
Covering Indexes for Branching Path Queries*

t
R a g h a v K a u s h i k

University of Wisconsin

raghav@ cs. wisc. edu

P h i l i p B o h a n n o n

Bell Laboratories

bohannon@bell- labs. corn

Jef f rey F N a u g h t o n

University of Wisconsin

naughton@cs, wis c. edu

H e n r y F K o r t h

Bell Laboratories

hfk@research, beU-labs, corn

ABSTRACT

In this paper, we ask if the traditional relational query

acceleration techniques of summary tables and cover-

ing indexes have analogs for branching path expression

queries over tree- or graph-structured XML data. Our

answer is yes - - the forward-and-backward index already

proposed in the literature can be viewed as a structure

analogous to a summary table or covering index. We

also show that it is the smallest such index that covers

all branching path expression queries. While this index

is very general, our experiments show that it can be so

large in practice as to offer little performance improve-

ment over evaluating queries directly on the data. Liken-

ing the forward-and-backward index to a covering index

on all the attributes of several tables, we devise an index
definition scheme to restrict the class of branching path

expressions being indexed. The resulting index struc-

tures are dramatically smaller and perform better than

the full forward-and-backward index for these classes of

branching path expressions. This is roughly analogous to

the situation in multidimensional or OLAP workloads,

in which more highly aggregated summary tables can

service a smaller subset of queries but can do so at in-

creased performance. We evaluate the performance of

our indexes on both relational decompositions of XML

and a native storage technique. As expected, the perfor-

mance benefit of an index is maximized when the query

matches the index definition.

1. INTRODUCTION

With the rapidly increasing popularity of XML for

data representation, there is a lot of interest in query

*This work was supported in part by NSF grants CDA
9623632 and ITR 0080002

tThis work was conducted in part while the author was
visiting Bell Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

processing over data that conforms to a labeled-tree or

labeled-graph data model. A variety of languages have

been proposed for this purpose all of which can be viewed

as consisting of a pat tern language and a cons truc t ion

expression. Fundamental to the pattern language is the

branching path expression.

The idea behind evaluating branching path expres-

sions is to find all ways of embedding the pattern in

the data. An example of such a query is "find all parts

consisting of both a nut and a bolt". The XPath W3C

standard [3] makes posing branching path expressions

very concise and natural. For example "/ /part[bolt and

nut]" would express the above query in XPath (given

suitable tag names). Because they lie at the core of most

languages for processing XML data, efficient evaluation

techniques for these languages will require efficient eval-

uation techniques for branching path expressions.

In this paper we ask if "covering indexes" can be used

to accelerate the evaluation of such queries. Defining

covering indexes to speed query performance is a well-

known technique for SQL queries in relational database

systems. Briefly, the idea is to define an index that "cov-

ers" all the attributes of a table that are referenced in

a query. Then the query can be evaluated from the in-

dex alone, without consulting the table over which the

index is defined. Since the index is expected to be much

smaller than the table itself, this can provide impressive
speedups.

Returning to our question, are there analogs to "cover-

ing indexes" for branching path expression queries over

tree- or graph-structured XML data? The answer is

certainly yes for simple path expressions - - the strong

DataGuide [6] and the 1-Index [11] can be viewed as

covering indexes, since it is possible to answer queries

over those indexes directly without consulting the base

data. Unfortunately, these indexes can be large in prac-

tice. Our work pushes the frontier in two directions: we

consider branching path expressions (rather than just

simple path expressions), and we explore ways to reduce

the size of covering indexes so that they become useful
as query accelerators.

We show that the Forward and Backward-Index(F&B-

Index), defined directly from ideas proposed in [2], can
be viewed as a covering index for branching path ex-

pression queries. We also show that among a large and

natural class of indexes, it is the smallest index that can

cover all branching path expression queries. Unfortu-

133

nately, our experiments show that in practice, the size

of the F&B-Index can approach the size of the base data

itself. In this case, little performance gain is possible,

since evaluating a query on this large index is just like

evaluating the query on the base data.

This would seem to pose an unsolvable dilemma - -

the F&B-Index is the smallest covering index, yet it is

too large to be useful. However, we can attack this prob-

lem in a way that is analogous to the approach used in

relational systems. In a relational setting, indexes that

cover all attributes of all tables are rarely built. Instead,

indexes are built on specially chosen subsets of certain

tables. Note that the result is an index that does not

cover all queries, but that is expected to be very efficient

for the queries it does cover. Inspired by this observa-

tion, we propose a scheme that allows us to explore and

exploit a tradeoff between the size of a covering index

for branching path expressions and the size of the class

of queries that the index covers.

These indexes can range all the way from tiny indexes

that are so focussed that they almost amount to cached

answers to specific queries, to the full F&B-Index (which

as we have said covers all path expressions), and many

points in between. When viewed in this manner, these

covering indexes also take on some of the flavor of sum-

mary tables in OLAP or multidimensional workloads - -

in these environments, the more highly aggregated the

summary table, the smaller the class of queries it can

service, but the higher the performance it can deliver.

Of course, in the context of branching path expressions

over the labeled graph data model, the techniques used

to specify and build these indexes are entirely different

from the techniques used to define and build covering

relational indexes or multidimensional summary tables.

The main contribution of this paper is to propose these

techniques and to evaluate them experimentally.

Our covering index technology applies to a number

of different scenarios. Each of the scenarios is a dif-

ferent context in which branching path expressions are

useful. The three scenarios we chose to explore are

(1) data stored in a native XML format, with native

XML query processing; (2) data stored in an RDBMS,

with the understanding that the data originated as XML

data but was "shredded" into a relational schema so that

an RDBMS can be used as the query processor; (3) data

stored in an RDBMS, with the understanding that the

data originated in the RDBMS but an application is pos-

ing branching path expressions over an XML view de-

fined on this relational data.

For each alternative, we compare the performance of

branching path expression queries with and without our

covering index. Depending on the specific query and in-

dex chosen, in all scenarios we obtain significant perfor-

mance improvements, and observe that using the cover-

ing index can be an order of magnitude faster than using

the base data.

T h e rest of the paper is organized as follows. Back-

ground material and an illustrative example are provided

in Section 2. In Section 3, we review the notion of for-

ward and backward index and show that it is a cover-

ing index for all branching path expression queries, and

prove that it is the smallest such index. In Section 4, we

introduce our index definition scheme and provide an al-

gorithm to construct an index according to a definition.

Section 5 evaluates the performance of these covering

indexes. We summarize related work in Section 6 and

conclude in Section 7.

2. XML, BRANCHING PATH EXPRES-

SIONS, AND BISIMILARITY

In this section we review some concepts and definitions

that will be useful throughout the paper.

2.1 The Labeled Graph Data Model

We model XML or other semi-structured data as a

directed, node-labeled tree with an extra set of special

edges called idref edges. More formally, consider a di-

rected graph G = (Vc, ET, ER~f , root, Ea, nodelabel, oid,
value). Vc is the node set. ET denotes the set of tree

edges. The graph induced by ET on Va defines the

underlying spanning tree. Each edge in ET indicates

an object-subobject or object-value relationship. When

we talk about parent-child and ancestor-descendant re-

lationships, we refer to the tree edges. ER~y is the set of

idref edges each of which indicates an idref relationship.

