equations~48!. These are obtained by displacing the origin of c
ordinates along theu axis.
01620
six branches and interpolates between the attractorsL and
2SH with (n0 ,n1)5(0,1) and~0,0!. The nature of the flow
in the neighborhood of thez axis is shown in Fig. 11. The
deformation of the flow, which takes place in the coveri
system, is very similar to the deformation of an apple s
when the apple is peeled. Hence the name for this new glo
bifurcation ~Figure 11!.

We emphasize here that the placement of thew axis has
no effect on the nature of the flow in the image system. T
bifurcation takes place only in the covering dynamical s
tem; the image system remains invariant during the displa
ment of the symmetry axis.

As thew axis is moved across the branches of the ima
Smale horseshoe templateSH, a systematic reorganizatio
takes place in the lifts of the unstable periodic orbits inSH.
When thew axis passes through the center of rotation ofSH
@structurally stable case, (n0 ,n1)5(1,1)#, the linking number
of this axis with an unstable periodic orbit is its periodp. As
w moves outward, it makes a series ofp intersections with
this unstable periodic orbit. The order in which the interse
tions occur is determined by kneading theory@10#. At each
intersection:~1! the linking number of the orbit withw de-
creases by one and~2! two symbolŝ in the cover change to
.̄ We illustrate these ideas with a simple example. This

the perestroika of the lift of the period four orbit 0111 in th
period doubling cascade inSH. It lifts undergo the following
perestroika:

~1,1! D 0̂l 1̂r 1̂l 1̂r and 0̂r 1̂l 1̂r 1̂l

~0,1! L 0̄l 1̂l 1̂r 1̂l 0̄r 1̂r 1̂l 1̂r

L12SH 0̄l 1̂l 1̄r 1̂r and 0̄r 1̂r 1̄l 1̂l

L12SH 0̄l 1̄l 1̄l 1̂l 0̄r 1̄r 1̄r 1̂r

~0,0! 2SH 0̄l 1̄l 1̄l 1̄l and 0̄r 1̄r 1̄r 1̄r .

We point out the strong coupling between the left-rig
symbolsl andr and the topological symbolŝand .̄ That is,
ˆ forces the changel→r , r→ l while¯ forcesl→ l , r→r .

FIG. 11. Deformation of the flow in the double cover when t
symmetry axis intersects the strange attractor. The contorted s
ture is similar to the deformation of an apple skin when the appl
peeled.
6-8
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VIII. ALGEBRAIC DESCRIPTION OF BRANCHED
MANIFOLDS

Every branched manifold can be described by a se
integers. A template withn branches is described by th
following arrays@4#:

~i! T: This is ann3n Markov transition matrix with en-
tries 0 or 1. It describes the connectivity of the branch
manifold.Ti j is 1 if branchi flows into branchj, 0 otherwise.

~ii ! L: This is also ann3n matrix. It describes the topo
logical organization of the branches.Li j describes how
branchesi andj are intertwined. It is the algebraic sum of th
signed crossings of the two branches (iÞ j ). Lii is the torsion
of branchi. It is the algebraic sum of the signed crossings
the two edges of branchi.

~iii ! A: This is a 13n array. It describes the order i
which branches are joined at a branch line. When branchi
andj meet at a branch line,Ai,Aj if branchi is closer to the
observer than branchj in the projection adopted.

For the Smale horseshoe shown in Fig. 12~a! we have

T5F1 1

1 1G L5F0 0

0 11G A5@11 21#. ~21!

Here the first row/column refers to brancha with local tor-
sion 0 and the second to branchb with local torsion11.

The Smale horseshoe template has many inequiva
twofold covers, depending on the symmetry groupG
@5Rz(p) orP# and the topological indices (n0 ,n1). The al-
gebraic description of the covering branched manifold can
constructed from the algebraic description of the ima
branched manifold once the groupG and indices (n0 ,n1)
have been specified. We illustrate the algorithm involved
constructing the algebraic description of a twofold cover

FIG. 12. ~a! Image Smale horseshoe template.~b! Inversion im-
age.~c! Double cover with inversion symmetry. The image of t
rotation axis (n0 ,n1)5(0,1) passes through3.
01620
f

d

f

s

nt

e
e

y
f

the Smale horseshoe template. The cover has inversion s
metry and the topological index for the horseshoe
(n0 ,n1)5(0,1).

The image horseshoe is shown in Fig. 12~a!. Its algebraic
description is presented in Eq.~21!. The branches are labele
a ~first row/column, no torsion! andb ~second row/column,
torsion511!. A second horseshoe is now created by app
ing the inversion operation to the first. This is shown in F
12~b!. Its algebraic description is

T5F1 1

1 1G L5F0 0

0 21G A5@21 11#. ~22!

The first and second rows/columns label branchesa8,b8 with
torsion 0,21.

