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Covering Numbers for Convex Functions
Adityanand Guntuboyina and Bodhisattva Sen

Abstract—In this paper, we study the covering numbers of the

space of convex and uniformly bounded functions in multidimen-

sion. We find optimal upper and lower bounds for the -covering
number of , in the -metric, , in terms

of the relevant constants, where , , , and

denotes the set of all convex functions on that
are uniformly bounded by .We summarize previously known re-

sults on covering numbers for convex functions and also provide

alternate proofs of some known results. Our results have direct
implications in the study of rates of convergence of empirical min-

imization procedures as well as optimal convergence rates in the

numerous convexity constrained function estimation problems.

Index Terms—Convexity constrained function estimation,

empirical risk minimization, Hausdorff distance, Kolmogorov

entropy, -metric, metric entropy, packing numbers.

I. INTRODUCTION

E VER since the work of [1], covering numbers (and their

logarithms, known as metric entropy numbers) have been

studied extensively in a variety of disciplines. For a subset

of a metric space , the -covering number

is defined as the smallest number of balls of radius whose

union contains . Covering numbers capture the size of the un-

derlying metric space and play a central role in a number of

areas in information theory and statistics, including nonpara-

metric function estimation, density estimation, empirical pro-

cesses, and machine learning.

In this paper, we study the covering numbers of the space

of convex and uniformly bounded functions in multidimension.

Specifically, we find optimal upper and lower bounds for the

-covering number , in the -metric,

, in terms of the relevant constants, where ,

, , and denotes the set of all convex

functions on that are uniformly bounded by . We also

summarize previously known results on covering numbers for

convex functions. The special case of the problem when

has been recently established by Dryanov in [2, Th. 3.1]. Prior

to [2], the only other result on the covering numbers of convex

functions is due to Bronshtein in [3] who considered convex

functions that are uniformly bounded and uniformly Lipschitz

with a known Lipschitz constant under the metric.
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As will be clear from our proof techniques, results on the

covering numbers of convex sets are quite relevant to this paper

for which the two main references are [3] and [4, Sec. 4]. The

main result in [4, Sec. 4] is actually weaker compared to [3, Th.

5]. However, there are a few minor errors in the proof of [3, Th.

5] which are corrected in the exposition of [5, Ch. 8]. Our results

are analogous to the results on covering numbers of classes of

smooth functions for which two main references are [1] and [6].

In recent years, there has been an upsurge of interest in

nonparametric function estimation under convexity-based

constraints, especially in multidimension. In general function

estimation, it is well known (see, e.g., [7]–[10]) that the cov-

ering numbers of the underlying function space can be used to

characterize optimal rates of convergence. They are also useful

for studying the rates of convergence of empirical minimization

procedures (see, e.g., [11] and [12]). Our results have direct

implications in this regard in the context of understanding the

rates of convergence of the numerous convexity constrained

function estimators, e.g., the nonparametric least squares esti-

mator of a convex regression function studied in [13] and [14];

and the maximum likelihood estimator of a log-concave density

in multidimension studied in [15]–[17]. Also, similar problems

that crucially use convexity/concavity constraints to estimate

sets have also received recent attention in the statistical and

machine learning literature, see, e.g., [18], [19], and our results

can be applied in such settings.

This paper is organized as follows. In Section II, we set up

notation and provide motivation for our main results, which are

proved in Section III. In Section IV, we draw some connections

to previous results on covering numbers for convex functions

and prove a related auxiliary result along with some inequalities

of possible independent interest.

II. MOTIVATION

The first result on covering numbers for convex functions

was proved by Bronshtein in [3], who considered convex

functions defined on a cube in that are uniformly bounded

and uniformly Lipschitz. Specifically, let de-

note the class of real-valued convex functions defined on

that are uniformly bounded in absolute value by and

uniformly Lipschitz with constant . In Theorem 6 of [3],

Bronshtein proved that for sufficiently small, the logarithm

of can be bounded from above and

below by a positive constant (not depending on ) multiple of

. Note that the distance between two functions and

on is defined as .

Bronshtein worked with the class where the

functions are uniformly Lipschitz with constant . However, in

convexity-based function estimation problems, one usually does

not have a known uniform Lipschitz bound on the unknown
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function class. This leads to difficulties in the analysis of em-

pirical minimization procedures via Bronshtein’s result. To the

best of our knowledge, there does not exist any other result on

the covering numbers of convex functions that deals with all

and does not require the Lipschitz constraint.