"Simple" nodes in Vc have no outgoing edges and are

given a value via the value function. Each node in Va

is labeled with a string-literal from Ea via the nodelabel
function and with a unique identifier via the oid func-

tion, with simple objects given the distinguished label,

VALUE. There is a single root element with the distin-

guished label, ROOT.

Figure 1 shows a portion of a hypothetical "metro-

guide", represented as a data graph. The solid edges rep-

resent the tree edges. The numeric identifiers in nodes

represent oid's. Non-tree edges (shown dashed) may be

implemented with the ID/IDREF construct or XLink [5]

syntax. The nodes labeled feature and star are attributes

of their parent elements and indicate respectively whether

a museum has a featured exhibit and whether a hotel is

starred. This guide could be a large XML document,

the output of publishing a relational database, or the

result of decomposing an XML document into relations

for the purpose of storage and querying. Attributes

like "name", "address", etc are suppressed from the data

graph.

2.2 Branching Path Expressions

A label-path is a sequence of labels ll . . . Ip (p _> 1),

separated by forward s e p a r a t o r s / , / / , ~ or by backward

separators \ , \ \ , .¢=. A node-path in G is a sequence of

nodes, n l . . . Up, again separated b y / , / / , ~ or \ , \ \ , .¢=

such that, for 1 < i < p - 1, if n~ and ni+l are separated

by a

1. / , then ni is the parent of ni+l

2. / / , then n~ is an ancestor of ni+l

3. ::¢,., then ni points to ni+l through an idref edge

4. \ , then n~ is a child of n~+l

5. \ \ , then n~ is a descendant of ni+l

6. ~=, then nl is pointed to by ni+l through an idref
edge

134

(I : ROOT

~ ... stnesi ~'" - ~) neighborhood~

- / I ,-.. ~ .~_~igllborhood " ,(:ll eishh,orho ;l' jr neil,Jlzborhood

m t m e u m . us . ume~.mrz mu euzlr~.. ~ , / \
(.I5) (~ ~L~ (JJ~ ~J~ ~J~otel~otel ~ . ho te l~ hotel ," / / ~ // \
. ~ . ~ . . . ,~- ~ : a o) (21: (2 z (23" / I \ ,' \

' , " - : . _ • ~ , ~ . " - - . " : - : : z ~ . ~ ,I " , , ' . z s . :
+ _ _ , - . .. -- . - ; ~ ~ .-.. euJt.~'a~ (2~

", i ', " .. . ,. "-. + . "- . _: ~, hub +ine88 ~.27 , "; ,

F i g u r e 1: A n e x a m p l e g r a p h - s t r u c t u r e d d a t a b a s e

A node-path nz . . . np matches a label path Iz . . . Ip if the

corresponding separators are the same and label(hi) =

Ii, for 1 < i < p. Label paths and node paths where the

separators are restricted to be the forward separators

are called forward label paths and forward node paths re-

spectively. We can similarly define backward label paths

and backward node paths. Label paths that involve both

forward and backward separators are called mixed paths.

For example, in Figure 1, the path ROOT/metro/neighb-

orhoods/neighborhood/business=>.hotel is a forward label

path, and the node path 1/2/5/9/24 ~ 23 matches it.

The label path ROOT/metro/business/hotels/hotel¢:bu-
siness\neighborhood is a mixed label path and the node
path 1/2/4/7/23 4= 24\9 matches it.

We now provide examples of branching path expres-

sions, followed by a definition. The path expression

ROOT/metro/neighborhoods/neighborhood [/business=v-
hotel]/cultural=>museum finds all museums that have a
hotel in the same neighborhood. This is done by speci-

fying a primary path

ROOT/metro/neighborhoods/neighborhood/cultural=>.
museum to museum nodes and applying a condition on

(intermediate) nodes labeled neighborhood asserting that

they have the path/business=>hotel coming out of them.

More formally, we define branching path expressions by

the following grammar sketch.

bpathexpr ~ fwdlabelpath [orexpr] fwdsep bpathexpr
] fwdlabelpath

orexpr ~ andexpr ~or' orexpr
[andexpr

andexpr ~ bpathexpr2 'and' andexpr
I notbpathexpr2 'and' andexpr
I bpathexpr2
[notbpathexpr2

notbpathexpr2 ~ 'not' bpathexpr2
bpathexpr2 -~ labelpath2 [orexpr] bpathexpr2

[labelpath2
labelpath2 --~ fwdsep labelpath

[backsep labelpath
fwdlabelpath -+ forward label paths
labelpath ~ label paths
fwdsep -~ /1 / / [
backsep --~ \ 1 \ \ 1 ~

In an XML context, the above definition of branching

path expressions forms a subset of the XPath [3] stan-

dard, except for one additional feature, which is that we

allow backward traversal of idref edges. Let us note here

that we ignore order and value based selections, which

will be addressed by future work.

As mentioned above, we can think of these branching

path expressions as a basic forward label path (call it

the primary path) with boolean path conditions on in-

termediate labels. The primary path corresponding to

a branching path expression is the path that remains

when all parts between brackets ~[' and ~]' are removed

(including the brackets themselves). The other parts of

the branching path expression act as path constraints on

the primary path.

Evaluating a branching path expression on a graph

as defined above amounts to matching the primary path

and satisfying the intermediate boolean path conditions.

A path condition is evaluated on a data node and takes

the form of another branching path expression which

is evaluated recursively. These constraints can be con-

nected by the usual logical operators 'and', 'or' and 'not' .

The return set corresponds to all nodes that match the

last tag in the primary path. For example, in the above

query that finds all museums having a hotel in the same

neighborhood, the node with oid 16 is returned as part

of the result, since (a) the node path 1/2/5/9/25 ~ 16

matches the primary path, (b) 16 is the oid of the node

that matches the last tag, museum, in the primary path

and (c) the node with oid 9, which matches the tag

neighborhood in the primary path, satisfies the path con-

dition imposed on it. The full answer set for this query

is 15, 16, 17, 18, 19.

Some other examples of branching path expression

queries are:

1. ROOT/metro/neighborhoods/neighborhood[/busin-
ess=:c~hotel and not/business=~.cinema-hall]/cultural
=~museum asks for all museums that have a hotel

in the same neighborhood, but no cinema-hall.
2. //hotel[star][.¢= business\neighborhood[/cultural=>

museum[\art]]] finds all star hotels that have an art
museum in the same neighborhood. Note that this

query can written in a different way, similar to the
query above.

These branching path expression queries can be thought

135

,• ne ighborhood

m u s e u m ~" star

- " . . . bus iness cultural

Figure 2: Graph v iew of hotel query

of in a graph format. For example, the graph in Fig 2

represents the "hotel" query above. The dark hotel node

indicates that it is the return node. T h e / / l a b e l on the

edge coming in to the hotel node indicates t h e / / s e p a r a -

tor in the query. Again, solid edges represent tree edges

and dashed edges represent idref edges. It is straight-

forward to similarly visually represent boolean connec-

tives. We note that the underlying undirected graph

corresponding to a query graph is always a tree.

