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We study the relation between a dynamical system, which is unchafeggdvariant under a discrete
symmetry groupj and another locally identical dynamical system with no residual symmetry. We also study
the converse mapping: lifting a dynamical system without symmetry to a multiple cover, which is equivariant
underG. This is done ink? for the two element rotation and inversion groups. Comparisons are done for the
equations of motion, the strange attractors that they generate, and the branched manifolds that classify these
strange attractors. A dynamical system can have many inequivalent multiple covers, all equivariant under the
same symmetry grou@. These are distinguished by the value of a certain topological index. Many examples
are presented. A new global bifurcation, the “peeling bifurcation,” is described.
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[. INTRODUCTION image dynamical systems. We do this only for dynamical
systems ink3, and only for covering dynamical systems un-
Many dynamical systems are properly described by amehanged byequivariant undgra discrete symmetry group
plitudes(optics, classical electrodynamics, quantum mechanof order two. The general setup for the cover-image projec-
ics, guantum opticsy laser physjpgut 0n|y intensities are tion is presented in Sec. Il. In Sec. lll we describe projec-
measured. It is then possible to infer chaotic dynamics fronions of R,() equivariant systems to their image equations.
the behavior of the intensities. However, at the level of am-This is done explicitly for the Lorenz and the Burke and
plitudes, the chaotic dynamics that takes place is more comrShaw systems. These procedures are applig(toversion
plicated. Some information is “squared away” in the transi- invariant systems in Sec. IV, specifically to the induced Lo-
tion from an amplitude description to a description in termsreénz and to the Kremliovsky systems. Comparisons are made
of intensities. More properly speaking, intensity dynamics isbetween the equations, the strange attractors which they gen-
an “image” of amplitude dynamics; amplitude dynamics is erate, and the templates, or branched manifolds, which iden-
a “multiple cover” of intensity dynamics. The present paper tify these strange attractofd].
is designed to respond to the question: “What spectrum of The inverse probleng"lift problem” ) of creating a cov-
dynamical behavior of the amplitudes is compatible with theering dynamical system with symmetry grodgrom an im-
observed chaotic behavior of the intensities?” age dynamical system without symmetry is discussed in
This is an important particular case of the “cover and Secs. V and VI. In Sec. V we construct the eqqations for one
image” dynamical system problem. It has long been knownrof the rotation equivariant double covers of thesRler sys-
that there is a 2-1 relation between the Lorenfd] and tem. An image can have many inequivalent covers, all with
Rossler [2] dynamical system$3]. In fact, Rasler intro- the same symmetry grou. These inequivalent covers are
duced his equations in order to simplify the study of chaoticdistinguished among themselves by the values of a topologi-
dynamics. He viewed his equations as “the square root” ofcal indexn. Four inequivalent two fold covers with symme-
the Lorenz equations, in analogy with Dirac’s view of his try group R,(m) are created for the Smale horseshoe tem-
equations as “the square root” of the Séd'mger equation. plate in the remainder of Sec. V, three covers with symmetry
In this sense, the Lorenz system is a double cover of thgroup’ are constructed in Sec. VI. In Sec. VII, a new global
Réssler system. Conversely, there is a2 mapping of a  bifurcation is described.
Lorenz strange attractor down to a $ter-like strange at- In Sec. VIII we describe how to construct a branched
tractor. This 2-1 projection is most easily visualized by manifold that describes the twofold cover of a strange attrac-
viewing the Lorenz attractor along the=y axis. From this tor starting from the branched manifold of the image attrac-
perspective, the two foci and their associated lobes fall orfor, the symmetry groug, and the topological inde®. This
top of each other. There appear to be only two fixed pointsi,S done both from the diagram and the algebraic description
and the attractor takes on the qualitative appearance of @& the templates. Section IX contains a brief summary and
ROssler attractor. discussion of these results.