In the absence of the uniformly Lipschitz constraint

(i.e., if one works with the class instead of

), the covering numbers under the metric

are infinite. In other words, the space is not totally

bounded under the metric. This can be seen, for example,

by noting that the functions

are in for all , and satisfy

for all .

This motivated us to study the covering numbers of the class

under a different metric, namely the -metric for

. We recall that under the -metric, ,

the distance between two functions and on is defined

as

Our main result in this paper shows that if one works with the

-metric as opposed to , then the covering numbers of

are finite. Moreover, they are bounded from above

and below by constant multiples of for sufficiently small

.

III. –COVERING NUMBER BOUNDS FOR

In this section, we prove upper and lower bounds for the

-covering number of under the -metric,

. Let us start by noting a simple scaling identity that

allows us to take , and , without loss of

generality. For each , let us define on

by , where .

Clearly, and, for

for . It follows that covering to within in

the -metric on is equivalent to covering to within

in the -metric on . Therefore, for

(1)

where .

A. Upper Bound for

Theorem 3.1: Fix . There exist positive constants

and , depending only on the dimension and , such that,

for every and , we have

for every .

The main ingredient in our proof of the aforemen-

tioned theorem is an extension of Bronshtein’s theorem

to uniformly bounded convex functions having different

Lipschitz constraints in different directions. Specifi-

cally, for , , and for

, let denote the

set of all real-valued convex functions on the rectangle

that are uniformly bounded by and

satisfy

(2)

for every ; and

for . In other words, the function

is Lipschitz on with

constant for all .

Clearly, the class that Bronshtein studied is

contained in . Also, it is easy to check that

every function in is Lipschitz

with respect to the Euclidean norm on with Lipschitz

constant .

Note that for , the inequality (2) is satisfied

by every function . As a result, we have the equality

. The following

result gives an upper bound for the -covering number of

and is the main ingredient in the

proof of Theorem 3.1. Its proof is similar to Bronshtein’s proof

[3, Proof of Theorem 6] of his upper bound on

and is included in Section IV.

Theorem 3.2: There exist positive constants and , de-

pending only on the dimension , such that for every positive

and rectangle , we have

(3)

for all .

Remark 3.1: Note that the right-hand side of (3) equals

unless for all . Thus, Theorem 3.2 is only

meaningful when for all .

Remark 3.2: Because is contained in

, Theorem 3.2 includes Bronshtein’s

upper bound on as a special case. Moreover, it

gives explicit dependence of the upper bound on the constants
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, and . Bronshtein did not state the dependence on these

constants.

We are now ready to prove Theorem 3.1 using The-

orem 3.2. Here is the intuition behind the proof. The class

can be thought of as an expansion of the class

formed by the removal of the

Lipschitz constraints (or equivalently, by setting

). Instead of removing all these Lipschitz

constraints at the same time, we remove them sequentially one

at a time. This is formally accomplished by induction on the

number of indices for which . Each step of the

induction argument focuses on the removal of one finite

and is thus like solving the 1-D problem. We consequently

use Dryanov’s ideas from [2, Th. 3.1] to solve this quasi 1-D

problem which allows us to complete the induction step.

Proof of Theorem 3.1: The scaling identity (1) lets us take

, and .

We shall prove that there exist positive constants and ,

depending only on and , such that for every , we

have

(4)

for . Note that this proves the theorem because we

can set for all . Our proof will involve

induction on : the number of indices for which .

For , i.e., when for all , (4) is

a direct consequence of Theorem 3.2. In fact, in this case, (4)

also holds for . Suppose now that (4) holds for all

for some . We shall then verify it for . Fix

such that exactly of them equal infinity. Without

loss of generality, we assume that and

for . For every sufficiently small , we shall

exhibit an -cover of in

the -metric whose cardinality has logarithm bounded from

above by a constant multiple of . Note

that for , the term equals zero. For convenience,

let us denote the class by

in the rest of this proof.

Let

(5)

Fix and choose an integer and such that

For every two functions and on , we can obviously

decompose the integral as

Also

For a fixed , consider the problem of covering the

functions in on the rectangular strip .

Clearly

(6)

where for

and

By convexity, the restriction of every function in to

belongs to the class

Consequently, the corresponding function belongs to

Because , we can use the induction hy-

pothesis to assert the existence of positive constants and , de-

pending only on and , such that for every positive real number

, there exists an -cover of

in the -metric on

of size smaller than

By covering the functions in by the constant function 0 on

and up to in the -metric on

for , we obtain a cover of the restriction

of the functions in to the set in -metric

having coverage and cardinality bounded from above by

where

(7)
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Suppose now that

for , where is the largest integer such that

Then

and

where

Note that if , then which implies .