2.3 Index Graphs

In this paper we are concerned with index graphs. An

index graph for data graph G is a graph I(G) where we

associate an extent with each node in I. If A is a node in

the index graph I(G), then ext1(A), the extent of A, is a

subset of Vc. We add the constraint that the extents of

two index nodes should never overlap. The index graph
result of executing a branching path expression P on

I(G) is the union of the extents of the index nodes that

result from evaluating P on I(G). An index graph I(G)
covers a branching path expression query P if the index

result of P is accurate, i.e., it is the same as the result
o n e .

The 1-Index [11] is an example of an index graph and

covers in-coming path queries (i.e. forward label path

queries). In fact, any partit ion of the data nodes defines

an index graph where (1) we associate an index node

with every equivalence class, (2) define the index node's

extent to be the equivalence class that formed it and

(3) add an edge from index node A to index node B if

there is an edge from some data node in ext(A) to some

data node in ext(B). Henceforth, whenever we refer to

an index graph obtained from a partition of the data

nodes, we mean the above construction. Thus, even a

simple grouping of the data nodes by label defines an
index graph.

We now introduce terminology about partitions of data

nodes. A partit ion P1 of the data nodes is a refinement
of another partition P2 if the following condition holds:

whenever two nodes are in the same equivalence class in

P1, they are in the same equivalence class in P2 as well.

If P1 is a refinement of P2, then P2 is coarser than P1.

We also talk about one index graph being a refinement
of another - - this refers to the corresponding partitions

(and makes sense only if the set of data nodes indexed
in both is the same).

2.4 Bisimilarity

We briefly introduce the notion of bisimilarity [14]

since it is central to the rest of the paper. This no-

tion was first used in the context of semi-structured data

while introducing the 1-Index [11]. The intuition behind

the 1-Index is to try and group together nodes if they

have the same set of incoming paths, but achieving ex-

actly this ideal grouping is PSPACE-complete [20]. The

solution of [11] is to use instead a grouping like bisimi-

larity, which refines the ideal grouping; that is, it splits

some of the groups in the ideal grouping. We modify the

definition slightly to distinguish between tree and idref
edges.

A symmetric, binary relation ~ on VG is called a

bisimulation if, for any two data nodes u and v with

u .~ v, we have that (a) u and v have the same label,

(b) if par~ is the parent of u and par, is the parent of

v, then paru ~ parr and (c) if u' points to u through an

idref edge, then there is a v' that points to v through

an idref such that u' ~ v', and vice-versa. Two nodes u

and v in G are said to be bisimilar, denoted by u ~b v,

if there is some bisimulation ~ such that u ~ v.

The partit ion of Va induced by ~b can be used to ob-

tain an index graph. This index graph is referred to as

Bisim(G) or simply "the 1-Index" in this paper 1. Thus,

there is a worst case guarantee on the index size, since

the 1-Index can never be bigger than the data graph.

Further, it can be computed in time O(m lg n) where n

is the number of nodes and m is the number of edges in

the data graph, using an algorithm proposed by Paige
and Tarjan [13].

3. PROPERTIES OF THE FORWARD

AND BACKWARD INDEX

In [2], the authors note that by using the notion of in-
verse edges, we get structural summaries (of schema-less

data) that capture information about both in-coming

and out-going paths. More precisely, let us consider the

following process for an edge-labeled data graph (a sim-

ilar process can be applied to node-labeled graphs too).

While the discussion below does not distinguish between

tree and idref edges, the definitions and properties we

talk about can be easily tweaked to accommodate the

same. We omit these details for lack of space.

1. For every (edge) label l, add a new label l-1.

2. For every edge e labelled l from node u to node v,

add an (inverse) edge e -1 with label 1-1 from v to

U .

3. Compute the 1-Index (or DataGuide) on this mod-
ified graph.

The above is a structural summary that captures infor-

mation about paths both entering and leaving nodes in

the data graph. With the 1-Index used in step 3 above,

we obtain a partit ion of the data nodes which can be

used to define an index graph. Let us call this the For-

ward and Backward-Index(FSzB-Index).

In this section, we prove some new theorems about the

FSzB-Index that are important in the context of families
of covering indexes. To do so, we first give an alterna-

tive definition of the F&B-Index based on the notion of

the stability of one set of graph nodes with respect to

another. For a set of nodes, A, let Succ(A) denote the

set of successors of the nodes in A, i.e., the set {v I there

1The authors of [11] also consider the use of the similar-
ity relationship [10] for the 1-Index. We do not consider
this alternative due to inefficient construction algorithms
for the similarity relation - see [11] for details.

136

is a node u E A with an edge in G from u to v}. We can
define the predecessor set of A, Pred(A) analogously.

DEFINITION 1. Given two sets of data graph nodes A

and B, A is said to be succ-stable with respect to B i f

either A is a subset of Succ(B) or A and Succ(B) are

disjoint.

It is possible to similarly define the notion of pred-stability.

We call a partition of the nodes succ-stable if, for every

pair of individual partitions pl and p2, pl is succ-stable

with respect to p2 (when talking about the stability of

partitions, we actually mean stability of the correspond-

ing sets of nodes).

A succ-stable partition has the property that if we

build an index graph from it, then whenever there is an

edge from index node A to index node B, there is an edge

from every data node in ext (A) to some node in ext (B) .

Let us call a label grouping a partition of the data nodes

that corresponds to their node-labels (i.e. two nodes are

in the same equivalence class if they have the same la-

bel). The 1-Index is then the coarsest partition of the

data nodes that is (1) a refinement of the label grouping

and (2) is succ-stable. We can think of the 1-Index com-

putation as consisting of two parts: (1) initialization by

label grouping and (2) splitting the label grouping till

we obtain a succ-stable refinement.

Now consider the following procedure over data graph

G. We work with a current partition of the data nodes

which is initialized to the label grouping.

1. Reverse all edges in G.

2. Compute the bisimilarity partition (with the cur-

rent partition as the initialization).

3. Set the current partition to what is output by the

previous step.

4. Reverse edges in G again, obtaining the original G.

5. Compute the bisimilarity partition (again initial-

izing the computation with the current partition).

6. Set the current partit ion to what is output by the

previous step.

7. Repeat the above steps till the current partition

does not change.

It is not hard to see that the F&B-Index is the index

graph obtained by using this finM partition. From this

point of view, the idea behind the FSzB-Index is to ob-

tain a partition of the data nodes that is both succ-stable

and pred-stable. One way to do this is by first ensur-

ing pred-stability (by reversing G's edges and computing

the bisimilarity partition), then computing a succ-stable

refinement of this pred-stable partition, and continuing

thus till the current partition does not change.

The F&B-Index for the data graph shown in Figure 1

merges the two hotel nodes with oids 22 and 23. Other

than that, in this case, the F&B-Index is the same as

the data graph.

We have the following theorem that shows the impor-

tance of this index. The proof follows from the fact that

the F~B-Index is both a pred-stable and succ-stable par-
tition and is omitted for lack of space.

THEOREM 1. The F&B-Index over a data graph G

covers all branching path expressions over G.