In this paper, we discuss the relation between cover and
1. PROCEDURE

The system of dynamical equations
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y=F,(X,y,2), (1b) We study the projection—Iift problem at three levels: the
equations themselves, the strange attractors generated by
z=F3(x,y,2), (1)  these equations, and the branched manifolds that characterize
the attractors.
which is invariant under the grou§ of order 2, is mapped
into a locally equivalent dynamical system lll. PROJECTIONS OF ROTATION EQUIVARIANT
. SYSTEMS
u=ga(u,v,w), (28)

The elementary polynomials ix,y,2 of degree up to two
v=0,(U,v,W), (2b)  (=|g|) invariant underR,(w) arez x2, xy, andy? [5]. The
following coordinate transformation is convenient

W=(g3(U,v,W) (20
u=x’-y? (6a)
without any residual symmetry. This is done by constructing
a nonlinear coordinate transformation v =2XY, (6b)
v=v(X,Y,2), (3b)  This transformation “mods out” the rotation symmetry. We
now apply this projection transformation to two dynamical
W=W(X,Y,z) (300  systems with rotational symmetry.

in which the coordinatesu(v,w) are invariant undeg. The

coordinates {,v,w) are linear combinations of elementary .
polynomials in(x,y,2 of degree< |G| [5], which are invari- The Lorenz equationkl]
ant underg. The invariant dynamical system equatioms

A. Lorenz equations

=g;(u) are determined in a straightforward way from X=moxtoy, (78
du  du; dx; auiF( J=g(u) @ y=Rx-y—xz, (7b)
Gt o dr - o [ =gi(u).
dt  gx; dt = 9x; z=—bz+xy (70

These equations are called the projected or image equations, . . L
It is possible to construd| fold covers of an invariant are equivariant undeR,(m). An invariant image of the Lo-

dynamicalysem wih symmetygrodon an marant 7% LT 21 e corsrcted s e e e
system(in u;) by inverting the Jacobian : P

equations”[6].

ox/ .
ij

: A -1
%—%%:(0u> gj(u)=F(x). (5) U=(—o—1u+(oc—Ryv+vw+(1l-0)p, (8a
J

. ) ) ) v=(R—o)u—(oc+1)v—uw+(R+o)p—pw, (8b)
These equations are called the lifted or covering equations.

The Jacobiandu/dx) has zeroes along some curves or sur- W= —bw+ 1y (80)
faces inR3. It is therefore necessary to treat the singularities 20

of (dx/du) carefully. As a result of these singularities, an wherep=\u?+ 2.

invariant dynamical syster = g;(u) can have many differ- The flows generated by the Lorenz and proto-Lorenz
ent covering dynamical systems, which are equivariant undegquations are shown in Fig. 1. The branched manifolds,
the same groupy. These inequivalent covers are distin- yhich describe these flows, are also shown in this figure.

guished by a topological index. o The branched manifold shown for the Lorenz flow can be
Three inequivalent two element grougsexist in R°.  geformed to the more familiar branched manifold represen-
These are the groups of tation by giving the right-hand lobe a half-twist, with the top

coming out of the pagé4]. The branched manifold shown
for the proto-Lorenz flow is equivalent to the branched mani-
fold for a Smale horseshoe.

Reflections o,:(X,y,z)—(X,Y,—2),

Rotations R, (7):(X,Y,2)—(—X,—VY,2),
B. Burke and Shaw equations

The Burke and Shaw equatiofig]
In this paper we study only the latter two. The reason is that

Inversions P:(X,y,2)—(—X,—Y,—2).

strange attractors with reflection symmetry must be discon- X=—=8(x+y), (9a)
nected. We are interested in the nontrivial case where the
equivariant attractors are connected. y=—y—Sxz (9b)
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Equivariant R () Invariant Equivariant R, (7) Invariant

Lorenz Image Burke and Shaw Image
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FIG. 1. Top: Strange attractors generatedRyfw) equivariant FIG. 2. Top: Strange attractors generatedry ) equivariant
Lorenz equations7) and invariant image equatioti8). Parameter ~Burke and Shaw equatiorf8) and invariant image equatio0).
values:o=10.0,R=28.0, ando= 8/3. Bottom: Branched manifolds Parameter value&/=4.271, and5=10.0. Bottom: Branched mani-

for these two strange attractors. folds for these two strange attractors.

