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Abstract— Covering the whole set of Pareto-optimal solutions is
a desired task of multi-objective optimization methods. Because
in general it is not possible to determine this set, a restricted
amount of solutions are typically delivered in the output to
decision makers. In this paper, we propose a new method using
multi-objective particle swarm optimization to cover the Pareto-
optimal front. The method works in two phases. In phase 1
the goal is to obtain a good approximation of the Pareto-front.
In a second run subswarms are generated to cover the Pareto-
front. The method is evaluated using different test functions and
compared with an existing covering method using a real world
example in antenna design.

I. INTRODUCTION

A Multi-objective Optimization problem (MOP) is solved,

when all its Pareto-optimal solutions are found. Indeed, this is

the goal of Multi-objective Optimization (MO) to find a set of

optimal solutions in one simulation run, in contrast to classical

optimization methods e.g., weighting sum methods. However,

it is impossible to find the whole set of Pareto-optimal solu-

tions of a continuous front. But, because the decision makers

need only a restricted amount of well distributed solutions

along the Pareto-optimal front, the task of MO methods is

changed to find a relatively small amount of solutions. In elitist

Multi-objective Evolutionary Algorithm (MOEA) and Multi-

objective Particle Swarm Optimization (MOPSO) methods,

the elite solutions are transfered by an archive to the next

generation. The archive of the last generation is the output of

the method, the size of which should be restricted. Indeed,

the size of the archive is always kept constant. Restricting

the size of the archive also has influences on the diversity of

solutions and the computational time. Therefore, the results

obtained by most of MOEA and MOPSO methods have

restricted amount of solutions in the output, by keeping a

good diversity along the Pareto-optimal front. Diversity of

output solutions is studied by applying methods like niching,

clustering or truncation by several researchers [2], [14], [15].

These techniques often need a high computational time and at

last we have a restricted number of solutions in the output [14],

[15]. On the other hand, finding a large set of Pareto-optimal

solutions is possible, if we run the MO methods for a large

number of generations. This also needs a high computational

time, with this difference that the decision maker is free to

select some solutions from the whole Pareto-optimal front.

One way in finding a relatively large set of approximated

Pareto-optimal solutions is to apply covering techniques. In-

deed, by covering we find a finite set of solutions which are

very close to each other. Covering the Pareto-optimal front is

studied by Hybrid MOEA [13]. In [13], the non-dominated

solutions are found by MOEA and then a recovering method

is applied to cover the Pareto-optimal front. In this case, the

recovering method is a combination of MOEA and a subdi-

vision method [3]. Also, the ǫ-MOEA method is theoretically

able to cover the approximated Pareto-optimal front in the case

of using small values of ǫ [8], [9]. However, it also needs a

high computational time to complete the covering.

In this paper, we address the covering of the Pareto-optimal

front by applying MOPSO. MOPSO methods have the prop-

erty that the particles move towards the Pareto-optimal front

during generations. By running a MOPSO with a restricted

archive size, it is possible to find a well distributed set

of non-dominated solutions very close to the Pareto-optimal

front [10]. Here, we use this knowledge and propose another

MOPSO (called covering MOPSO) to cover the gaps between

the non-dominated solutions. The particles in the population

of the covering MOPSO are divided into subswarms after one

generation by using the Sigma method in [10] and these sub-

swarms take the responsibility to recover the Pareto-optimal

front. This method is tested on different test functions and

compared with the Hybrid MOEA covering technique in [13]

for a real world application in antenna design.

This paper has the following structure. Definitions of MOP

are outlined at the end of this section. Section II gives a

brief background on covering the Pareto-front by MOEA

and Hybrid MOEA methods. In Section III, the proposed

method in the Paper is studied. Section IV is dedicated to the

experiments on some selected test functions and in Section V

a real world example is studied. The Paper is then concluded

in Section VI.

A. Definitions

In the following, we state the multi-objective optimization

problem in its general form:

minimize ~y = ~f(~x) = (f1(~x), f2(~x), · · · , fm(~x))
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The decision vectors (parameters) ~x belong to the feasible

region denoted S ⊂ ℜn. We denote the image of the feasible

region by Z and call it a feasible objective region. The

elements of Z are called objective vectors and they consist

of objective values ~f(~x).
A decision vector ~x1 ∈ S is said to dominate a decision

vector ~x2 ∈ S (denoted ~x1 ≺ ~x2), iff the decision vector ~x1

is not worse than ~x2 in all objectives and strictly better than

~x2 in at least one objective.

A decision vector ~x1 ∈ S is called Pareto-optimal if there

does not exist another ~x2 ∈ S that dominates it. An objective

vector is called Pareto-optimal if the corresponding decision

vector is Pareto-optimal.

The non-dominated set of the entire feasible search space

S is the Pareto-optimal set. The Pareto-optimal set in the

objective space is called Pareto-optimal front.