Thus, for the data in Figure 1, the fact that two of the

hotel nodes are merged together means that no branch-

ing path expression query can distinguish between the

two. Conversely, using a simple diagonalization argu-

ment, we have the following theorem. The proof is again

omitted for lack of space.

THEOREM 2. For data graph G, any index graph that

covers all branching path expressions over G must be a

refinement of the F&B-Index.

COROLLARY 3.: For data graph G, the F&B-Index is

the smallest index graph that covers all branching path

expressions over G.

As a result, whenever two nodes are not in the same

extent of the FSzB-Index, there is some branching path

query that distinguishes between the two.

3.1 Size of the F&B-Index

Unfortunately, the F&B-Index is often big. For ex-

ample, on the XMark [1] XML benchmark document

of size 10MB, the data has about 181000 nodes, while

the F&B-Index has about 164000 nodes. Similarly, for

a subset of the Open Directory Project [15] data where

the data has about 143000 nodes, the F&B-Index has

about 93000 nodes. This size problem with the F&B-

Index leads us to look for a way to cut down the size of

this index. Since it is the smallest index that handles

all branching path expressions, the only way out is to

compromise on the class of queries to be covered. This

motivates the index definition scheme we propose in the

next section.

4. COVERING INDEX DEFINITION

SCHEME

As we saw above, the FSzB-Index can be big and it is

important to be able to cut down the index size. Since

branching path expressions can be numerous and com-

plicated, our index definition scheme is designed towards

eliminating branching path expressions that are deemed

less important, so that we arrive at an index that is

much smaller and can handle the remaining branching

path expressions more efficiently. We use four different

approaches toward this goal based on the following in-
tuitions.

1. There are many tags in data that are of lesser in-

terest and so need not be indexed.

2. Branching path expressions (in the manner defined

by us) give more importance to tree edges over

idref edges. In particular, / / matches only tree

edges and there is no equivalent for idref edges. It

may be desirable to reflect this in the index.

3. Not all structure is interesting. Our intuition is

that queries on long paths are rare. Instead, short

paths are more common. Thus, it may be useful to
exploit local similarity to cut down the index size.

4. Restricting the "tree-depth" of the branching path
expressions for which the index is accurate might

help. We will explain this in more detail later.

137

°=

ae i~borhood .

®i~borhood

u l t ~ l
2S,2~.29

F i g u r e 3: F ~ B - I n d e x on t ree e d g e s

4.1 Tags to be indexed
It is often the case that there are tags in the data

that are never queried using branching path expressions

and thus need not be indexed. We do so by altering

the data graph so that all nodes that have tags that are

not to be indexed are labeled with a unique label, other.

In addition, if a node labeled other does not appear in

the tree path to any node that is being indexed, it can

be assumed to be absent from the data graph for pur-

poses of indexing. This simple technique can have a lot

of effect in practice. For example, in the XMark data,

there are text tags such as bold and emph that appear

in the description of categories and items that are being

auctioned. It may be worthwhile to build an index that

ignores these tags. The F&B-Index on the tree edges

of the XMark file of size 100MB (which has about 1.43

million nodes) has about 436000 nodes. But on ignoring

the text nodes, the number of nodes in the index drops

to about 18000.

4.2 Tree Edges Vs Idref Edges
The XPath [3] standard for path expressions gives a

higher priority to tree edges. In particular, / / matches

only tree edges and there is no equivalent ancestor oper-

ation for idref edges. On the other hand, all occurrences

of idrefs in path expressions have to be explicit. This is

also reflected in the way we have defined our branching

path expressions. The effect on the index size of idrefs

can be tremendous. For example, on the XMark data of

size 100MB, the F&B-Index on just the tree edges has

18000 nodes (ignoring text nodes) while the size is about

1.35 million when all idrefs are incorporated (again ig-

noring text nodes). Thus, it is desirable to have some

way of giving priority to tree edges. We specify the set of

idref edges to be indexed as part of the index definition.

We do so by specifying the source and target labels of

the idref edges we wish to retain.

Figure 3 shows the F&B-Index constructed on only

the tree edges of the data graph in Figure 1 (again we

only show extents that have more than one data node).

As we can see, all three nodes labeled neighborhood are

merged together in this index, showing that they cannot

be distinguished by any branching path expression query

on the tree edges alone. However, this index cannot

necessarily be used to cover a branching path expression

query that refers to an idref edge.

4.3 Exploiting Local Similarity
As pointed out in [17], an important approach in con-

trolling index sizes lies in exploiting local similarity. Our

intuition is that most queries refer to short paths and

seldom ask for long paths. As a result, it may not be

desirable to split the index partition along long paths.

For example, in the data graph in Figure 1, it may not

be desirable to split nodes labeled neighborhood based

on whether they contain a museum that has a featured

exhibit. This can be achieved by looking at paths of

length up to 2 (here, length refers to the number of

edges). This process is reminiscent of summary tables

for OLAP workloads, where picking a larger number of

attributes to aggregate yields a smaller summary that is

accurate for queries covered by it while picking a smaller

number of attributes to aggregate makes the summary

more generic.

We have the notion of k-bisimilarity (defined in [10])

which groups nodes based on paths of length up to k. We

reproduce it below (again modified slightly to distinguish

between tree and idref edges).

DEFINITION 4.: ~ k (k-bisimilarity): This is defined

inductively.

1. For any two nodes, u and v, u ~o v i f f u and v

have the same label.

2. Node u ~ k v i f f u ,~k-1 v, pare, ~ k - 1 par , where

par~ and parr are respectively the parents of u and

v, and for every u' that points to u through an idref

edge, there is a v ~ that points to v through an idref

edge such that u' ~ k - 1 v ~, and vice versa.

By a simple induction, we can see that this definition en-

sures the weaker condition it sets out to achieve. Note

that k-bisimilarity defines an equivalence relation on the

nodes of a graph. We call this the k-bisimulation. This

partition is used in [17] for in-coming path queries, to

define an index graph, the A(k)-index, where k is a pa-

rameter. Thus, an A(2)-index is accurate for the query

//neighborhood/cultural=v.museum, but not necessarily for

the query//neighborhood/cultural=J-museum/featured.

In our context, it should be possible to specify, say,

that in the forward direction, we only want local sim-

ilarity for paths of length at most 1 and in the back-

ward direction, we want "global" similarity. This way,

we get a covering index where, for example, the condi-

tion "museum with a featured exhibit", or the condition

"hotel that is a star hotel" can be imposed since these

only involve paths of length 1, whereas the condition

"neighborhood with a museum that has a featured ex-

hibit" cannot be imposed since it involves a longer path.

We argue that by thus restricting the query-able path

length, we can still index a large and interesting subset

of branching path expression queries.

4.4 Restricting Tree Depth
In Section 3, we defined the F&B-Index as a transitive

closure of the following sequence of computations:

1. Reverse all edges in G.

2. Compute the bisimilarity partit ion (with the cur-

rent partit ion as the initialization).

3. Reverse edges in G again, obtaining the original G.

4. Compute the bisimilarity partit ion (again initial-

izing the computation with the current partition).