7=Sxy+V (90) This transfo_rmatiqn ‘_‘mods out” the inversion symrr_letr_y.
We apply this projection to two dynamical systems with in-

are also equivariant und&,( ). Under the transformation version symmetry.

(6) the image equations are
A. Induced Lorenz system

u=—(S+Hu-S(1-wjv+(1-9p, (103 The induced Lorenz systef8] occurs naturally in all
attempts to analyze scalar dasét), behaving like thecory
v=8(1-w)u=S(1+w)p—(S+1)v, (10b  variable in the Lorenz system. Specifically, if a differential

embedding is used to construct a three-dimensional phase

S space according to
W= EU +Y, (109
X=s(t), (129
wherep=/u?+v?.. The flows generated by the Burke and Y=5(1) (12h)
Shaw dynamical systeii®) and its imagg10) are shown in ’
Fig. 2. The branched manifolds, which describe these strange Z=%¥(1) (120

attractors, are also shown.

The branched manifold for the projected system is that othen the derivative coordinates obey the equations
a Smale horseshoe with an additional half-twist in the return

flow. This is equivalent to a reverse horseshoe. X=Y, (13a
IV. PROJECTIONS OF INVERSION EQUIVARIANT Y=2, (13b
SYSTEMS

The elementary polynomials ifx,y,2 of degree up to Z=bo(R=1)X=ble+1)¥=(b+o+1)Z

two, which are invariant undep, arexy, yz, zxx?, y?, and Y[(c+1)Y+Z]
z°. The following coordinate transformation is convenient: —X2Y - oX3 —x (139
u=x*-y? (118 The apparent singularity in Eq13) is not a difficulty if
Y[(c+1)Y+Z]=O(X) as X—0. That is, the flow passes
v=2Xxy, (11 through the straight line&/[(o+1)Y+2Z]=0 in the X=0
plane. The invariant image equations of the induced Lorenz
w=(xX—-Yy)z. (119 system are too complicated to present here. The flows gen-
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Equivariant P Invariant Equivariant P Invariant

Induced Lorenz Image Kremliovsky Image
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FIG. 3. Top: Strange attractors generated/gquivariant in-
duced Lorenz equatior{¢3) and invariant image equations. Param- o
eter values:oc=10.0, R=28.0, andb=8/3. Bottom: Branched FIC_;. 4. Top: S_trange attra_tctor; ge_nerated 7Bye_qU|var|ant
manifolds for these two strange attractors. Kremliovsky equation$14) and invariant image equations. Param-

eter values:a=0.911; b=0.9547623431;,c=2.192954632. Bot-

. . . . tom: B hed ifolds for th two st ttractors.
erated by the induced Lorenz system and the invariant |magé)m ranched mantiolds for these two strange atractors

are shown in Fig. 3. The branqhed mamfold.s, which charac(-:an be constructed using the lift equatidbsand the trans-
terize these flows, are shown in the same figure.

formation (6). The resulting dynamical system equations
with twofold rotational symmetry are
B. Kremliovsky equations

Kremliovsky modified the Rssler equationfcf. Eq. (15) K= iz[—pzy+x(2ay2—z)], (163
below] by modifying the z equation [b—bx, w(u—c) 2p
—z(x?>—c)] to construct a three-dimensional dynamical sys-
tem|[8] . 1., 2
y=5 z2lp"x+y(2ax+2)], (16b
X=-y—z, (149 P
z=b+z(x*-y?—c), (160
y=Xx+ay, (14b

wherep=\x>+y?. The strange attractors generated by the
7=bx+z(x2—c), (140 Rossler equation§l5) and the twofold cove(16) are shown
in Fig. 5. Also shown in this figure are the branched mani-

which is equivariant unden(y,z)—(—x,—y,—2). The in-  folds for these two strange attractors. .

variant image of this dynamical system is also too compli- _ NS is not the only double cover of the Bier system
cated to present here. The flows generated by the Kremligdith R,(m) rotation symmetry. Many other double covers
vsky systen(14) and its invariant image are shown in Fig. 4. ¢&n be constructed, all invariant undey(w), all topologi-

In this figure we also present the branched manifolds thag2lly inequivalent to the one shown in Fig. 5 and with each
characterize these strange attractors. other. We now explain how this can come about.

