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ABSTRACT 

In this paper, we ask if the traditional relational query 

acceleration techniques of summary tables and cover- 

ing indexes have analogs for branching path expression 

queries over tree- or graph-structured XML data. Our 

answer is yes - -  the forward-and-backward index already 

proposed in the literature can be viewed as a structure 

analogous to a summary table or covering index. We 

also show that it is the smallest such index that  covers 

all branching path expression queries. While this index 

is very general, our experiments show that it can be so 

large in practice as to offer little performance improve- 

ment over evaluating queries directly on the data. Liken- 

ing the forward-and-backward index to a covering index 

on all the attributes of several tables, we devise an index 
definition scheme to restrict the class of branching path 

expressions being indexed. The resulting index struc- 

tures are dramatically smaller and perform better than 

the full forward-and-backward index for these classes of 

branching path expressions. This is roughly analogous to 

the situation in multidimensional or OLAP workloads, 

in which more highly aggregated summary tables can 

service a smaller subset of queries but can do so at in- 

creased performance. We evaluate the performance of 

our indexes on both relational decompositions of XML 

and a native storage technique. As expected, the perfor- 

mance benefit of an index is maximized when the query 

matches the index definition. 

1. INTRODUCTION 

With the rapidly increasing popularity of XML for 

data representation, there is a lot of interest in query 
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processing over data that  conforms to a labeled-tree or 

labeled-graph data model. A variety of languages have 

been proposed for this purpose all of which can be viewed 

as consisting of a pat tern  language and a cons truc t ion  

expression. Fundamental  to the pattern language is the 

branching path expression. 

The idea behind evaluating branching path expres- 

sions is to find all ways of embedding the pattern in 

the data. An example of such a query is "find all parts 

consisting of both a nut and a bolt". The XPath W3C 

standard [3] makes posing branching path expressions 

very concise and natural. For example "/ /part[bolt  and 

nut]" would express the above query in XPath (given 

suitable tag names). Because they lie at the core of most 

languages for processing XML data, efficient evaluation 

techniques for these languages will require efficient eval- 

uation techniques for branching path expressions. 

In this paper we ask if "covering indexes" can be used 

to accelerate the evaluation of such queries. Defining 

covering indexes to speed query performance is a well- 

known technique for SQL queries in relational database 

systems. Briefly, the idea is to define an index that  "cov- 

ers" all the attributes of a table that  are referenced in 

a query. Then the query can be evaluated from the in- 

dex alone, without consulting the table over which the 

index is defined. Since the index is expected to be much 

smaller than the table itself, this can provide impressive 
speedups. 

Returning to our question, are there analogs to "cover- 

ing indexes" for branching path expression queries over 

tree- or graph-structured XML data? The answer is 

certainly yes for simple path expressions - -  the strong 

DataGuide [6] and the 1-Index [11] can be viewed as 

covering indexes, since it is possible to answer queries 

over those indexes directly without consulting the base 

data. Unfortunately, these indexes can be large in prac- 

tice. Our work pushes the frontier in two directions: we 

consider branching path expressions (rather than just 

simple path expressions), and we explore ways to reduce 

the size of covering indexes so that  they become useful 
as query accelerators. 

We show that  the Forward and Backward-Index(F&B- 

Index), defined directly from ideas proposed in [2], can 
be viewed as a covering index for branching path ex- 

pression queries. We also show that  among a large and 

natural  class of indexes, it is the smallest index that  can 

cover all branching path expression queries. Unfortu- 
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nately, our experiments show that  in practice, the size 

of the F&B-Index can approach the size of the base data 

itself. In this case, little performance gain is possible, 

since evaluating a query on this large index is just  like 

evaluating the query on the base data. 

This would seem to pose an unsolvable dilemma - -  

the F&B-Index is the smallest covering index, yet it is 

too large to be useful. However, we can attack this prob- 

lem in a way that  is analogous to the approach used in 

relational systems. In a relational setting, indexes that  

cover all attributes of all tables are rarely built. Instead, 

indexes are built  on specially chosen subsets of certain 

tables. Note that  the result is an index that  does not 

cover all queries, but  that  is expected to be very efficient 

for the queries it does cover. Inspired by this observa- 

tion, we propose a scheme that  allows us to explore and 

exploit a tradeoff between the size of a covering index 

for branching path expressions and the size of the class 

of queries that  the index covers. 

These indexes can range all the way from tiny indexes 

that  are so focussed that  they almost amount to cached 

answers to specific queries, to the full F&B-Index (which 

as we have said covers all path expressions), and many 

points in between. When viewed in this manner, these 

covering indexes also take on some of the flavor of sum- 

mary tables in OLAP or multidimensional workloads - -  

in these environments, the more highly aggregated the 

summary table, the smaller the class of queries it can 

service, but  the higher the performance it can deliver. 

Of course, in the context of branching path expressions 

over the labeled graph data model, the techniques used 

to specify and build these indexes are entirely different 

from the techniques used to define and build covering 

relational indexes or multidimensional summary tables. 

The main contribution of this paper is to propose these 

techniques and to evaluate them experimentally. 

Our covering index technology applies to a number 

of different scenarios. Each of the scenarios is a dif- 

ferent context in which branching path expressions are 

useful. The three scenarios we chose to explore are 

(1) data stored in a native XML format, with native 

XML query processing; (2) data stored in an RDBMS, 

with the understanding that  the data originated as XML 

data but  was "shredded" into a relational schema so that  

an RDBMS can be used as the query processor; (3) data 

stored in an RDBMS, with the understanding that  the 

data originated in the RDBMS but  an application is pos- 

ing branching path expressions over an XML view de- 

fined on this relational data. 

For each alternative, we compare the performance of 

branching path expression queries with and without our 

covering index. Depending on the specific query and in- 

dex chosen, in all scenarios we obtain significant perfor- 

mance improvements, and observe that  using the cover- 

ing index can be an order of magnitude faster than using 

the base data. 

T h e  rest of the paper is organized as follows. Back- 

ground material and an illustrative example are provided 

in Section 2. In Section 3, we review the notion of for- 

ward and backward index and show that  it is a cover- 

ing index for all branching path expression queries, and 

prove that  it is the smallest such index. In Section 4, we 

introduce our index definition scheme and provide an al- 

gorithm to construct an index according to a definition. 

Section 5 evaluates the performance of these covering 

indexes. We summarize related work in Section 6 and 

conclude in Section 7. 

2. XML, BRANCHING PATH EXPRES- 

SIONS, AND BISIMILARITY 

In this section we review some concepts and definitions 

that  will be useful throughout the paper. 

2.1 The Labeled Graph Data Model 

We model XML or other semi-structured data as a 

directed, node-labeled tree with an extra set of special 

edges called idref edges. More formally, consider a di- 

rected graph G = (Vc, ET, ER~f , root, Ea, nodelabel, oid, 
value). Vc is the node set. ET denotes the set of tree 

edges. The graph induced by ET on Va defines the 

underlying spanning tree. Each edge in ET indicates 

an object-subobject or object-value relationship. When 

we talk about parent-child and ancestor-descendant re- 

lationships, we refer to the tree edges. ER~y is the set of 

idref edges each of which indicates an idref relationship. 