Also, for , we have

where we have used and the fact that has the expres-

sion (5). Therefore, which can be rewritten as

Thus

Using this for and , we deduce that

An exactly similar analysis can be done now to cover the restric-

tions of the functions in to the set having the

same coverage and same cardinality bounded by .

For , we note, by convexity, that the restric-

tions of functions in to the set belong to

. By the

induction hypothesis, there exist constants and , depending

only on and , such that for all , one can get a -cover

of in the

-metric having cardinality smaller than

Observe that only depends on . By combining the covers of

the restrictions of functions in to these three strips

, , and , we obtain, for

, a cover of in the -metric having coverage at most

and cardinality at most

By relabeling as , we have proved that for

This proves (4) for all such that exactly of them

equal . The proof is complete by induction.

Remark 3.3: The argument used in the aforementioned in-

duction step involved splitting the interval into the three

intervals , and , and then subsequently splitting

the interval into smaller subintervals. We have borrowed

this idea from Dryanov [2, Proof of Theorem 3.1]. We must

mention however that Dryanov uses a more elaborate argument

to bound sums of the form and . Our way of controlling

and is much simpler which shortens the argument con-

siderably.
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B. Lower Bound for

Theorem 3.3: There exist positive constants and , de-

pending only on the dimension , such that for every ,

, and , we have

for .

Proof: As before, by the scaling identity (1), we take

, , and . For functions defined on , the

-metric, , is larger than . We will thus take in

the rest of this proof. We prove that for sufficiently small, there

exists an -packing subset of , under the -metric,

of cardinality larger than a constant multiple of . By a

packing subset of , we mean a subset satisfying

whenever with .

Fix and let be the

positive integer satisfying

(8)

Consider the intervals for ,

such that

1)

;

2) , for ;

3) for .

Let denote the set of all -dimensional cubes of the form

where . The cardi-

nality of , denoted by , is clearly .

For each with where

, let us define the function as

(9)

where , for . The func-

tions have the following four key properties.

1) is affine and hence convex.

2) For every , we have .

3) For every , we have . This is because

whenever , we have for each ,

which implies .

4) Let with . For every , we have

. To see this, let

with . Let and fix .

If , then and

hence

If and , then

The same above bound holds if

. Because , at least one of and will be

different. Consequently

Let denote the collection of all -valued func-

tions on . The cardinality of clearly equals (recall

that ).

For each , let

The first two properties of ensure that

. The last two properties imply that

We now bound from below the distance between and

for . Because the interiors of the cubes in are

all disjoint, we can write

Note that from (9) and by symmetry, the value of integral

is the same for all . We have thus shown that

(10)

where denotes the Ham-

ming distance.

The quantity can be computed in the following way. Let

where . We write

By the change of variable

for , we get
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Recalling that for all , we get

where

Note that is a constant that depends on the dimension alone.

Thus, from (10), we deduce

(11)

for all . We now use the Varshamov–Gilbert

lemma (see, e.g., [20, Lemma 4.7]) which asserts the existence

of a subset of with cardinality,

such that for all with . Thus,

from (11) and (8), we get that for every with

where . Taking , we have

obtained for , an -packing subset

of of size where

where depends only on the dimension . This completes the

proof.

Remark 3.4: The explicit packing subset constructed in the

aforementioned proof consists of functions that can be viewed

as perturbations of the quadratic function . Previous lower

bounds on the covering numbers of convex functions in [3,

Proof of Theorem 6] and [2, Sec. 2] (for ) are based on

perturbations of a function whose graph is a subset of a sphere,

a more complicated convex function than . The perturbations

of in the aforementioned proof can also be used to simplify

the lower bound arguments in those papers.

IV. DISTANCES BETWEEN CONVEX FUNCTIONS, AND THEIR

EPIGRAPHS

One of the aims of this section is to provide the proof

of Theorem 3.2. Our strategy for the proof of Theorem

3.2 is similar to Bronshtein’s proof of the upper bound on

. The proof involves the following

ingredients.

1) An inequality between the distance between two

convex functions and the Hausdorff distance between

their epigraphs.

2) The result of Bronshtein [3] for the covering numbers of

convex sets in the Hausdorff metric.

For a convex function on and , let us define

the epigraph of by

If , then clearly

for every . Therefore, for every

, its epigraph is contained in the

-dimensional ball of radius centered at

the origin. The following inequality relates the distance

between two functions in to the Haus-

dorff distance between their epigraphs. The Hausdorff distance

between two compact, convex sets and in Euclidean space

is defined by

where denotes Euclidean distance.