These two branched manifolds are now joined by re
ranging their branches. The topological index (n0 ,n1)
5(0,1) provides the information required. Sincena50,
brancha continues to flow into branchesa,b. Similarly, na8
50 means brancha8 continues to flow into branchesa8,b8.
Sincen151, the period one orbit in branchb lifts to a tra-
jectory in a cover, which cannot be closed~half a closed
orbit!. In other words, branchb now flows into branches
a8,b8. Similarly, branchb8 flows intoa,b. The Markov tran-
sition matrix is

T5F 1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0

G a
b
a8
b8

L5F 0 0 0 0

0 11 0 0

0 0 0 0

0 0 0 21

G .

~23!

The linking matrix is the direct sum of the linking matrice
for the pair of two-branch Smale horseshoe templates. I
also presented in Eq.~23!.

The 134 array matrix is constructed as follows. For th
two Smale horseshoe templates,Aa.Ab and Aa8,Ab8 .
Branch b now joins brancha8, so Aa8.Ab . Similarly Aa
,Ab8 . The following array satisfies these conditions:

A5@1222112#. ~24!

The values of the array elements are not unique. Only th
ordering is important.

The topological entropy of a branched manifold is o
tained in the usual way from its transition matrix. It is th
logarithm of the largest eigenvalue ofT. For the Smale
horseshoe template the eigenvalues ofT are 2 and 0. For its
double cover shown above, the eigenvalues are 2, 0, 0, an
Therefore, both the image and its cover shown here have
same topological entropy:hT5 ln 2. It is possible to show
that the topological entropy is unchanged under the cov
image relation. However, one must be careful. We illustrat
subtlety that can occur. The threeP-equivariant double cov-
ers of Fig. 8 have two branch lines each. The Poincare´ sec-
tion for each attractor is the union of the two branch line
The attractors Figs. 8~a! and 8~b! each have period one or
bits, while Fig. 8~c! has none. In fact, Fig. 8~c! has orbits of
only ‘‘even period.’’ However, for Fig. 8~c! it is possible to
6-9
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slide one branch line around until it reaches the other. O
then finds a branched manifold with four branches and
branch line. In this four-branch template, one period cor
sponds to propagation from the one branch back to its
The topological entropy ishT5 ln 4. If one redefines period
in the original branched manifold@Fig. 8~c!# so that one pe-
riod corresponds to propagation from one branch l
through the second and back to the first, then the topolog
entropy is also redefined by a factor of 2:hT52 ln 2.

IX. SUMMARY AND CONCLUSIONS

There is a general theory of image and cover dynam
system inRn. These are locally diffeomorphic dynamic
systems, which are not globally diffeomorphic. The cov
dynamical system is equivariant~unchanged! under a dis-
crete symmetry groupG. The image dynamical system eith
has no residual symmetry, or is equivariant under a sma
group, a subgroup ofG. A change of coordinates perform
the function of modding out the symmetry. This change
coordinates projects the cover to the image dynamical
tem. It is possible to ‘‘lift’’ an image dynamical system to
covering dynamical system by constructing the inverse tra
formation. An image dynamical system can have many
equivalent covering dynamical systems. They are dis
guished among themselves by certain topological indices

We have studied the cover-image, or project and lift,
lation for three-dimensional dynamical systems that are e
variant under the two two-element groupsRz(p),P. In par-
ticular, the Lorenz and Burke and Shaw dynamical syste
are equivariant underRz(p). We constructed the image dy
namical systems for each in Sec. III. The induced, Lore
system and the Kremliovsky system are equivariant undeP.
We have projected both to their image systems in Sec.
01620
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We have presented: the equations, the strange attractors
erated by the equations for certain parameter values, a
template or branched manifold which identifies the stran
attractor.

We studied the problem of constructing covers from i
age dynamical systems by constructing branched manif
that covered the Smale horseshoe template. The latter
branched manifold with two branches. Its twofold cove
have four branches. Four inequivalent covers with rotat
symmetry were presented in Sec. V. These are distinguis
by the topological index (n0 ,n1) where ni is the linking
number between the image of the rotation axis and brani
of the horseshoe template. One of these is disconnected

A new global bifurcation has been described. It occu
when an image dynamical system is lifted to a covering
namical system and the singular set of the local diffeom
phism is not bounded away from the flow in the image. T
bifurcation has been illustrated on lifts of the displac
Rössler system with twofold rotation symmetry. In Sec.
we studied three connected covers with inversion symme

Branched manifolds are described by integers. The a
braic descriptions of cover and image branched manifo
are closely related. We showed how to construct the a
braic description of a cover from an image given: the alg
braic description of the image, the groupG, and the topologi-
cal index (n0 ,n1 ,...). This was done in Sec. VIII for the
cover of the Smale horseshoe with topological ind
(n0 ,n1)5(0,1) and inversion symmetry.
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