II. BACKGROUND

MOPSO methods are one of the utilities in solving different

kinds of MOPs. In MOPSO [1], [4], [6], [10], a set of

particles are initialized in the decision space at random. To

each particle i, a position xi in the decision space and velocity

vi is assigned. The particles change their positions and move

towards the best so far found solutions. The best solutions are

indeed, the non-dominated solutions from the last generations,

which are kept in the archive1. Moving towards the optima is

done in the calculations of the velocities as follows:

vi
j,t+1 = wvi

j,t + c1R1(p
i
j,t − xi

j,t) + c2R2(p
i,g
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1 (1)

where j = 1, · · · , n, w is the inertia weight of the particle, c1

and c2 are two positive constants, and R1 and R2 are random

values in the range [0, 1]. i is the index of a particle, and t

denotes the generation index.

According to Equation 1, each particle has to change its

position ~xi
t towards the position of a local guide ~p

i,g
t which

must be selected from the updated set of non-dominated

solutions stored in the archive At+1. How to select the local

guide from the archive has a great impact on convergence

and diversity of the solutions and is studied in [1], [4], [6],

[10]. ~pi is a memory for the particle i and keeps the non-

dominated (best) position of the particle by comparing the new

position ~x i
t+1 in the objective space with ~pi

t (~pi
t is the last non-

dominated (best) position of the particle i). For escaping the

local optima, a turbulence factor is added to the positions of

the particles. This is done by adding a random value to the

current position of each particle:

xi
j,t = xi

j,t + RT xi
j,t (2)

In Equation (2), RT ∈ [−1, 1] is a random value added to the

updated position of each particle. The particles change their

positions during generations until a termination criterion is

1An archive is an external population, in which the so far found non-
dominated solutions are kept. The archive members don’t dominate each other.

met. The termination criteria can be e.g., a maximum number

of generations.

Finding a relatively large set of Pareto-optimal solutions

is possible by running the MOPSO for many generations. It

is proved by Rudolph [12] that existence of elitism (keeping

elite solutions in the archive) is necessary to converge to the

Pareto-optimal front in MOEAs. MOPSOs have also the same

structure as MOEA, with the differences in fitness assignment,

selection and recombination operators. However, the existence

of the archive helps the method not to lose the so far found

non-dominated solutions and therefore after many generations

the Pareto-optimal solutions are gathered in the archive.

In most of MOPSO and MOEA methods, the archive is

restricted to a certain size. This is done because of the

following reasons:

• Most of MO methods need a high computational time,

when the size of the archive increases. This is also studied

by [5], [11].

• Diversity of solutions improves, when the archive size is

fixed, particularly in MOPSO.

• The computational time for finding the best local guides

in MOPSO increases, if we store high number of solu-

tions in the archive.

Therefore, the solutions stored in the archive are just a selec-

tion of the Pareto-optimal solutions (if converged to the true

Pareto-optimal front). The methods try to keep a good diversity

of solutions, so that the decision maker has the possibility to

access the whole Pareto-optimal front. However, in some cases

if we can find a good cover of the whole Pareto-optimal front,

the task of the decision makers would be easier to select the

desired solutions. Therefore, covering the Pareto-optimal front

in less computational time is also important in MO.

A. Covering by Hybrid MOEA

Convergence to the true set of Pareto-optimal solutions

is possible when the whole search space is explored. One

possible solution for having a controllable exploration is to

use Hybrid MOEA [13]. Indeed, this method is based on

iterative division of the search space into subspaces (boxes)

in the parameter space. Then the boxes which contain good

solutions are divided again into boxes. This procedure con-

tinues until an acceptable granularity for the Pareto-optimal

front is reached. Figure 1 shows an example in dividing a

two dimensional parameter space into boxes. The algorithm

Hybrid MOEA is outlined in Algorithm 1. Using a multi-

level subdivision scheme, the Algorithm produces a sequence

of sets B0, B1, . . . where each Bk consists of elements called

boxes (B):

diamBk = maxB∈Bk
diam(B)

The Algorithm starts with a big compact set B0 and the Bk

is inductively obtained from Bk−1 in parameter space. By a

repeated bisection and selection of boxes the box coverings get

tighter until the desired granularity of this outer approximation

is reached. The stopping criteria should be defined by a

maximum value of k.
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Fig. 1. Example of application of a subdivision method (in two dimensional
parameter space)

Algorithm 1 Hybrid MOEA Algorithm

1. Subdivision

Construct from Bk−1 a new system B̂k of subsets such that
⋃

B∈B̂k

B =
⋃

B∈Bk−1

B

and diam(B̂k) = θk diam(Bk−1)

where 0 < θmin ≤ θk ≤ θmax < 1.

2. Pre-optimization

forall boxes B in B̂k: PB = MOEA(B)
3. Selection

N := non-dominated points of
⋃

B∈B̂k

PB

Bk :=
{

B ∈ B̂k : PB ∩ N 6= ∅
}

The Pre-optimization process in Step 2 is done in each

box as follows. Several test points are defined in each box.