The transformation(6) mapping &,y,z)—(u,v,w) is 2
—1 everywhere except on tleandw axes, where it maps

V. LIFTS TO ROTATION INVARIANT SYSTEMS (0,02)—(0,0w) in a 1-1 way. The Jacobian of the transfor-

A double cover for the Rssler system mation du; /9x; , is singular on the axis. Within the image
space (,v,w), there is no singularity along the axis. This
U=—v—w (159 allows one to construct several inequivalent covers with the

same symmetry group for an invariant dynamical system.
We illustrate this idea for invariant dynamical systems

v=utav, (150 that generate strange attractors classified by a Smale horse-
shoe templatée.g., the Resler equations This template is
w=b+w(u—c) (150 shown in Fig. 6. Each branch contains one unstable period
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Invariant Equivariant ©0) (@1 (L)

Rossler Double cover

.25 :
40 20 00 20 40 6.0 2250 -150 050 050 150 250
U X

(a) cases (0,0), (0,1) and (1,1)

FIG. 5. Top: Strange attractors generated bys$ker equations
(15) and twofold cover equivariant und&,(w) (16). Parameter
values:a=0.415,b=2.0, andc=4.0. Bottom: Branched manifolds
for these two strange attractors.

(b) case (1,0)

FIG. 6. Two branch Smale horseshoe template. The period one
one orbit. These orbits are shown by heavy lines. The perio@rbit in each branch is shown by a heavy line. Four possible images
one orbits and the branches that contain them are indexed Iy (U,v,w) space of the rotation axi®, 0, 2) in (x,y,2 space are

the same labels. In the present case this is the global torsicifown. They are labeled by their linking numbeng (0;) with the
of the orbit and the branch in which it resides: 0 or 1. two period one orbits. These axes have been chosen to be disjoint

Also shown in Fig. 6 are four possible rotation axesfrom the strange attractor’'s branched manifolds: 0 ofal.The

(u,u,w)=(0,0w). Each of these axes links the two period t"€€ €ase€0,0, (0,1, and(1,1) are shown(b) In the casd(1,0),

one orbits in different ways. If we caliy, n, the linking the rotation axis passes be_hmd branch 1, in front of branqh 0, then
. . . - through the hole in the middle of the attractor and behind both

numbers of the period one orbits 0 and 1 with theaxis branches

(closed by a return at), the four cases shown a@,0), '

(0,1, (1,0, and(1,)). whether the image links the rotation axis onég ¢r not at

The branched manifold, which describes a double coveg (7.
of the Smale horseshoe template, has four branches. Con- \we describe in some detail the relation between the
sider a closed orbit in this covering branched manifold. If itshranched manifold shown in Fig.() and its image, the

linking number with thez axis isn, then the linking number smale horseshoe template shown in Fig. 6. The cover tem-
of the image orbit with thev axis is 2. If n=1, the orbitin 510 hag four branches: one @ntirely in the left lobe, its

the double cover goes around thaxis once while its image . — - .
goes around the axis twice. In particular, ih, =1, then the ~Mad€ (Q) underR,(w), one branch ({) extending from the

period one orbit 1 in the Smale horseshoe template cannot Heft lobe to the right lobe, and its image J1underRy(m).
the image of a closed orbit in the cover template. If the orbitUnder projection, the image of the two branches in the
in the cover space does not link tleaxis, its image orbit cover template is the branch 0 in the Smale horseshoe tem-

does not link thev axis, and vice versa. plate. The branches, 11, both map to the branch 1 in the

In Fig. 7 we show the four double covers of the Smale ; by ;
) : rseshoe template. The period one orbit jrafd its coun-
horseshoe template, which correspond to the four choices é]fo P P !