138

~'~ ROOT

(~" m ~

~: -.._ ?~, \

~_ • r y . . = ' • 9 1 ~
/ ,----__ " " °' h"c) ' i

•) . ,~ ..) (.) ~"~o~l ' ~ . h o w l /
• "% - • • ~ ~ , . " ,a.22.23 , /

• : ,~ ', : -~.~r" " : ~a." ; (~z5.2~

. ::: ii::i ; :: :::i! ;i!115: ::::
• - ''....: --

Figure 4:

Consider the partition (and hence the index graph) de-

fined by one iteration of these operations. Let us call this

index graph the F+B-Index. The index graph obtained

after two iterations above would be called F+B÷F+B-
Index and so on.

We now define the notion of tree-depth of a node in a

query. Consider the query

//museums/history/museum[/featured and ~ cultural\ne-
ighborhood [/cultural=.~ museum[\ art]]] that asks for his-

tory museums that have a featured exhibit and also have

an art museum in the same neighborhood. The query is

shown in Figure 5 in graph format. The numbers to the

side indicate the tree-depths of the nodes. The idea is

that all nodes on the primary path and having a path to

some node in the primary path have tree-depth 0. All

nodes that do not have tree-depth 0 and have a path

from some node in the primary path have tree-depth 1,

nodes that do not have tree-depth 1 and have a path

to some node of tree-depth 1 have tree-depth 2, nodes

that do not have tree-depth 2 and have a path from

some node of tree-depth 2 have tree-depth 3, and so

on. Intuitively, odd tree-depths correspond to out-going

path conditions, while even tree-depths correspond to

in-coming path conditions. Nodes that have an edge to

or from a node of higher tree-depth are called branching
points. The nodes in the example query graph that are

branching points are indicated in bold. The return node

is shaded, and in this case, also happens to be a branch-

ing point. Note that tree-depth is different from the

nesting level of a node in the query text. In particular,

the neighborhood node has tree-depth 0 although it is

nested in the query text. In general, the same query can

be written in more than one way. Tree-depths of nodes

do not depend on how the query is written (whereas nest-

ing levels do). The tree-depth of a query is the maximum
tree-depth of its nodes.

The F-I-B-Index is accurate for the subset of branching
path expressions over G that have tree-depth at most 1.

F + B - I n d e x

, / k \

:-,) ©ultuml Y

". 1 0 f e a t u r e -

F i g u r e 5: E x a m p l e for tree d e p t h

The F + B + F + B - I n d e x is accurate for all branching path

expressions that have tree-depth at most 3 and so on

(to restrict to tree-depth 2, we must use a "B+F÷B-

Index"). It is our intuition that it is rare to get mean-

ingful branching path queries with large tree-depths.

Hence, we wish to be able to restrict the tree-depth of

queries being indexed by specifying the maximum tree-

depth we want to index. So, we make this part of the

index definition.

Figure 4 shows the F + B index for the data in Figure 1.

Note that nodes 9 and 10, labeled neighborhood are to-

gether in this index, unlike in the F&B-Index. However,

the other node labeled neighborhood, 11, is separate, un-

like the index on the tree edges alone• Since this in-

dex is smaller than the F&B-Index, it cannot handle all
branching path expression queries. In particular, a query

that can be answered by the F&B-Index but not by the

F+B-index is//neighborhood [/cultural:=~museum [/featu-
red][\history]], which asks for all neighborhood nodes that

have a history museum that has a featured exhibit. This

cannot be answered by the F-I-B-index since it cannot

distinguish between the two neighborhood nodes 9 and 10,

whereas node 10 is in the answer set and node 9 is not.

This inaccuracy arises because the term history is at a

tree depth of 2, whereas the F-I-B-index is only (neces-

sarily) accurate for queries with tree-depth at most 1.

4.5 Putting it together
An index definition consists of the following parts:

1. A set of tags to be indexed. Call this set T.

2. For each of the forward and backward directions:

(a) Set of idref edges to be indexed (call them

reff~,d and refback)
(b) A parameter k indicating the extent of local

similarity desired (call them kf~,d and kback)

3. The number of iterations in the F&B-Index com-

putation to be performed. Call this td, the tree
depth.

The parameters kfwd, kback and td can be set to be
c~, referring to a transitive closure computation. The

index obtained for a given index definition S is called

the BPCI(S) (for branching path expression covering
index). The algorithm for computing the BPCI(S) is

shown below in Figure 6. The k-bisimulation partition

139

can be computed by the a lgor i thm given in [17], and it

can be t r ivial ly ex tended to handle the k = oc case.

procedure compute_partition(G,S)
G ~ data graph, S --~ index definition
begin
1. Convert all tags in G not in T into special tag other
2. Remove any occurrence of a node labeled other if it is not

on some tree path from the root to any node with a label
that is to be indexed

3. Let ~ be a list of sets of nodes
/ /representing a partition of the nodes of G

4. P ~ label-grouping of G
5. f o r i - - - 1 t o t d d o

/ / forward direction
6. Retain idref edges in ref fwd
7. Reverse all edges in G
8. Compute the kfwd-bisimulation on G initializing

the computation with 7 ~
9. ~ ~-- partition of nodes of G corresponding to the

above k f wd-bisimulation
/ /backward direction

10. Restore G
11. Retain idref edges in refback
12. Compute the kb~ck-bisimulation on G initializing

the computation with
13. P ~-- partition of nodes of G corresponding to the

above kback-bisimulation
end

procedure compute_index(G, S)
begin
1. compute_partition(G,S)
2. fo reach equiv, class in 7:' do
3. create an index node I
4. ext[l] = data nodes in the equiv, class
5. fo reach edge from u to v in G do
6. I[u] = index node containing u
7. l[v] = index node containing v
8. if there is no edge from I[u] to l[v] then
9. add an edge from I[u] to I[v]
end

F i g u r e 6: B P C I (S) c o m p u t a t i o n

T h e subset of branching pa th expressions for which an

a rb i t ra ry covering index is accura te depends, of course,

on the index definition. T h e following are some example

index definit ions and the indexes they generate.

1. The F&:B-Index can be obta ined by indexing all

tags and all idref edges, wi th k f w d = kback ~-- td =

2. The F + B - i n d e x can be genera ted by indexing all

tags and all idref edges, wi th kfwd -~ kback = CX)

and td = 1.

3. The 1-Index can be genera ted by indexing all tags

and all idref edges, wi th kfwd = 0, kb~k = oc and

t d = O.

4. T h e A(k) - index can be genera ted by indexing all

tags and all idref edges, wi th kfwd = O, kb~k = k

and td = O.

Consider the following definit ion on the d a t a in Fig-

ure 1.

1. index tags ROOT, metro, cinema-hall, neighborhoods,

neighborhood, business

) c l . o m . . h a l l ~

(~clnoma-hAll

. : i . R o o t

i ~ n . ~ B h b o r h o o d .

c ~ n e i g h b o r h o o d O . I O ~ " n o l g h b o r h o o d

() b . . I n o . . 2 4 = (b n . l n o n

F i g u r e 7: I n d e x for g i v e n de f in i t i on

2. pick k f w d ---- kback ~-

3. t ree dep th ---- c~.