"Simple" nodes in Vc have no outgoing edges and are 

given a value via the value function. Each node in Va 

is labeled with a string-literal from Ea  via the nodelabel 
function and with a unique identifier via the oid func- 

tion, with simple objects given the distinguished label, 

VALUE. There is a single root element with the distin- 

guished label, ROOT. 

Figure 1 shows a portion of a hypothetical "metro- 

guide", represented as a data graph. The solid edges rep- 

resent the tree edges. The numeric identifiers in nodes 

represent oid's. Non-tree edges (shown dashed) may be 

implemented with the ID/IDREF construct or XLink [5] 

syntax. The nodes labeled feature and star are attributes 

of their parent elements and indicate respectively whether 

a museum has a featured exhibit and whether a hotel is 

starred. This guide could be a large XML document, 

the output  of publishing a relational database, or the 

result of decomposing an XML document into relations 

for the purpose of storage and querying. Attributes 

like "name", "address", etc are suppressed from the data 

graph. 

2.2 Branching Path Expressions 

A label-path is a sequence of labels ll . . . Ip  (p _> 1), 

separated by forward s e p a r a t o r s / , / / ,  ~ or by backward 

separators \ ,  \ \ ,  .¢=. A node-path in G is a sequence of 

nodes, n l . . .  Up, again separated b y / , / / ,  ~ or \ ,  \ \ ,  .¢= 

such that,  for 1 < i < p -  1, if n~ and ni+l  are separated 

by a 

1. / ,  then ni is the parent of ni+l  

2. / / ,  then n~ is an ancestor of ni+l  

3. ::¢,., then ni points to ni+l  through an idref edge 

4. \ ,  then n~ is a child of n~+l 

5. \ \ ,  then n~ is a descendant of ni+l  

6. ~=, then nl  is pointed to by ni+l  through an idref 
edge 
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F i g u r e  1: A n  e x a m p l e  g r a p h - s t r u c t u r e d  d a t a b a s e  

A node-path nz . . .  np matches a label path Iz . . .  Ip if the 

corresponding separators are the same and label(hi) = 

Ii, for 1 < i < p. Label paths and node paths where the 

separators are restricted to be the forward separators 

are called forward label paths and forward node paths re- 

spectively. We can similarly define backward label paths 

and backward node paths. Label paths that  involve both 

forward and backward separators are called mixed paths. 

For example, in Figure 1, the path ROOT/metro/neighb- 

orhoods/neighborhood/business=>.hotel is a forward label 

path, and the node path 1/2/5/9/24 ~ 23 matches it. 

The label path ROOT/metro/business/hotels/hotel¢:bu- 
siness\neighborhood is a mixed label path and the node 
path 1/2/4/7/23 4= 24\9 matches it. 

We now provide examples of branching path expres- 

sions, followed by a definition. The path expression 

ROOT/metro/neighborhoods/neighborhood [/business=v- 
hotel]/cultural=>museum finds all museums that have a 
hotel in the same neighborhood. This is done by speci- 

fying a primary path 

ROOT/metro/neighborhoods/neighborhood/cultural=>. 
museum to museum nodes and applying a condition on 

(intermediate) nodes labeled neighborhood asserting that  

they have the path/business=>hotel coming out of them. 

More formally, we define branching path expressions by 

the following grammar sketch. 

bpathexpr ~ fwdlabelpath [orexpr] fwdsep bpathexpr 
] fwdlabelpath 

orexpr ~ andexpr ~or' orexpr 
[ andexpr 

andexpr ~ bpathexpr2 'and' andexpr 
I notbpathexpr2 'and' andexpr 
I bpathexpr2 
[ notbpathexpr2 

notbpathexpr2 ~ 'not' bpathexpr2 
bpathexpr2 -~ labelpath2 [orexpr] bpathexpr2 

[ labelpath2 
labelpath2 --~ fwdsep labelpath 

[ backsep labelpath 
fwdlabelpath -+ forward label paths 
labelpath ~ label paths 
fwdsep -~ /1 / /  [ 
backsep --~ \ 1 \ \ 1 ~  

In an XML context, the above definition of branching 

path expressions forms a subset of the XPath [3] stan- 

dard, except for one additional feature, which is that  we 

allow backward traversal of idref edges. Let us note here 

that  we ignore order and value based selections, which 

will be addressed by future work. 

As mentioned above, we can think of these branching 

path expressions as a basic forward label path (call it 

the primary path) with boolean path conditions on in- 

termediate labels. The primary path corresponding to 

a branching path expression is the path that  remains 

when all parts between brackets ~[' and ~]' are removed 

(including the brackets themselves). The other parts of 

the branching path expression act as path constraints on 

the primary path. 

Evaluating a branching path expression on a graph 

as defined above amounts to matching the primary path 

and satisfying the intermediate boolean path conditions. 

A path condition is evaluated on a data node and takes 

the form of another branching path expression which 

is evaluated recursively. These constraints can be con- 

nected by the usual logical operators 'and',  'or' and 'not' .  

The return set corresponds to all nodes that match the 

last tag in the primary path. For example, in the above 

query that  finds all museums having a hotel in the same 

neighborhood, the node with oid 16 is returned as part 

of the result, since (a) the node path 1/2/5/9/25 ~ 16 

matches the primary path, (b) 16 is the oid of the node 

that matches the last tag, museum, in the primary path 

and (c) the node with oid 9, which matches the tag 

neighborhood in the primary path, satisfies the path con- 

dition imposed on it. The full answer set for this query 

is 15, 16, 17, 18, 19. 

Some other examples of branching path expression 

queries are: 

1. ROOT/metro/neighborhoods/neighborhood[/busin- 
ess=:c~hotel and not/business=~.cinema-hall]/cultural 
=~museum asks for all museums that  have a hotel 

in the same neighborhood, but  no cinema-hall. 
2. //hotel[star][.¢= business\neighborhood[/cultural=> 

museum[\art]]] finds all star hotels that have an art 
museum in the same neighborhood. Note that this 

query can written in a different way, similar to the 
query above. 

These branching path expression queries can be thought 
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m u s e u m  ~" star  

- " . . .  bus iness  cultural  

Figure 2: Graph v iew of  hotel  query 

of in a graph format. For example, the graph in Fig 2 

represents the "hotel" query above. The dark hotel node 

indicates that  it is the return node. T h e / / l a b e l  on the 

edge coming in to the hotel node indicates t h e / / s e p a r a -  

tor in the query. Again, solid edges represent tree edges 

and dashed edges represent idref edges. It is straight- 

forward to similarly visually represent boolean connec- 

tives. We note that  the underlying undirected graph 

corresponding to a query graph is always a tree. 