thew axis shown in Fig. 6. Each double cover is equivariant€/Part in @ do not link thez axis (=0). Both map to the

underR,(). period one orbit 0 in the horseshoe template, whlghAdoes not
Each of the branched manifolds in Fig. 7, which coverslink thew axis (no=0). There is one period two orbi{1, in

SH, is invariant undeR,(7) and has four branches. These the cover template. This links theaxis once (=1). This

are labeled by an integé® or 1), a subscript( or r), and period two orbit maps ijce onto the period one orbit 1 in

another symbol” or ). The integer identifies whether the the horseshoe template(1—11), which links thew axis

branch in the cover is mapped into branch 0 or #. The  twice (n=2). The period one orbit 1 links the axis once

subscript identifies whether the branch is on the left-or right{n,;=1).

hand side of the cover. Undé&,(7), | -»r andr—I. The These arguments can be run backwards. Smee0, the

extra symbol has a topological significance. It indicatesperiod one orbit 0 in the horseshoe lifts to two symmetry
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(a) (no,m) = (0,1)

(b) (n0,m1) = (0,1)

(b) (no,n1) = (1,0)

(¢) (no,m1) = (1,1)

—
,\\ FIG. 8. Branched manifolds for three inequivalent connected

covers with inversion symmetry of the Smale horseshoe branched
template.

@ shown in Fig. 7 are not topologically equivalent, the dynami-

o cal systems they represent are also inequivalent. The lift with
e (ng,ny)=(0,0) is disjoint and not interesting.

(d) (no,m1) = (1,1)

FIG. 7. Branched manifolds for four inequivalent double covers
of the Smale horseshoe template. Each cover is equivariant under The nonlinear transformatiofill) has an invariant set,
rotations bysr around an axis througk. The four different double  which consists of the union of the axis and the plane
covers are identified by their topological indexg(n,). —y=0. The z-axis component of this invariant set can be
treated in exactly the same way as thexis in the rotational
related orbits, Pand G, which do not link thez axis. Since  Invariant case. Th&—y=0 plane does not provide an ob-

—1. the period one orbit 1 in the horseshoe lifts to “half astruct|on to the flow. In Fig. 8 we show three inequivalent

double covers of the Smale horseshoe manifold. Each has
closed orbit” 3, or 1,, which is then closed by adding the inversion symmetry and is connected.

complementary symmetry related segméht or 1;). This

closed orbit’ J.l, in the cover links the axis withn=1. That
is, the period “two” orbit 11, withn=n,+n; =2, lifts to the
period two orbit 11, with n=1. In Fig. 7(d), the double cover withr(y,n1) =(1,1) exhib-
The relation between cover and image branched manits dynamics similar to the strange attractor for the Duffing
folds for other choices of the topological indem(n,) are  Oscillator [9]. The four branches in this coveD are
described similarly. Since the four 4-branched manifolds(0, ,1,,1,,0,). The double cover withr(y,n,)=(0,1) [Fig.

VI. LIFTS TO INVERSION INVARIANT SYSTEMS

VII. A NEW GLOBAL BIFURCATION: PEELING
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(0,,1,,1,,1,,1,,0,). This six-branch template interpolates
between the templaté with four branches and the discon-
nected template &H, with two pairs of branches.
We exhibit this bifurcation explicitly for the Resler sys-
tem of equationd?2]. Instead of displacing the symmetry
O O axis, we equivalently modify the equations by displacing the
origin of coordinates ,v,w)—(u+ug,v+uvy,W+wg).
First, the Rasler is centered through a rigid displacement,
i.e., the inner fixed point is moved to the origin of the phase
spaceR3(u,v,w). In the translated coordinate system, the
equations for this image system are