The index genera ted is shown in Figure 7. This is a lmost

a p recompu ta t ion of the query

//neighborhood [/business=;,.cinema- hall],
which asks for all ne ighborhoods tha t have a c inema

hall. As seen above, we can also genera te the full FL~B-

Index by this workload scheme. Thus, a wide var ie ty of

indexes can be defined by our scheme.

4.6 Index Selection

We now discuss the issue of how to arr ive at a reason-

able index defini t ion tha t covers a set of queries. Note

tha t this is analogous to the problem of choosing an

appropr ia te covering index for a given query workload.

Consider the following queries on the d a t a in Figure 1.

1. Hotels t ha t have a museum in the same neighbor-

hood. This could be wr i t t en as a branching pa th

expression query in the following way: / /neighborh-

ood[/cultural=~museum]/business=c~hotel Note tha t

the pr imay p a t h length is 3 and the t ree-depth is 1.

2. S tar red hotels: //hotel[/star]. T h e pr imary p a t h

length is 1, and the t ree -dep th is 1.

3. Neighborhoods wi th an ar t museum: / /ne ighbo-

rhood[/cultural=~museum[\art]] Here, the pr imary

pa th length is 1 and the t ree-depth is 2.

The following const ra in ts hold for any index tha t cov-

ers the above queries. Fi rs t of all, the tags involved

in this query must be indexed. Since the m a x i m u m

t ree-depth is 2, the index t ree -dep th must be at least 2.

Since the m a x i m u m p a t h length for pa th condit ions is

2 (/ /neighborhood[/cultural=~.museum]), kfwd _~ 2. Sim-

ilarly, the const ra int on kb~ck is t ha t kback ~ 2. Given

these constraints , one s t ra ight-forward th ing to do is to

pick the m i n i m u m values needed to cover the queries.

Call this index Imi,~. However, there is a t radeoff - - by

picking larger values for t he parameters , we get a more

generic index t h a t can potent ia l ly cover more queries,

a l though the per formance of this index for these queries

may be worse t h a n tha t of I~ in . This example serves to

i l lustrate the issues involved in choosing an index defini-

t ion to cover a set of branching pa th expression queries.

I t is possible to give simple heurist ics (for example, out-

pu t Im~n) to create a covering index. However, a good

choice of index defini t ion depends heavily on the d a t a

and the queries, and will be addressed in future work.

4.7 Testing if an Index covers a Query

We now discuss how to test whether a given index

covers a branching pa th expression query. Intuit ively,

the condit ions tha t must be satisfied are:

140

procedure cover(I, Q)
I 4-- index
Q ~ branching path expression
begin
1. convert Q into a query graph QG
2. check if all tags in Q are indexed in I
3. check if the tree-depth of Q < ~d, the tree-depth of I
4. check if all paths in QG with even tree-depth have

length _< kback ; if kback <~ OO, no separator in these
paths should b e / /

5. check if all paths in QG with odd tree-depth have
length _< kfwd; if kfwd < oo, no separator in these
paths should b e / /

end

Figure 8: C h e c k i n g if BPCI(S) covers a query

regions people open_auctions closed_auctions categories

{ africa,asia,...} person I 1 [[c osed auction category

homepege~proLfile I iterare~price I _ / [open_auction name
it¢ I namq~ducation •-

/ / - ~ item're f bidder
name descr ,tion incategory inJt.a

Figure 9: XMark schema

1. The tags and idrefs should match - - all tags and

idrefs referenced in the query must be indexed.

2. The tree depth should match - - the tree-depth of

the index should be at least as large as the tree-

depth of the query.

3. If the index uses local similarity, then all relevant

path lengths must be bounded by the extent of

local similarity captured in the index.

In more deta!l, let QG be the query graph. A path in

QG has tree-depth i if all nodes in the path, with the

possible exception of either end, have tree-depth i (not

all paths necesarily have a tree-depth). The procedure

shown in Figure 8 tests whether a given index covers a

given branching path expression query. This procedure

can be implemented using a depth first search of the

query graph and takes time linear in the query size.

5. PERFORMANCE

In this section we explore the performance of the cov-

ering indexes introduced in the previous section. We first

investigate the efficacy of the index definition scheme in

controlling the size of the covering index, and then go

on to a performance study over queries that are covered

by the index. All our experiments are over the 100MB

XMark XML benchmark [1] data set. The XMark data

models an auction site. The element relationships rele-

vant to us are reproduced for convenience in Figure 9.

The tag names are largely self-explanatory. The tag

itemref is an idref value pointing to item nodes. Sim-
ilarly, the tag incategory is an idref pointing to category

nodes.

5.1 Range of Indexes

The goal of this subsection is (a) to establish that
there is a wide variety of covering indexes spanning a

whole range of sizes, and (b) to explore the effectiveness

of each index definition parameter we have specified in

controlling the index size.

Defn No.
Defn 0

Index
F&B-Index

No. of Nodes
1.35 million

Defn 1 F&B-Index on tree edges 436602
Defn 2 18336

Defn 3

F&B-Index on tree edges
w/o text nodes
F+B-index w/o text nodes
F+B-index where we
(a) ignore text tags
(b) ignore idref edges in
the fwd direction

(b) ignore idrefs pointing
to person tags in the back
direction
Defn 4 + ignore idrefs
pointing to open_auction
tags in the back direction

Defn 4

Defn 5

1.29 million

467070

40938

Defn 6 Defn 5 + klw d = 1 10705
Defn 7 Defn 6, except that 32716

tree-depth -~ 3
Defn 8 17 Index only tags and idref

edges present in query Q

Table 1: I n d e x D e f i n i t i o n s a n d Sizes

Since the number of possible index definitions is high,

we restrict ourselves to a few representative examples.

The definitions are shown in Table 1 (query Q will be

introduced later) along with the number of nodes. The

data has about 1.43 million nodes. The full F&B-Index on

the whole data graph has about 1.35 million nodes, which

indicates (by minimality of the F&B-Index as per The-

orem 2) that almost all nodes in the data can be dis-

tinguished from one another by some branching path

expression query. The FSzB-Index on just the tree edges

is itself quite large with approximately 430,000 nodes.

The numbers in Table 1 indicate the wide range of sizes

achievable by our covering indexes on this data set.

We now examine the importance of each of the pa-

rameters in an index definition in isolation.

1. Ignoring Tags: As explained in Section 4.1, a lot

of the "splits" in the F&B-Index are caused by the

text markup elements bold, emph, and so forth.

The size of the F&B-Index on the tree edges ig-

noring these tags (Defn 2) is about 18000 nodes,

as shown in Table 1, which is about 4% of the size

of the F,~B-Index on all tree edges (Defn 1).

2. Picking idref edges to inde~. The F+B-index on ig-

noring the text tags (Defn 3) has about 1.29 million

nodes. We found that among all the idref edges,

the ones pointing to person elements (call them

personrefs) caused the largest number of splits.

Keeping everything else the same, if we ignore all

idref edges in the forward direction and index all

idref edges except the personrefs in the backward

direction (Defn 4), the covering index we obtain

has about 470000 nodes, which is about 36% the

size of the F+B-index (Defn 3). If we also ignore

the idref edges pointing to open.auction elements
in the backward direction (Defn 5), we obtain an

index with 40000 nodes.