2.3 Index Graphs 

In this paper we are concerned with index graphs. An 

index graph for data graph G is a graph I(G) where we 

associate an extent with each node in I. If A is a node in 

the index graph I(G), then ext1(A), the extent of A, is a 

subset of Vc. We add the constraint that  the extents of 

two index nodes should never overlap. The index graph 
result of executing a branching path expression P on 

I(G) is the union of the extents of the index nodes that  

result from evaluating P on I(G). An index graph I(G) 
covers a branching path expression query P if the index 

result of P is accurate, i.e., it is the same as the result 
o n  e .  

The 1-Index [11] is an example of an index graph and 

covers in-coming path queries (i.e. forward label path 

queries). In fact, any partit ion of the data nodes defines 

an index graph where (1) we associate an index node 

with every equivalence class, (2) define the index node's 

extent to be the equivalence class that  formed it and 

(3) add an edge from index node A to index node B if 

there is an edge from some data node in ext(A) to some 

data node in ext(B). Henceforth, whenever we refer to 

an index graph obtained from a partition of the data 

nodes, we mean the above construction. Thus, even a 

simple grouping of the data nodes by label defines an 
index graph. 

We now introduce terminology about partitions of data 

nodes. A partit ion P1 of the data nodes is a refinement 
of another partition P2 if the following condition holds: 

whenever two nodes are in the same equivalence class in 

P1, they are in the same equivalence class in P2 as well. 

If P1 is a refinement of P2, then P2 is coarser than P1. 

We also talk about one index graph being a refinement 
of another - -  this refers to the corresponding partitions 

(and makes sense only if the set of data nodes indexed 
in both is the same). 

2.4 Bisimilarity 

We briefly introduce the notion of bisimilarity [14] 

since it is central to the rest of the paper. This no- 

tion was first used in the context of semi-structured data 

while introducing the 1-Index [11]. The intuition behind 

the 1-Index is to try and group together nodes if they 

have the same set of incoming paths, but  achieving ex- 

actly this ideal grouping is PSPACE-complete [20]. The 

solution of [11] is to use instead a grouping like bisimi- 

larity, which refines the ideal grouping; that  is, it splits 

some of the groups in the ideal grouping. We modify the 

definition slightly to distinguish between tree and idref 
edges. 

A symmetric, binary relation ~ on VG is called a 

bisimulation if, for any two data nodes u and v with 

u .~ v, we have that  (a) u and v have the same label, 

(b) if par~ is the parent of u and par, is the parent of 

v, then paru ~ parr and (c) if u' points to u through an 

idref edge, then there is a v' that  points to v through 

an idref such that  u'  ~ v', and vice-versa. Two nodes u 

and v in G are said to be bisimilar, denoted by u ~b v, 

if there is some bisimulation ~ such that  u ~ v. 

The partit ion of Va induced by ~b can be used to ob- 

tain an index graph. This index graph is referred to as 

Bisim(G) or simply "the 1-Index" in this paper 1. Thus, 

there is a worst case guarantee on the index size, since 

the 1-Index can never be bigger than the data graph. 

Further, it can be computed in time O(m lg n) where n 

is the number of nodes and m is the number of edges in 

the data graph, using an algorithm proposed by Paige 
and Tarjan [13]. 

3. PROPERTIES OF THE FORWARD 

AND BACKWARD INDEX 

In [2], the authors note that  by using the notion of in- 
verse edges, we get structural summaries (of schema-less 

data) that  capture information about both in-coming 

and out-going paths. More precisely, let us consider the 

following process for an edge-labeled data graph (a sim- 

ilar process can be applied to node-labeled graphs too). 

While the discussion below does not distinguish between 

tree and idref edges, the definitions and properties we 

talk about can be easily tweaked to accommodate the 

same. We omit these details for lack of space. 

1. For every (edge) label l, add a new label l-1.  

2. For every edge e labelled l from node u to node v, 

add an (inverse) edge e -1 with label 1-1 from v to 

U .  

3. Compute the 1-Index (or DataGuide) on this mod- 
ified graph. 

The above is a structural summary that  captures infor- 

mation about paths both entering and leaving nodes in 

the data graph. With the 1-Index used in step 3 above, 

we obtain a partit ion of the data nodes which can be 

used to define an index graph. Let us call this the For- 

ward and Backward-Index(FSzB-Index). 

In this section, we prove some new theorems about the 

FSzB-Index that  are important in the context of families 
of covering indexes. To do so, we first give an alterna- 

tive definition of the F&B-Index based on the notion of 

the stability of one set of graph nodes with respect to 

another. For a set of nodes, A, let Succ(A) denote the 

set of successors of the nodes in A, i.e., the set {v I there 

1The authors of [11] also consider the use of the similar- 
ity relationship [10] for the 1-Index. We do not consider 
this alternative due to inefficient construction algorithms 
for the similarity relation - see [11] for details. 
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is a node u E A with an edge in G from u to v}. We can 
define the predecessor set of A, Pred(A)  analogously. 

DEFINITION 1. Given two sets of data graph nodes A 

and B,  A is said to be succ-stable with respect to B i f  

either A is a subset of Succ(B)  or A and Succ(B)  are 

disjoint. 

It is possible to similarly define the notion of pred-stability. 

We call a partition of the nodes succ-stable if, for every 

pair of individual partitions pl and p2, pl is succ-stable 

with respect to p2 (when talking about the stability of 

partitions, we actually mean stability of the correspond- 

ing sets of nodes). 

A succ-stable partition has the property that  if we 

build an index graph from it, then whenever there is an 

edge from index node A to index node B, there is an edge 

from every data node in ext (A)  to some node in ext (B) .  

Let us call a label grouping a partition of the data nodes 

that  corresponds to their node-labels (i.e. two nodes are 

in the same equivalence class if they have the same la- 

bel). The 1-Index is then the coarsest partition of the 

data nodes that  is (1) a refinement of the label grouping 

and (2) is succ-stable. We can think of the 1-Index com- 

putation as consisting of two parts: (1) initialization by 

label grouping and (2) splitting the label grouping till 

we obtain a succ-stable refinement. 

Now consider the following procedure over data graph 

G. We work with a current partition of the data nodes 

which is initialized to the label grouping. 

1. Reverse all edges in G. 

2. Compute the bisimilarity partition (with the cur- 

rent partition as the initialization). 

3. Set the current partition to what is output by the 

previous step. 

4. Reverse edges in G again, obtaining the original G. 

5. Compute the bisimilarity partition (again initial- 

izing the computation with the current partition). 

6. Set the current partit ion to what is output by the 

previous step. 

7. Repeat the above steps till the current partition 

does not change. 

It is not hard to see that the F&B-Index is the index 

graph obtained by using this finM partition. From this 

point of view, the idea behind the FSzB-Index is to ob- 

tain a partition of the data nodes that  is both succ-stable 

and pred-stable. One way to do this is by first ensur- 

ing pred-stability (by reversing G's edges and computing 

the bisimilarity partition), then computing a succ-stable 

refinement of this pred-stable partition, and continuing 

thus till the current partition does not change. 