Lemma 4.1: For every pair of functions and in

, we have

Proof: We can clearly assume that for all

. Fix and let

. Fix with .

Suppose, without loss of generality, that . Now

and because , there

exists with . Because

, the point lies outside and using

the convexity of we can take . Therefore

where the second last inequality follows from the

Cauchy–Scwarz (C–S) inequality. Lemma 4.1 now follows

because is arbitrary in the aforementioned

argument.

The proof of Theorem 3.2, given in the following, is based

on Lemma 4.1 and the following result on covering numbers of

convex sets proved in [3]. For , let denote the

set of all compact, convex subsets of the ball in of radius

centered at the origin. In Theorem 3 (and Remark 1) of [3],

Bronshtein proved that there exist positive constants and ,

depending only on , such that

(12)

A more detailed account of Bronshtein’s proof of (12) can be

found in [5, Sec. 8.4].
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Proof of Theorem 3.2: The conclusion of the theorem is

clearly only meaningful in the case when for all

. We therefore assume this in the rest of this proof.

For every , let us define

the function on by

for . Clearly, the function belongs to

the class and cov-

ering to within in the -metric is equivalent to covering

. Thus

(13)

We thus take, without loss of generality, and for

all .

From Lemma 4.1 and the observation that

for all , it follows that

Thus, from (12), we deduce the existence of two positive con-

stants and , depending only on , such that

if . By the scaling in-

equality (13), we obtain

if . By another scaling

argument, it follows that

for every and, as a consequence, we get for every

if . Choosing

(by differentiation)

we deduce finally

if . The proof of the the-

orem will now be complete by noting that

The terms involving can be absorbed in the constants and

.

One might wonder if a version of Lemma 4.2 can be proved

for the -metric instead of the -metric, and without any

Lipschitz constraints. Such an inequality would, in particular,

yield an alternative simpler proof of Theorem 3.1. It turns out

that one can prove such a bound for the -metric but not for

for any . The inequality for is presented next.

This inequality could possibly be of independent interest. The

reason why such an inequality cannot be proved for ,

is explained in Remark 4.1.

Lemma 4.2: For every pair of functions and in

, we have

(14)

Proof: For and , let

denote any subgradient of the convex function at . Let

. Our first step is to observe that

(15)

for every , where denotes the Euclidean

norm of the subgradient vector . To see this, fix

with . We assume, without loss of

generality, that . Clearly, and

because , there exists

with . Since , the point
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lies outside the convex set and we can thus take

. By the definition of the subgradient, we have

Therefore

Note that the C–S inequality has been used twice in the afore-

mentioned chain of inequalities.We have thus shown that

in the case when . One

would have a similar inequality in the case when .

Combining these two, we obtain (15).

As a consequence of (15), we get

where we have used the inequality .

To complete the proof of (14), we show that

for every .

We write and

use the definition of the subgradient to note that for every

and

(16)

for sufficiently small, where is the unit vector in the

th coordinate direction i.e., if and 0 oth-

erwise. Dividing both sides by and letting , we would

get (we use to denote the direc-

tional derivative of in the direction ; directional derivatives

exist as is convex). Using (16) for , we get

. Combining these two inequalities, we get

As a result

We now show that for each , both the integrals

and are bounded

from above by 4. Assume, without loss of generality, that

and notice

(17)

We fix and focus on the

inner integral. Let for .

Clearly, is a convex function on and its right derivative,

at the point equals where

. The inner integral thus equals . Be-

cause of the convexity of , its right derivative is nonde-

creasing and satisfies

Consequently

The function clearly satisfies because

. This implies that . The iden-

tity (17) therefore gives

Similarly, by working with left derivatives of as opposed to

right, we can prove that
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Therefore, the integral is at most because it is

less than or equal to

This completes the proof of Lemma 4.2.

Remark 4.1: Lemma 4.2 is not true if is replaced by ,

for . Indeed, if and

for and for all , then it can be

easily checked that for

As can be arbitrarily close to zero, this clearly rules out any

inequality of the form (14) with the -metric replaced by ,

for .

Remark 4.2: Lemma 4.2 and Bronshtein’s result (12) can be

used to give an alternative proof of Theorem 3.1 for the special

case . Indeed, the scaling identity (1) lets us take ,

, and . Inequality (14) implies that the covering

number is less than or equal to

Thus from (12), we deduce the existence of two positive con-

stants and , depending only on , such that

whenever . Note that, by Remark 4.1, this method of

proof does not work in the case of , for .
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