(a) U:_U_W_Uo_Wo, (178)
v=u+av+ugtavg, (A7b

w=b+w(u+uy—c)+wuu+wy(ug—c), (1790

where uy=—vo=awy=(c— Jc?—4ab)/2 are the coordi-
nates of the inner fixed point of the original &ber system.
The system may then be rewritten as

u=—-v—w, (18a
v=u+av, (18b
w=bu+w(u—72), (180

FIG. 9. Double covers ofH with six branches. The lifts are Whereb=wg andt=c—up.

obtained when the symmetry axisintersects the branch@) or 1 When the origin of coordinates is displaced along the

(b) of SH. axis by a quantity equal te, the equations for the image
system in the translated coordinates are

7(b)] is topologically equivalent to iheA L(A)relz systd. U= —v—w, (199

The four branches in this covérare (Q,1,,1,,0,). Finally,

the double cover withr{y,n;)=(0,0) consists of two iden- v=utav+u, (19b)

tical copies of the image branched manifold related by rota-

tion symmetry[Fig. 7(@)]. The four branches in this discon- W=b(u+p)+w(u—%+pu), (190

nected double coverSH are (Q,1,) in the copy on the left _ _ _ _
We integrated these equations, and the covering equations

and (T, ,Er) for the copy on the right. : )
We now describe the new global bifurcation. Choose theObtalned from them using Eq.(3), for (a,b.c)

rotation axisw so that y,n;)=(1,1). Then displace the =(0.432,2.0,4.0) and five values pi. The covering equa-

axis outward, so that it first intersects the branch 0 of thetlons are

image Smale horseshoe templafg(, then branch 1. The 1

covering templates are shown in Fig. 9. As the rotation axis X= F[—rzer x(2ay?—z)+ uy], (203
crosses branch 0 &, outer orbit segments in this branch

encircle thew axis once, inner segments do not. In the cover, 1

the brancheé@ split into two pieces, 0 and Q , depend- y= p[r2x+y(2axz+ Z)+ ux], (20b)
ing on where the image occurs under the diffeomorphism r

(i.e., outside or insidev). The cover branched manifold re- = s s o

mains invariant undeiR,(7r) but now has six branches: z=b(X" =y "+ pu) +z(x*—y* =Tt u), (209

(0,,0,,1,,1,,0,,0,) [Fig. Y@)]. This six-branch manifold - S22
interpolates between .the templaewith four branches and Wh_le_;]eer resfj(lts Z\ré shown in Fig. 10. The strange attractors
the templatec, also V.V'th four branches. . ) shown in Fig. 10a), 10(c), and 1@e) all have four branches

A similar perestroika occurs as the ertatlon aMISTOSSES  and are the double covers of thé Rter attractor with topo-
branchAl ofS?i The cover branches, 1 split into two  |ogical indices @g,n;)=(1,1), (0,1), and(0,0). The strange
pieces, 1, and 1, depending on where the image occursattractor shown in Fig. 10) has six branches and interpo-
under the diffeomorphism. The covering branched manifoldates between the attractof® and £ with (ng,n;)=(1,1)
once again has six branchgBig. 9b)]. These are now and(0,1). The strange attractor shown in Fig.(hpalso has
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FIG. 10. Five double cover strange attractors for thesdRar
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FIG. 11. Deformation of the flow in the double cover when the
symmetry axis intersects the strange attractor. The contorted struc-
ture is similar to the deformation of an apple skin when the apple is
peeled.

six branches and interpolates between the attracfoasd
2SH with (ng,n;)=(0,1) and(0,0). The nature of the flow

in the neighborhood of the axis is shown in Fig. 11. The
deformation of the flow, which takes place in the covering
system, is very similar to the deformation of an apple skin
when the apple is peeled. Hence the name for this new global
bifurcation (Figure 12.

We emphasize here that the placement ofwthaxis has
no effect on the nature of the flow in the image system. The
bifurcation takes place only in the covering dynamical sys-
tem; the image system remains invariant during the displace-
ment of the symmetry axis.