The F&B-Index for the data graph shown in Figure 1 

merges the two hotel nodes with oids 22 and 23. Other 

than that,  in this case, the F&B-Index is the same as 

the data graph. 

We have the following theorem that shows the impor- 

tance of this index. The proof follows from the fact that 

the F~B-Index is both a pred-stable and succ-stable par- 
tition and is omitted for lack of space. 

THEOREM 1. The F&B-Index over a data graph G 

covers all branching path expressions over G. 

Thus, for the data in Figure 1, the fact that  two of the 

hotel nodes are merged together means that  no branch- 

ing path expression query can distinguish between the 

two. Conversely, using a simple diagonalization argu- 

ment, we have the following theorem. The proof is again 

omitted for lack of space. 

THEOREM 2. For data graph G, any index graph that 

covers all branching path expressions over G must be a 

refinement of the F&B-Index. 

COROLLARY 3.: For data graph G, the F&B-Index is 

the smallest index graph that covers all branching path 

expressions over G. 

As a result, whenever two nodes are not in the same 

extent of the FSzB-Index, there is some branching path 

query that  distinguishes between the two. 

3.1 Size of the F&B-Index 

Unfortunately, the F&B-Index is often big. For ex- 

ample, on the XMark [1] XML benchmark document 

of size 10MB, the data has about 181000 nodes, while 

the F&B-Index has about 164000 nodes. Similarly, for 

a subset of the Open Directory Project [15] data where 

the data has about 143000 nodes, the F&B-Index has 

about 93000 nodes. This size problem with the F&B- 

Index leads us to look for a way to cut down the size of 

this index. Since it is the smallest index that handles 

all branching path expressions, the only way out is to 

compromise on the class of queries to be covered. This 

motivates the index definition scheme we propose in the 

next section. 

4. COVERING INDEX DEFINITION 

SCHEME 

As we saw above, the FSzB-Index can be big and it is 

important to be able to cut down the index size. Since 

branching path expressions can be numerous and com- 

plicated, our index definition scheme is designed towards 

eliminating branching path expressions that are deemed 

less important, so that  we arrive at an index that  is 

much smaller and can handle the remaining branching 

path expressions more efficiently. We use four different 

approaches toward this goal based on the following in- 
tuitions. 

1. There are many tags in data that are of lesser in- 

terest and so need not be indexed. 

2. Branching path expressions (in the manner defined 

by us) give more importance to tree edges over 

idref edges. In particular, / /  matches only tree 

edges and there is no equivalent for idref edges. It 

may be desirable to reflect this in the index. 

3. Not all structure is interesting. Our intuition is 

that queries on long paths are rare. Instead, short 

paths are more common. Thus, it may be useful to 
exploit local similarity to cut down the index size. 

4. Restricting the "tree-depth" of the branching path 
expressions for which the index is accurate might 

help. We will explain this in more detail later. 
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F i g u r e  3: F ~ B - I n d e x  on  t ree  e d g e s  

4.1 Tags to be indexed 
It is often the case that  there are tags in the data 

that  are never queried using branching path expressions 

and thus need not be indexed. We do so by altering 

the data graph so that  all nodes that  have tags that are 

not to be indexed are labeled with a unique label, other. 

In addition, if a node labeled other does not appear in 

the tree path to any node that  is being indexed, it can 

be assumed to be absent from the data graph for pur- 

poses of indexing. This simple technique can have a lot 

of effect in practice. For example, in the XMark data, 

there are text tags such as bold and emph that  appear 

in the description of categories and items that  are being 

auctioned. It may be worthwhile to build an index that 

ignores these tags. The F&B-Index on the tree edges 

of the XMark file of size 100MB (which has about 1.43 

million nodes) has about 436000 nodes. But on ignoring 

the text nodes, the number of nodes in the index drops 

to about 18000. 

4.2 Tree Edges Vs Idref Edges 
The XPath [3] standard for path expressions gives a 

higher priority to tree edges. In particular, / /  matches 

only tree edges and there is no equivalent ancestor oper- 

ation for idref edges. On the other hand, all occurrences 

of idrefs in path expressions have to be explicit. This is 

also reflected in the way we have defined our branching 

path expressions. The effect on the index size of idrefs 

can be tremendous. For example, on the XMark data of 

size 100MB, the F&B-Index on just  the tree edges has 

18000 nodes (ignoring text nodes) while the size is about 

1.35 million when all idrefs are incorporated (again ig- 

noring text nodes). Thus, it is desirable to have some 

way of giving priority to tree edges. We specify the set of 

idref edges to be indexed as part of the index definition. 

We do so by specifying the source and target labels of 

the idref edges we wish to retain. 

Figure 3 shows the F&B-Index constructed on only 

the tree edges of the data graph in Figure 1 (again we 

only show extents that  have more than one data node). 

As we can see, all three nodes labeled neighborhood are 

merged together in this index, showing that  they cannot 

be distinguished by any branching path expression query 

on the tree edges alone. However, this index cannot 

necessarily be used to cover a branching path expression 

query that  refers to an idref edge. 

4.3 Exploiting Local Similarity 
As pointed out in [17], an important approach in con- 

trolling index sizes lies in exploiting local similarity. Our 

intuition is that most queries refer to short paths and 

seldom ask for long paths. As a result, it may not be 

desirable to split the index partition along long paths. 

For example, in the data graph in Figure 1, it may not 

be desirable to split nodes labeled neighborhood based 

on whether they contain a museum that  has a featured 

exhibit. This can be achieved by looking at paths of 

length up to 2 (here, length refers to the number of 

edges). This process is reminiscent of summary tables 

for OLAP workloads, where picking a larger number of 

attributes to aggregate yields a smaller summary that is 

accurate for queries covered by it while picking a smaller 

number of attributes to aggregate makes the summary 

more generic. 

We have the notion of k-bisimilarity (defined in [10]) 

which groups nodes based on paths of length up to k. We 

reproduce it below (again modified slightly to distinguish 

between tree and idref edges). 

DEFINITION 4.: ~ k  (k-bisimilarity): This is defined 

inductively. 

1. For any two nodes, u and v, u ~o v i f f  u and v 

have the same label. 

2. Node u ~ k  v i f f  u ,~k-1 v, pare, ~ k - 1  par ,  where 

par~ and parr  are respectively the parents of u and 

v, and for  every u' that points to u through an idref 

edge, there is a v ~ that points to v through an idref 

edge such that u' ~ k - 1  v ~, and vice versa. 

By a simple induction, we can see that  this definition en- 

sures the weaker condition it sets out to achieve. Note 

that k-bisimilarity defines an equivalence relation on the 

nodes of a graph. We call this the k-bisimulation. This 

partition is used in [17] for in-coming path queries, to 

define an index graph, the A(k)-index, where k is a pa- 

rameter. Thus, an A(2)-index is accurate for the query 

//neighborhood/cultural=v.museum, but  not necessarily for 

the query//neighborhood/cultural=J-museum/featured. 