3. Local Similarity: In the above index (with 40000

nodes), if we set kfwd = 1 keeping everything else
the same (Defn 6), we get an index with only about

11000 nodes. We note that even this index, small

141

[Query name Query
Q1 find the number of persons whose

education information is known
Q2 find the number of persons with a

homepage
Q3 find "hot" items, i.e. items that have

a bidder(same as Q above)
Q4 for all items being auctioned, but

w/o a bidder, find their category
Q5 find all categories where items have

been sold only from North America

Table 2: Test Queries

as it is, can index a large number of branching path

expressions. In particular, it allows conditions like

item[/featured], person[/homepage] and so on to be
imposed and allows primary paths that can be ar-

bitrarily long and pass through any of the tree

edges and any idref edge pointing to an item or

category node.

4. Tree Depth: While the above index has tree depth

of 1, the same index where the tree depth is set to 3

(Defn 7) has about 33000 nodes, showing that this

parameter can play an important role in controlling

the size of the index. However, in our other exper-

iments (not reported here), we realize that among

the above parameters, this has the least impact on

the index size.

Finally, let us examine an example of how we can get a

highly specific index for a given query. Let the query Q

under consideration be

//open_auction[/bidder]/itemref=~itern/id,
which finds all items that are being auctioned and have
at least one bidder. By indexing only the tags (and

attributes) site, item, open_auctions, open_auction, bid-

der, id, itemref, setting k/wd = 1, kb~ck = oo and tree

depth = 1 (Defn 8), we get an index with only 17 nodes.

This index covers the above query.

5.2 Performance on Queries

In this subsection, we wish to demonstrate that (a) by

appropriately choosing a covering index, we can speed

up the performance of a set of branching path expres-

sion queries considerably and (b) we can tradeoff perfor-

mance with scope: that is, we can pick a more general

index that would also cover this set of branching path

expressions, but at a lower performance benefit.

We evaluate the performance of our indexes on a set of

five queries, shown in Table 2. We pick three represen-

tative members from the above set of indexes discussed

corresponding to definitions 5, 6 and 8 in Table 1 (with

the number of nodes being respectively 40938, 10705

and 17). Let us call these respectively I~, , Ialmo~t--a,
and Isp~cif~. Iau covers the whole set of queries. Ialmo,t-~u
covers all queries except Q1. Q1 when written as a

branching path expression over the XMark data reads as:

count(//person[/profile/education]). Index I~lmost-aU does

not cover this since k/wd is set to 1 while building it.

Queries Q2, Q3, Q4 and Q5, on the other hand only

involve conditions on paths of length 1 (as can be seen

from the XMark schema shown in Figure 9). I,p~.f,~

only covers query Q3. While larger index structures in-

herently cover more path expressions, we see that control

can be exercised over which sets of path expressions are

covered.

We report results for three scenarios:

1. RELSTORE: The XML data is stored in a rela-

tional system using the shared relational decompo-

sition strategy proposed in [18].

2. NSTORE: The XML data is stored using a na-

tive storage engine, based on a simple breadth-

first clustering of objects on pages (we picked the

breadth first approach since it almost always per-

formed better for our queries than a depth-first ap-

proach). We store node pointers in both directions

allowing traversal in either direction.

3. RELPUBLISH: The relational decomposition of the

data is given and the queries are over an XML view

of the data. Here, we pick a different decompo-

sition for the data than the one proposed in [18].

The main difference is that there is one item and in-

category table for each continent, whereas in REL-

STORE, we place all item nodes in a single table

and do the same for incategory nodes.

We used DB2 (version 7.1) as the relational engine. The

buffer pool size for all experiments with the relational

engine was set at 32MB. The experiments were run on

a Linux workstation with 256MB of RAM. The native

storage engine was implemented using a disk simulator

based on the disk model proposed in [19]. In order

to get an "apples to apples" comparison, when using a

relational engine for the data, we stored the index also

using the relational engine, and used a native storage for

the index when we used native storage for the data. The
index was stored using a fixed relational decomposition

in both scenarios RELSTORE and RELPUBLISH. We

picked response time as our performance metric. We

ran experiments under both cold and warm buffer pool

conditions. Since the trends for both cases are similar,

we report results for only the warm buffer pool case.

For the relational storage cases, we built the traditional

value indexes useful for this set of queries.

Figure 10 shows the performance of the three cover-

ing indexes under RELSTORE. The X-axis represents

the queries, while the Y-axis shows the speedup mea-

sured in terms of the ratio between the response time

for the data using only traditional relational indexes and

the response time using our covering index. Figure 11

and Figure 12 show the performance for NSTORE and

Figure 10: S p e e d u p s for R E L S T O R E

142

Figure 11: Speedups for N S T O R E

RELPUBLISH respectively. We note the following in-

teresting trends from the above graphs:

1. No matter how the data is stored, there is a con-

siderable benefit to be obtained by using an ap-

propriate covering index. For example, using an

appropriate covering index in RELSTORE speeds

up performance by factors of up to about 18.

2. In general, the speedup depends on the granularity

of the index. For queries Q2, Q3, Q4 and Q5, the

speedup obtained using index Iatmost--aU is higher

than that obtained using Iau since Iau is more

generic. Similarly, for query Q3, the speedup ob-

tained by using Isp~c~flc is higher since it is tailored

towards Q3. This illustrates the tradeoff involved

and indicates a new role for a database adminis-

trator in the context of XML - - choosing the tags

and idref edges to be included in a covering index.

3. For a specific query, the speedup using a given in-

dex depends on the level of granularity of the index

with respect to this query. For example, the num-

ber of person and homepage nodes in indexes Iau

and Iatmost--aU is the same although I~u overall

has more nodes than Ialmo~t--aU. As a result, the

speedup using either of them is the same for query

Q2. This is not the case for NSTORE since the

object clustering is "global"-- thus, even though

the parts of the index that need to be accessed

are the same, they are clustered differently. Sim-

ilarly, although I~tmost--aU is much more generic

than Isp~ciyic, there is no significant difference in

the speedup for query Q3 between the two - - this

indicates that although Ia~mo~--aU has many more

nodes than I~p¢cifi~, for the relevant parts of the

data, this gap is not significant.

4. Since queries Q1 and Q2 are count queries, eval-

uating them on a covering index means that the

extents of the index nodes need not be accessed if

we store the extent sizes in the index nodes. As

a result, the speedup obtained for these queries is

higher than that obtained for others. This is not

the case when native storage is used. One possi-

ble reason for this is that the per-query overhead

in the native storage implementation is higher and

dominates the cost of a simple queries like Q1 and
Q2.

5. The speedups for RELSTORE and RELPUBLISH

are different. This is to be expected. In both cases,

the indexes are stored using a fixed decomposition.