As thew axis is moved across the branches of the image
Smale horseshoe templaf##{, a systematic reorganization
takes place in the lifts of the unstable periodic orbitsSi.
When thew axis passes through the center of rotatios>sf
[structurally stable caseng,n;)=(1,1)], the linking number
of this axis with an unstable periodic orbit is its peripdAs
w moves outward, it makes a seriespintersections with
this unstable periodic orbit. The order in which the intersec-
tions occur is determined by kneading thepiy)]. At each
intersection:(1) the linking number of the orbit withv de-
creases by one an@) two symbols” in the cover change to

~. We illustrate these ideas with a simple example. This is

the perestroika of the lift of the period four orbit 0111 in the
period doubling cascade &. It lifts undergo the following
perestroika:

(1,9 P 0111 and011]
(011) L Iiliriloririlir

L£L+2S8H 011,1, and Q1,11

L+2S8H 01,1,1,0,1,1,1,

(0,0 2SH 0,1,1,1, and Q1,1,1,.

We point out the strong coupling between the left-right

equations(48). These are obtained by displacing the origin of co- symbolsl andr and the topological symbolsand . That is,

ordinates along the axis.

" forces the changke—r, r—1| while ™ forcesl—I, r—r.
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the Smale horseshoe template. The cover has inversion sym-
metry and the topological index for the horseshoe is
(nO vnl) = (011) .

The image horseshoe is shown in Fig(d2lts algebraic
description is presented in E@®1). The branches are labeled
a (first row/column, no torsionandb (second row/column,
torsion= +1). A second horseshoe is now created by apply-

(a) (b) ing the inversion operation to the first. This is shown in Fig.
12(b). Its algebraic description is
11 0 O
= = =[—-1 +1].
T 11 L 0 —1 A=[-1 +1]. (22
The first and second rows/columns label brancieb’ with
torsion 0,—1.

These two branched manifolds are now joined by rear-
ranging their branches. The topological indexrg{n,)
=(0,1) provides the information required. Sincg=0,
brancha continues to flow into branchesb. Similarly, n,,

FIG. 12. (a) Image Smale horseshoe templdts.Inversion im- =0 means branch’ continues to flow into branches ,b’.
age.(c) Double cover with inversion symmetry. The image of the Sincen,;=1, the period one orbit in brandhlifts to a tra-
rotation axis (ip.n;) = (0,1) passes through. jectory in a cover, which cannot be clos¢idalf a closed

orbit). In other words, branclh now flows into branches
VIIl. ALGEBRAIC DESCRIPTION OE BRANCHED a’,b’. Similarly, branchb’ flows intoa,b. The Markov tran-
MANIEOLDS sition matrix is

Every branched manifold can be described by a set of 110 07 4 0O 0 O
integers. A template witm branches is described by the 00 1 1| p 0 +1 0
following arrays[4]: T= . L=

(i) T: This is annx n Markov transition matrix with en- 0 011 a 0 0 O
tries 0 or 1. It describes the connectivity of the branched 11 0 0 b’ O 0 0 -1
manifold. T;; is 1 if branchi flows into branchj, O otherwise. (23)

(i) L: This is also amXxn matrix. It describes the topo- o o _ o .
logical organization of the branches,; describes how The linking matrix is the direct sum of the linking matrices
branches andj are intertwined. It is the algebraic sum of the for the pair of two-branch Smale horseshoe templates. It is
signed crossings of the two branchées (). L;; is the torsion ~ IS0 presented in Eq23).
of branchi. It is the algebraic sum of the signed crossings of ~The 1x4 array matrix is constructed as follows. For the
the two edges of brandh two Smale horseshoe template&,>A, and A, <A, .