In our context, it should be possible to specify, say, 

that in the forward direction, we only want local sim- 

ilarity for paths of length at most 1 and in the back- 

ward direction, we want "global" similarity. This way, 

we get a covering index where, for example, the condi- 

tion "museum with a featured exhibit", or the condition 

"hotel that is a star hotel" can be imposed since these 

only involve paths of length 1, whereas the condition 

"neighborhood with a museum that  has a featured ex- 

hibit" cannot be imposed since it involves a longer path. 

We argue that  by thus restricting the query-able path 

length, we can still index a large and interesting subset 

of branching path expression queries. 

4.4 Restricting Tree Depth 
In Section 3, we defined the F&B-Index as a transitive 

closure of the following sequence of computations: 

1. Reverse all edges in G. 

2. Compute the bisimilarity partit ion (with the cur- 

rent partit ion as the initialization). 

3. Reverse edges in G again, obtaining the original G. 

4. Compute the bisimilarity partit ion (again initial- 

izing the computation with the current partition). 
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Figure  4: 

Consider the partition (and hence the index graph) de- 

fined by one iteration of these operations. Let us call this 

index graph the F+B-Index. The index graph obtained 

after two iterations above would be called F+B÷F+B- 
Index and so on. 

We now define the notion of tree-depth of a node in a 

query. Consider the query 

//museums/history/museum[/featured and ~ cultural\ne- 
ighborhood [/cultural=.~ museum[\ art]]] that  asks for his- 

tory museums that  have a featured exhibit and also have 

an art museum in the same neighborhood. The query is 

shown in Figure 5 in graph format. The numbers to the 

side indicate the tree-depths of the nodes. The idea is 

that  all nodes on the primary path and having a path to 

some node in the primary path have tree-depth 0. All 

nodes that do not have tree-depth 0 and have a path 

from some node in the primary path have tree-depth 1, 

nodes that  do not have tree-depth 1 and have a path 

to some node of tree-depth 1 have tree-depth 2, nodes 

that do not have tree-depth 2 and have a path from 

some node of tree-depth 2 have tree-depth 3, and so 

on. Intuitively, odd tree-depths correspond to out-going 

path conditions, while even tree-depths correspond to 

in-coming path conditions. Nodes that  have an edge to 

or from a node of higher tree-depth are called branching 
points. The nodes in the example query graph that  are 

branching points are indicated in bold. The return node 

is shaded, and in this case, also happens to be a branch- 

ing point. Note that  tree-depth is different from the 

nesting level of a node in the query text. In particular, 

the neighborhood node has tree-depth 0 although it is 

nested in the query text. In general, the same query can 

be written in more than one way. Tree-depths of nodes 

do not depend on how the query is written (whereas nest- 

ing levels do). The tree-depth of a query is the maximum 
tree-depth of its nodes. 

The F-I-B-Index is accurate for the subset of branching 
path expressions over G that  have tree-depth at most 1. 

F + B - I n d e x  

, / k \  

:-,) ©ultuml Y 

". 1 0  f e a t u r e  - 

F i g u r e  5: E x a m p l e  for tree  d e p t h  

The F + B + F + B - I n d e x  is accurate for all branching path 

expressions that  have tree-depth at most 3 and so on 

(to restrict to tree-depth 2, we must use a "B+F÷B-  

Index"). It is our intuition that  it is rare to get mean- 

ingful branching path queries with large tree-depths. 

Hence, we wish to be able to restrict the tree-depth of 

queries being indexed by specifying the maximum tree- 

depth we want to index. So, we make this part of the 

index definition. 

Figure 4 shows the F + B  index for the data in Figure 1. 

Note that nodes 9 and 10, labeled neighborhood are to- 

gether in this index, unlike in the F&B-Index. However, 

the other node labeled neighborhood, 11, is separate, un- 

like the index on the tree edges alone• Since this in- 

dex is smaller than the F&B-Index, it cannot handle all 
branching path expression queries. In particular, a query 

that can be answered by the F&B-Index but  not by the 

F+B-index is//neighborhood [/cultural:=~museum [/featu- 
red][\history]], which asks for all neighborhood nodes that  

have a history museum that has a featured exhibit. This 

cannot be answered by the F-I-B-index since it cannot 

distinguish between the two neighborhood nodes 9 and 10, 

whereas node 10 is in the answer set and node 9 is not. 

This inaccuracy arises because the term history is at a 

tree depth of 2, whereas the F-I-B-index is only (neces- 

sarily) accurate for queries with tree-depth at most 1. 

4.5 Putting it together 
An index definition consists of the following parts: 

1. A set of tags to be indexed. Call this set T. 

2. For each of the forward and backward directions: 

(a) Set of idref edges to be indexed (call them 

reff~,d and refback) 
(b) A parameter k indicating the extent of local 

similarity desired (call them kf~,d and kback) 

3. The number of iterations in the F&B-Index com- 

putation to be performed. Call this td, the tree 
depth. 

The parameters kfwd, kback and td can be set to be 
c~, referring to a transitive closure computation. The 

index obtained for a given index definition S is called 

the BPCI(S) (for branching path expression covering 
index). The algorithm for computing the BPCI(S) is 

shown below in Figure 6. The k-bisimulation partition 
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can be computed  by the  a lgor i thm given in [17], and it 

can be  t r ivial ly  ex tended  to handle  the  k = oc case. 

procedure compute_partition(G,S) 
G ~ data graph, S --~ index definition 
begin 
1. Convert all tags in G not in T into special tag other 
2. Remove any occurrence of a node labeled other if it is not 

on some tree path from the root to any node with a label 
that is to be indexed 

3. Let ~ be a list of sets of nodes 
/ /representing a partition of the nodes of G 

4. P ~ label-grouping of G 
5. f o r i - - -  1 t o t d d o  

/ / forward direction 
6. Retain idref edges in ref fwd 
7. Reverse all edges in G 
8. Compute the kfwd-bisimulation on G initializing 

the computation with 7 ~ 
9. ~ ~-- partition of nodes of G corresponding to the 

above k f wd-bisimulation 
/ /backward direction 

10. Restore G 
11. Retain idref edges in refback 
12. Compute the kb~ck-bisimulation on G initializing 

the computation with 
13. P ~-- partition of nodes of G corresponding to the 

above kback-bisimulation 
end 

procedure compute_index(G, S) 
begin 
1. compute_partition(G,S) 
2. fo reach  equiv, class in 7:' do 
3. create an index node I 
4. ext[l] = data nodes in the equiv, class 
5. fo reach  edge from u to v in G do 
6. I[u] = index node containing u 
7. l[v] = index node containing v 
8. if  there is no edge from I[u] to l[v] then 
9. add an edge from I[u] to I[v] 
end 

F i g u r e  6: B P C I ( S )  c o m p u t a t i o n  

T h e  subset  of branching pa th  expressions for which an 

a rb i t ra ry  covering index is accura te  depends,  of course, 

on the  index definition. T h e  following are some example  

index definit ions and the  indexes they  generate.  