2 0 -

1 8 -

1 6 -

1 4 -

~. 1 2 -

8

6 -

4 -

2 -

O -

F i g u r e 12: S p e e d u p s for R E L P U B L I S H

Thus, for queries Q1 and Q2, there is no differ-

ence between the two scenarios since the person

table is stored the same way in each case. How-

ever, for queries Q3 and Q4, the decomposition of

RELSTORE is more favorable. This results in a

lesser speedup for these queries. For Q5, the de-

composition of the data in RELPUBLISH is more

favorable. Thus, the speedup is lower there.

6. Speedups in the native storage scenario are higher

than the relational counterparts. Our implementa-

tion of the native storage is not fine-tuned for per-

formance. As a result, the cache-hit rates could be

low and this could affect the data more than the in-

dex, which is much smaller. We did not investigate

this further since it is not our intention to compare

native storage with relational storage. Rather, our

goal is to examine the effect of a covering index in

each case.

6. RELATED W O R K

There has been a considerable amount of work on in-

dexing for semi-structured/XML data [4, 6, 7, 9, 11, 12,

17]. Almost all of this work has concentrated on index-

ing simple path expressions. In [16], the authors pro-

pose a storage/indexing strategy in which data nodes

are partitioned into relational tables by the extent of

the DataGuide into which they fall. Based on this parti-

tion, search can be pruned by the DataGuide, and only

particular tables searched. This data structure can be

used to answer branching path expression queries. How-

ever, since the DataGuide is accurate only for incoming

path queries, in order to test out-going path conditions,

joins have to be performed over the data. In addition,

they present their results on tree data. Our work gen-

erates indexes that cover branching path expressions - -

so, the base data need not be touched. In addition, we

handle idref edges as well. To our knowledge, ours is

the first implemented and experimentally evaluated set

of covering indexes for branching path expressions.

The notion of F&B-Index is introduced in [2] in the

context of structural summaries. A contribution of our

paper is to show that the F&B-Index is useful as a basic

construct in the context of covering indexes for branch-

ing path expressions, and to propose techniques to con-

trol the size of the covering index. In [12, 17], the no-

tion of local similarity is exploited in constructing sum-
mary/ index structures for semi-structured data/XML.

However, the focus there is on simple path expressions.

Finally, we note that the index graph as defined here,

143

as well as the 1-index and DataGuide, are similar in

structure to the quotient graph of [8], and that such

structures are commonly used for summaries of program
automata.

7. CONCLUSIONS AND FUTURE WORK

Branching path expressions are an important idiom in

XML query languages, and based on our experience in

the work reported in this paper, it appears that cover-

ing indexes are a promising approach to their efficient
evaluation.

We demonstrate that the F&B-Index for a given graph

can be used as a covering index for the set of all branch-

ing path queries that can be expressed over that graph.

However, our experiments indicate that this index is of-

ten too big to be useful in speeding query evaluation.

Accordingly, we introduce mechanisms through which

one can specify a wide range of covering indexes that

range from extremely focussed and tiny indexes for very

targeted classes of branching path expression queries to

the fully generic F&B-Index.

We experimentally evaluated these covering indexes in

the context of native XML storage and two variants of

relational storage for XML data. In all cases, we ob-

serve that the speedup due to covering indexes can be

significant. Our study clearly demonstrates some of the

tradeoffs involved in picking a covering index. In partic-

ular, a covering index that is more generic can handle a

larger class of branching path expressions, while an in-

dex that is more specific handles fewer branching path

expressions but is more accurate for the queries it does
cover.

A number of interesting open problems remain that

we hope to explore in future work. For example,

• Index Selection: The problem of picking an optimal

set of covering indexes in order to handle a given

query workload naturally arises in this context.

• Integration with Value Indexes: Value based condi-

tions are crucial in querying any kind of data and

so it is important to integrate structure indexes

like our covering indexes with traditional value in-
dexes.

• Updates and Bulk Loading Algorithms: Clearly, be-

fore these indexes can be deployed we will need

efficient index building and updating algorithms.

• Hierarchies of Covering Indexes: This item is in-

spired by the analogy with summary tables for

multidimensional workloads. There, one typically

defines a hierarchy of summary tables, where higher

level summaries are most efficiently computed from

lower level tables. It would be interesting to ex-

plore whether or not analogous ideas will be useful
in our context.

8. REFERENCES

[1] Xmark: The xml benchmark project.
http ://monetdb. cwi. nl/xml/index, html.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
web: from relations to semistructured data and XML.
Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[3] J. Clark and S. DeRose. XML path language (XPath)
1.0. W3C recommendation. World Wide Web
Consortium, http://~nn~.w3.org/TR/xpath, Nov. 1999.

[4] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason,
and M. Shadmon. A fast index for semistructured data.
In Proceedings of VLDB, 2001.

[5] S. DeRose, E. Maler, and D. Orchard. The XLink
standard. World Wide Web Consortium,
http : / / ~ . w3. org/Tg/xquery, Nov. 1999.

[6] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In Twenty-Third International Conference
on Very Large Data Bases, pages 436-445, 1997.

[7] R. Goldman and J. Widom. Approximate DataGuides.
In Proc. of the Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats,
pages 436-445, January 1999.

[8] D. Lee and M. Yannakakis. Online minimization of
transition systems (extended abstract). In Proceedings
off the Twenty-Fourth Annual ACM Symposium on the
Theory of Computing, pages 264-274, Victoria, British
Columbia, Canada, 4-6 May 1992.

[9] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In Proceedings of VLDB,
2001.

[10] R. Milner. A Calculus for Communicating Processes,
volume 92 of Lecture Notes in Computer Science.
Springer Verlag, 1980.

[11] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT: 7th International Conference on
Database Theory, 1999.

[12] S. Nestorov, J. Ullman, J. Weiner, and S. Chawathe.
Representative objects: Concise representations of
semistructured, hierarchical data. In Proceedings of the
13th International Conference on Data Engineering
(ICDE'97), pages 79-90. IEEE, April 1997.

[13] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing,
16(6):973-989, December 1987.

[14] D. Park. Concurrency and automata on infinite
sequences. In Theoretical Computer Science, 5th
GI-Conf., LNCS 104, pages 167-183. Springer-Verlag,
Karlsruhe, March 1981.

[15] Open Directory Project. DMOZ open directory project.
http ://www. dmoz. org.

[16] F. Rizzolo and A. Mendelzon. Indexing XML data with
ToXin. In Proc. of WebDB 2001, 2001.

[17] R.Kaushik, P.Shenoy, P.Bohannon, and E.Gudes.
Exploiting local similarity for efficient indexing of paths
in graph structured data. In Proceedings of ICDE, 2002.

[18] J. Shanmugasuudaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
databases for querying xml documents: Limitations
and opportunities. In VLDB'99, Proceedings of 25th
International Conference on Very Large Data Bases,
pages 302-314, 1999.

[19] E. Shriver, A. Merchant, and J. Wilkes. An analytic
behavior model for disk drives with readahead caches
and request reordering. In Joint International
Conference on Measurement and Modeling of
Computer Systems (Sigmetrics '98/Performance '98),
pages 182-191, Madison, WI, June 1998.

[20] L. J. Stockmeyer and A. R. Meyer. Word problems
requiring exponential time. In Proceedings of STOC,
pages 1-9, 1973.

144