(i) A: This is a 1xn array. It describes the order in Branchb now joins brancha’, so Ay >A,. Similarly A,
which branches are joined at a branch line. When branches<Av' - The following array satisfies these conditions:
andj meet at a branch linéy; <A, if branchi is closer to the .
observer than branghin the projection adopted. A=[1-2-1+2]. (24)

For the Smale horseshoe shown in Fig(dlave have The values of the array elements are not unique. Only their
ordering is important.
11 0 0 .The .topological entropy of.a branc_hed man_ifold ?s ob-
T:[ } L:[ A=[+1 —1]. (2D tained in the usual way from its transition matrix. It is the
11 0 +1 logarithm of the largest eigenvalue df For the Smale
horseshoe template the eigenvalued @fre 2 and 0. For its
double cover shown above, the eigenvalues are 2, 0, 0, and 0.
Here the first row/column refers to branehwith local tor-  Therefore, both the image and its cover shown here have the
sion 0 and the second to branbiwith local torsion+1. same topological entropyh=In2. It is possible to show
The Smale horseshoe template has many inequivalenhat the topological entropy is unchanged under the cover-
twofold covers, depending on the symmetry grogp image relation. However, one must be careful. We illustrate a
[ =R () orP] and the topological indiceag,n;). The al-  subtlety that can occur. The thr@eequivariant double cov-
gebraic description of the covering branched manifold can bers of Fig. 8 have two branch lines each. The Poinsae
constructed from the algebraic description of the imageion for each attractor is the union of the two branch lines.
branched manifold once the group and indices Kg,n;) The attractors Figs.(8) and 8b) each have period one or-
have been specified. We illustrate the algorithm involved bybits, while Fig. &c) has none. In fact, Fig.(8) has orbits of
constructing the algebraic description of a twofold cover ofonly “even period.” However, for Fig. &) it is possible to
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slide one branch line around until it reaches the other. On&Ve have presented: the equations, the strange attractors gen-
then finds a branched manifold with four branches and onerated by the equations for certain parameter values, and a
branch line. In this four-branch template, one period corretemplate or branched manifold which identifies the strange
sponds to propagation from the one branch back to itselfattractor.

The topological entropy ifr=In4. If one redefines period We studied the problem of constructing covers from im-

in the original branched manifold=ig. 8(c)] so that one pe- age dynamical systems by constructing branched manifolds
riod corresponds to propagation from one branch linethat covered the Smale horseshoe template. The latter is a
through the second and back to the first, then the topologicdiranched manifold with two branches. Its twofold covers

entropy is also redefined by a factor off@=2In2. have four branches. Four inequivalent covers with rotation
symmetry were presented in Sec. V. These are distinguished
IX. SUMMARY AND CONCLUSIONS by the topological indexr{y,n;) wheren; is the linking

. ) ~number between the image of the rotation axis and branch

There is a general theory of image and cover dynamicahf the horseshoe template. One of these is disconnected.
system inR". These are locally diffeomorphic dynamical A new global bifurcation has been described. It occurs
systems, which are not globally diffeomorphic. The coveryhen an image dynamical system is lifted to a covering dy-
dynamical system is equivariaitinchangefi under a dis-  namical system and the singular set of the local diffeomor-
crete symmetry groug. The image dynamical system either phism is not bounded away from the flow in the image. This
has no residual symmetry, or is equivariant under a smallepjfyrcation has been illustrated on lifts of the displaced
group, a subgroup of.. A change of coordinates performs Rgssler system with twofold rotation symmetry. In Sec. VI
the function of modding out the symmetry. This change ofye studied three connected covers with inversion symmetry.
coordinates projects the cover to the image dynamical sys- Branched manifolds are described by integers. The alge-
tem. It is possible to “lift” an image dynamical system to a prajc descriptions of cover and image branched manifolds
covering dynamical system by constructing the inverse transgre closely related. We showed how to construct the alge-
formation. An image dynamical system can have many inprajc description of a cover from an image given: the alge-
equivalent covering dynamical systems. They are distinpraic description of the image, the grodpand the topologi-
guished among themselves by certain topological indices. ¢a| index (,n,,...). This was done in Sec. VIII for the

We have studied the cover-image, or project and lift, reover of the Smale horseshoe with topological index
lation for three-dimensional dynamical systems that are equien, n,)=(0,1) and inversion symmetry.

variant under the two two-element grouRs(=),P. In par-

ticular, the Lorenz and Burke and Shaw dynamical systems

are equivariant undeR (7). We constructed the image dy- ACKNOWLEDGMENTS
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