1. The  F&:B-Index can be obta ined  by indexing all 

tags and all idref edges, wi th  k f w d  = kback ~-- td = 

2. The  F + B - i n d e x  can be genera ted  by indexing all 

tags and all idref edges, wi th  kfwd -~ kback = CX) 

and td = 1. 

3. The  1-Index can be genera ted  by indexing all tags 

and all idref edges, wi th  kfwd = 0, kb~k = oc and 

t d =  O. 

4. T h e  A(k) - index  can be  genera ted  by indexing all 

tags and all idref edges, wi th  kfwd = O, kb~k = k 

and td = O. 

Consider  the  following definit ion on the  d a t a  in Fig- 

ure 1. 

1. index tags ROOT, metro, cinema-hall, neighborhoods, 

neighborhood, business 
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F i g u r e  7: I n d e x  for g i v e n  de f in i t i on  

2. pick k f w d  ---- kback  ~- 

3. t ree  dep th  ---- c~. 

The  index genera ted  is shown in Figure  7. This  is a lmost  

a p recompu ta t ion  of the  query  

//neighborhood [/business=;,.cinema- hall], 
which asks for all ne ighborhoods  tha t  have a c inema 

hall. As seen above, we can also genera te  the  full FL~B- 

Index  by this workload scheme. Thus,  a wide var ie ty  of 

indexes can be defined by our  scheme. 

4.6 Index Selection 

We now discuss the  issue of how to  arr ive at  a reason- 

able index defini t ion tha t  covers a set of queries. Note  

tha t  this is analogous to the  problem of choosing an 

appropr ia te  covering index for a given query  workload. 

Consider the  following queries on the  d a t a  in Figure  1. 

1. Hotels  t ha t  have a museum in the  same neighbor- 

hood. This  could be  wr i t t en  as a branching pa th  

expression query  in the  following way: / /neighborh- 

ood[/cultural=~museum]/business=c~hotel Note  tha t  

the  pr imay p a t h  length  is 3 and the  t ree-depth  is 1. 

2. S tar red  hotels: //hotel[/star]. T h e  pr imary  p a t h  

length is 1, and the  t ree -dep th  is 1. 

3. Neighborhoods  wi th  an ar t  museum: / /ne ighbo-  

rhood[/cultural=~museum[\art]] Here, the  pr imary  

pa th  length is 1 and the  t ree-depth  is 2. 

The  following const ra in ts  hold for any index tha t  cov- 

ers the  above queries. Fi rs t  of all, the  tags involved 

in this query  must  be  indexed.  Since the  m a x i m u m  

t ree-depth  is 2, the  index t ree -dep th  must  be at least  2. 

Since the  m a x i m u m  p a t h  length for pa th  condit ions is 

2 (/ /neighborhood[/cultural=~.museum]),  kfwd _~ 2. Sim- 

ilarly, the  const ra int  on kb~ck is t ha t  kback ~ 2. Given 

these constraints ,  one s t ra ight-forward th ing  to do is to 

pick the  m i n i m u m  values needed to cover the  queries. 

Call this  index Imi,~. However,  there  is a t radeoff  - -  by 

picking larger values for t he  parameters ,  we get a more 

generic index t h a t  can potent ia l ly  cover more queries, 

a l though the  per formance  of this index for these queries 

may  be worse t h a n  tha t  of I~ in .  This  example  serves to  

i l lustrate  the  issues involved in choosing an index defini- 

t ion to cover a set of branching pa th  expression queries. 

I t  is possible to give simple heurist ics (for example,  out-  

pu t  Im~n) to  create  a covering index. However, a good 

choice of index defini t ion depends  heavily on the  d a t a  

and the  queries, and will be addressed in future work. 

4.7 Testing if  an Index covers a Query 

We now discuss how to  test  whether  a given index 

covers a branching pa th  expression query. Intuit ively,  

the  condit ions tha t  must  be satisfied are: 
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procedure cover(I, Q) 
I 4-- index 
Q ~ branching path expression 
begin 
1. convert Q into a query graph QG 
2. check if all tags in Q are indexed in I 
3. check if the tree-depth of Q < ~d, the tree-depth of I 
4. check if all paths in QG with even tree-depth have 

length _< kback ; if kback <~ OO, no separator in these 
paths should b e / /  

5. check if all paths in QG with odd tree-depth have 
length _< kfwd; if kfwd < oo, no separator in these 
paths should b e / /  

end 

Figure 8: C h e c k i n g  if BPCI(S )  covers  a query 

regions people open_auctions closed_auctions categories 

{ africa,asia,...} person I 1 [ [ c osed auction category 

homepege~proLfile I iterare~price I _ /  [ open_auction name 
it¢ I namq~ducation •- 

/ / -  ~ item're f bidder 
name descr ,tion incategory inJt.a 

Figure 9: XMark schema 

1. The tags and idrefs should match - -  all tags and 

idrefs referenced in the query must be indexed. 

2. The tree depth should match - -  the tree-depth of 

the index should be at least as large as the tree- 

depth of the query. 

3. If the index uses local similarity, then all relevant 

path lengths must be bounded by the extent of 

local similarity captured in the index. 

In more deta!l, let QG be the query graph. A path in 

QG has tree-depth i if all nodes in the path, with the 

possible exception of either end, have tree-depth i (not 

all paths necesarily have a tree-depth). The procedure 

shown in Figure 8 tests whether a given index covers a 

given branching path expression query. This procedure 

can be implemented using a depth first search of the 

query graph and takes time linear in the query size. 

5. PERFORMANCE 

In this section we explore the performance of the cov- 

ering indexes introduced in the previous section. We first 

investigate the efficacy of the index definition scheme in 

controlling the size of the covering index, and then go 

on to a performance study over queries that are covered 

by the index. All our experiments are over the 100MB 

XMark XML benchmark [1] data set. The XMark data 

models an auction site. The element relationships rele- 

vant to us are reproduced for convenience in Figure 9. 

The tag names are largely self-explanatory. The tag 

itemref is an idref value pointing to item nodes. Sim- 
ilarly, the tag incategory is an idref pointing to category 

nodes. 

5.1 Range of Indexes 

The goal of this subsection is (a) to establish that 
there is a wide variety of covering indexes spanning a 

whole range of sizes, and (b) to explore the effectiveness 

of each index definition parameter we have specified in 

controlling the index size. 

Defn No. 
Defn 0 

Index 
F&B-Index 

No. of Nodes 
1.35 million 

Defn 1 F&B-Index on tree edges 436602 
Defn 2 18336 

Defn 3 

F&B-Index on tree edges 
w/o text nodes 
F+B-index w/o text nodes 
F+B-index where we 
(a) ignore text tags 
(b) ignore idref edges in 
the fwd direction 

(b) ignore idrefs pointing 
to person tags in the back 
direction 
Defn 4 + ignore idrefs 
pointing to open_auction 
tags in the back direction 

Defn 4 

Defn 5 

1.29 million 

467070 

40938 

Defn 6 Defn 5 + klw d = 1 10705 
Defn 7 Defn 6, except that 32716 

tree-depth -~ 3 
Defn 8 17 Index only tags and idref 

edges present in query Q 

Table 1: I n d e x  D e f i n i t i o n s  a n d  Sizes 

Since the number of possible index definitions is high, 

we restrict ourselves to a few representative examples. 

The definitions are shown in Table 1 (query Q will be 

introduced later) along with the number of nodes. The 

data has about 1.43 million nodes. The full F&B-Index on 

the whole data graph has about 1.35 million nodes, which 

indicates (by minimality of the F&B-Index as per The- 

orem 2) that  almost all nodes in the data can be dis- 

tinguished from one another by some branching path 

expression query. The FSzB-Index on just  the tree edges 

is itself quite large with approximately 430,000 nodes. 

The numbers in Table 1 indicate the wide range of sizes 

achievable by our covering indexes on this data set. 

We now examine the importance of each of the pa- 

rameters in an index definition in isolation. 

1. Ignoring Tags: As explained in Section 4.1, a lot 

of the "splits" in the F&B-Index are caused by the 

text markup elements bold, emph, and so forth. 

The size of the F&B-Index on the tree edges ig- 

noring these tags (Defn 2) is about 18000 nodes, 

as shown in Table 1, which is about 4% of the size 

of the F,~B-Index on all tree edges (Defn 1). 

2. Picking idref edges to inde~. The F+B-index on ig- 

noring the text tags (Defn 3) has about 1.29 million 

nodes. We found that  among all the idref edges, 

the ones pointing to person elements (call them 

personrefs) caused the largest number of splits. 

Keeping everything else the same, if we ignore all 

idref edges in the forward direction and index all 

idref edges except the personrefs in the backward 

direction (Defn 4), the covering index we obtain 

has about 470000 nodes, which is about 36% the 

size of the F+B-index (Defn 3). If we also ignore 

the idref edges pointing to open.auction elements 
in the backward direction (Defn 5), we obtain an 

index with 40000 nodes. 

3. Local Similarity: In the above index (with 40000 

nodes), if we set kfwd = 1 keeping everything else 
the same (Defn 6), we get an index with only about 

11000 nodes. We note that  even this index, small 
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[ Query name Query 
Q1 find the number of persons whose 

education information is known 
Q2 find the number of persons with a 

homepage 
Q3 find "hot" items, i.e. items that have 

a bidder(same as Q above) 
Q4 for all items being auctioned, but 

w/o a bidder, find their category 
Q5 find all categories where items have 

been sold only from North America 

Table 2: Test  Queries  

as it is, can index a large number of branching path 

expressions. In particular, it allows conditions like 

item[/featured], person[/homepage] and so on to be 
imposed and allows primary paths that can be ar- 

bitrarily long and pass through any of the tree 

edges and any idref edge pointing to an item or 

category node. 

4. Tree Depth: While the above index has tree depth 

of 1, the same index where the tree depth is set to 3 

(Defn 7) has about 33000 nodes, showing that this 

parameter can play an important role in controlling 

the size of the index. However, in our other exper- 

iments (not reported here), we realize that  among 

the above parameters, this has the least impact on 

the index size. 

Finally, let us examine an example of how we can get a 

highly specific index for a given query. Let the query Q 

under consideration be 

//open_auction[/bidder]/itemref=~itern/id, 
which finds all items that  are being auctioned and have 
at least one bidder. By indexing only the tags (and 

attributes) site, item, open_auctions, open_auction, bid- 

der, id, itemref, setting k/wd = 1, kb~ck = oo and tree 

depth = 1 (Defn 8), we get an index with only 17 nodes. 

This index covers the above query. 

5.2 Performance on Queries 

In this subsection, we wish to demonstrate that  (a) by 

appropriately choosing a covering index, we can speed 

up the performance of a set of branching path expres- 

sion queries considerably and (b) we can tradeoff perfor- 

mance with scope: that  is, we can pick a more general 

index that  would also cover this set of branching path 

expressions, but  at a lower performance benefit. 

We evaluate the performance of our indexes on a set of 

five queries, shown in Table 2. We pick three represen- 

tative members from the above set of indexes discussed 

corresponding to definitions 5, 6 and 8 in Table 1 (with 

the number of nodes being respectively 40938, 10705 

and 17). Let us call these respectively I~, ,  Ialmo~t--a, 
and Isp~cif~. Iau covers the whole set of queries. Ialmo,t-~u 
covers all queries except Q1. Q1 when written as a 

branching path expression over the XMark data reads as: 

count(//person[/profile/education]). Index I~lmost-aU does 

not cover this since k/wd is set to 1 while building it. 

Queries Q2, Q3, Q4 and Q5, on the other hand only 

involve conditions on paths of length 1 (as can be seen 

from the XMark schema shown in Figure 9). I,p~.f,~ 

only covers query Q3. While larger index structures in- 

herently cover more path expressions, we see that  control 

can be exercised over which sets of path expressions are 

covered. 

We report results for three scenarios: 

1. RELSTORE: The XML data is stored in a rela- 

tional system using the shared relational decompo- 

sition strategy proposed in [18]. 

2. NSTORE: The XML data is stored using a na- 

tive storage engine, based on a simple breadth- 

first clustering of objects on pages (we picked the 

breadth first approach since it almost always per- 

formed better for our queries than a depth-first ap- 

proach). We store node pointers in both directions 

allowing traversal in either direction. 

3. RELPUBLISH: The relational decomposition of the 

data is given and the queries are over an XML view 

of the data. Here, we pick a different decompo- 

sition for the data than the one proposed in [18]. 

The main difference is that  there is one item and in- 

category table for each continent, whereas in REL- 

STORE, we place all item nodes in a single table 

and do the same for incategory nodes. 

We used DB2 (version 7.1) as the relational engine. The 

buffer pool size for all experiments with the relational 

engine was set at 32MB. The experiments were run on 

a Linux workstation with 256MB of RAM. The native 

storage engine was implemented using a disk simulator 

based on the disk model proposed in [19]. In order 

to get an "apples to apples" comparison, when using a 

relational engine for the data, we stored the index also 

using the relational engine, and used a native storage for 

the index when we used native storage for the data. The 
index was stored using a fixed relational decomposition 

in both scenarios RELSTORE and RELPUBLISH. We 

picked response time as our performance metric. We 

ran experiments under both cold and warm buffer pool 

conditions. Since the trends for both cases are similar, 

we report results for only the warm buffer pool case. 

For the relational storage cases, we built  the traditional 

value indexes useful for this set of queries. 

Figure 10 shows the performance of the three cover- 

ing indexes under RELSTORE. The X-axis represents 

the queries, while the Y-axis shows the speedup mea- 

sured in terms of the ratio between the response time 

for the data using only traditional relational indexes and 

the response time using our covering index. Figure 11 

and Figure 12 show the performance for NSTORE and 

Figure  10: S p e e d u p s  for R E L S T O R E  
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Figure 11: Speedups  for N S T O R E  

RELPUBLISH respectively. We note the following in- 

teresting trends from the above graphs: 

1. No matter how the data is stored, there is a con- 

siderable benefit to be obtained by using an ap- 

propriate covering index. For example, using an 

appropriate covering index in RELSTORE speeds 

up performance by factors of up to about 18. 

2. In general, the speedup depends on the granularity 

of the index. For queries Q2, Q3, Q4 and Q5, the 

speedup obtained using index Iatmost--aU is higher 

than that obtained using Iau since Iau is more 

generic. Similarly, for query Q3, the speedup ob- 

tained by using Isp~c~flc is higher since it is tailored 

towards Q3. This illustrates the tradeoff involved 

and indicates a new role for a database adminis- 

trator in the context of XML - -  choosing the tags 

and idref edges to be included in a covering index. 

3. For a specific query, the speedup using a given in- 

dex depends on the level of granularity of the index 

with respect to this query. For example, the num- 

ber of person and homepage nodes in indexes Iau 

and Iatmost--aU is the same although I~u overall 

has more nodes than Ialmo~t--aU. As a result, the 

speedup using either of them is the same for query 

Q2. This is not the case for NSTORE since the 

object clustering is "global"-- thus, even though 

the parts of the index that need to be accessed 

are the same, they are clustered differently. Sim- 

ilarly, although I~tmost--aU is much more generic 

than Isp~ciyic, there is no significant difference in 

the speedup for query Q3 between the two - -  this 

indicates that  although Ia~mo~--aU has many more 

nodes than I~p¢cifi~, for the relevant parts of the 

data, this gap is not significant. 

4. Since queries Q1 and Q2 are count queries, eval- 

uating them on a covering index means that  the 

extents of the index nodes need not be accessed if 

we store the extent sizes in the index nodes. As 

a result, the speedup obtained for these queries is 

higher than that obtained for others. This is not 

the case when native storage is used. One possi- 

ble reason for this is that  the per-query overhead 

in the native storage implementation is higher and 

dominates the cost of a simple queries like Q1 and 
Q2. 

5. The speedups for RELSTORE and RELPUBLISH 

are different. This is to be expected. In both cases, 

the indexes are stored using a fixed decomposition. 
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1 4 -  
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Thus, for queries Q1 and Q2, there is no differ- 

ence between the two scenarios since the person 

table is stored the same way in each case. How- 

ever, for queries Q3 and Q4, the decomposition of 

RELSTORE is more favorable. This results in a 

lesser speedup for these queries. For Q5, the de- 

composition of the data in RELPUBLISH is more 

favorable. Thus, the speedup is lower there. 

6. Speedups in the native storage scenario are higher 

than the relational counterparts. Our implementa- 

tion of the native storage is not fine-tuned for per- 

formance. As a result, the cache-hit rates could be 

low and this could affect the data more than the in- 

dex, which is much smaller. We did not investigate 

this further since it is not our intention to compare 

native storage with relational storage. Rather, our 

goal is to examine the effect of a covering index in 

each case. 

6. RELATED W O R K  

There has been a considerable amount of work on in- 

dexing for semi-structured/XML data [4, 6, 7, 9, 11, 12, 

17]. Almost all of this work has concentrated on index- 

ing simple path expressions. In [16], the authors pro- 

pose a storage/indexing strategy in which data nodes 

are partitioned into relational tables by the extent of 

the DataGuide into which they fall. Based on this parti- 

tion, search can be pruned by the DataGuide, and only 

particular tables searched. This data structure can be 

used to answer branching path expression queries. How- 

ever, since the DataGuide is accurate only for incoming 

path queries, in order to test out-going path conditions, 

joins have to be performed over the data. In addition, 

they present their results on tree data. Our work gen- 

erates indexes that  cover branching path expressions - -  

so, the base data need not be touched. In addition, we 

handle idref edges as well. To our knowledge, ours is 

the first implemented and experimentally evaluated set 

of covering indexes for branching path expressions. 

The notion of F&B-Index is introduced in [2] in the 

context of structural summaries. A contribution of our 

paper is to show that  the F&B-Index is useful as a basic 

construct in the context of covering indexes for branch- 

ing path expressions, and to propose techniques to con- 

trol the size of the covering index. In [12, 17], the no- 

tion of local similarity is exploited in constructing sum- 
mary/ index structures for semi-structured data/XML. 

However, the focus there is on simple path expressions. 

Finally, we note that  the index graph as defined here, 
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as well as the 1-index and DataGuide, are similar in 

structure to the quotient graph of [8], and that  such 

structures are commonly used for summaries of program 
automata. 

7. CONCLUSIONS AND FUTURE WORK 

Branching path expressions are an important  idiom in 

XML query languages, and based on our experience in 

the work reported in this paper, it appears that  cover- 

ing indexes are a promising approach to their efficient 
evaluation. 

We demonstrate that  the F&B-Index for a given graph 

can be used as a covering index for the set of all branch- 

ing path queries that  can be expressed over that  graph. 

However, our experiments indicate that  this index is of- 

ten too big to be useful in speeding query evaluation. 

Accordingly, we introduce mechanisms through which 

one can specify a wide range of covering indexes that  

range from extremely focussed and tiny indexes for very 

targeted classes of branching path expression queries to 

the fully generic F&B-Index. 

We experimentally evaluated these covering indexes in 

the context of native XML storage and two variants of 

relational storage for XML data. In all cases, we ob- 

serve that  the speedup due to covering indexes can be 

significant. Our study clearly demonstrates some of the 

tradeoffs involved in picking a covering index. In partic- 

ular, a covering index that  is more generic can handle a 

larger class of branching path expressions, while an in- 

dex that  is more specific handles fewer branching path 

expressions but  is more accurate for the queries it does 
cover. 

A number of interesting open problems remain that  

we hope to explore in future work. For example, 

• Index Selection: The problem of picking an optimal 

set of covering indexes in order to handle a given 

query workload naturally arises in this context. 

• Integration with Value Indexes: Value based condi- 

tions are crucial in querying any kind of data and 

so it is important  to integrate structure indexes 

like our covering indexes with traditional value in- 
dexes. 

• Updates and Bulk Loading Algorithms: Clearly, be- 

fore these indexes can be deployed we will need 

efficient index building and updating algorithms. 

• Hierarchies of Covering Indexes: This item is in- 

spired by the analogy with summary tables for 

multidimensional workloads. There, one typically 

defines a hierarchy of summary tables, where higher 

level summaries are most efficiently computed from 

lower level tables. It would be interesting to ex- 

plore whether or not analogous ideas will be useful 
in our context. 
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