These test points are indeed the initial population of a ”short”

MOEA2. The MOEA should be run for a short time in a box

B. The box B is kept if it contains at least one solution in

N , namely the set of non-dominated solutions of the total set

of test points (Step 2, Algorithm 1). Then, the non-dominated

solutions among all the test points in the whole set of boxes

are stored in the set N . The boxes, which contain at least one

of the non-dominated solutions in the set N can survive for

further subdivision.

By using this algorithm, it is possible to detect the entire set

of true Pareto-optimal solutions. In the subdivision technique,

a box is kept if it contains at least one non-dominated point.

Using this Algorithm, it may be the case that in the course of

the subdivision procedure boxes get lost although they contain

points belonging to the Pareto-optimal set. To avoid gaps in

the Pareto-optimal front, a strategy called Static Recovering

is proposed in [13]. The idea is to run the Hybrid MOEA

and obtain the possible optimal solutions. Then the Static

Recovering is applied on the solutions to fill the gaps.

2A short MOEA is characterized by a short running time; that means small
initial population and few generations.

The Static Recovering [13] strategy works as follows. The

input to this Algorithm is a set of boxes, which contain parts

of the Pareto-front. Static Recovering extends the given box

collection step by step along the Pareto-front until no more

boxes are added. Figure 2 (b) shows the first step in Static

Recovering. The size of each given box is extended by a factor

λ. Then a MOEA is run in the extended box. So the extended

box can now be divided into small boxes like in the subdivision

method and perform the local search in recovering the area in

the extended box. This is shown in Figure 2 (c).

P

(a) Covering

P

(b) Local search

P

(c) Static Recovering

Fig. 2. Static Recovering in Hybrid MOEA [13]. P denotes the Pareto-optimal
set that is to be covered.

a) Discussion: The Hybrid MOEA together with Static

Recovering covers the Pareto-optimal front for a given gran-

ularity of boxes. This is an advantage of using the Hybrid

MOEA, however it needs a high computational time for a large

number of parameters. The Static Recovering fills the gaps

between the non-dominated solutions on the Pareto-optimal

front. But it just makes some local improvements on the

obtained solutions. If the obtained non-dominated front is on

the local optima, the Static Recovering is not able to improve

it to the global front.

III. COVERING BY MOPSO

As it has been mentioned, it is possible to cover the Pareto-

optimal front with MOPSO or MOEA methods. We omit the

restriction on the archive size and let the MO method be run

for a very high number of generations. Of course this needs a

high computational time. MOPSO methods have the advantage

that the particles move towards the front. Therefore, it is not

important how big is the parameter space. The particles will

be near the Pareto-front after several generations. It remains

just the convergence and obtaining the diversity of solutions.

Here, a new method is proposed to perform the covering

in low computational time. The MOPSO methods are able to

find solutions with high convergence and diversity [1], [4], [6],

[10]. This can be achieved easily for fixed sizes of the archive.

The covering is completed in two following steps:
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• Initial run: The MOPSO is run with a restricted archive

size. We expect relatively well-distributed solutions very

close to the Pareto-optimal front. The restriction on the

archive can be achieved using the ǫ-dominance strategy

presented in [10].

• Covering: The non-dominated solutions obtained from

the initial run are considered as the input archive of

a new MOPSO called covering MOPSO. The covering

MOPSO should have more particles in the population

and no restriction on the archive size. The particles in

the population are divided into subswarms around each

non-dominated solution after the first generation. The

task of the subswarms is to cover the gaps between the

non-dominated solutions obtained from the initial run.

No restriction on the archive makes this method faster,

because no clustering or truncation method is needed.

f2

f1

f2

f1

Subswarm

Result of the initial run 

Initial particle of the covering MOPSO

Fig. 3. Covering the approximated Pareto-front by using initial archive
members. The initial archive members guide subswarms of solutions around
themselves to cover the Pareto-front.

The initial run searches the whole space for obtaining good

diversity of solutions. The covering is aimed to send sub-

swarms of particles around the non-dominated solutions on the

non-dominated front. Covering the front is then completed by

these subswarms, which search just the neighborhood around

each non-dominated solution. Figure 3 shows this scenario

for covering the Pareto-front by MOPSO. The subswarms are

generated by the Sigma method presented in [10] in finding

the local best guides. All the particles in a subswarm have one

common local best guide, which is in the non-dominated set

made by the initial run. The size of each subswarm varies

through generations and depends on the size of the initial

population of the covering MOPSO.

It should be considered that any knowledge about the

solutions helps the methods to find better solutions than before.

In the covering process the size of the population has a great

impact in covering the front faster. The larger the population

size, the more particles gather in a subswarm and the front

will be searched faster.

IV. EXPERIMENTS

The following experiments have been performed on differ-

ent test functions selected from [2]3 and shown in Table I.

These test functions have different points of difficulties, which

make the covering process complicated. The MOPSO method

uses the Sigma method for finding the local best particles [10].

TABLE I

TEST FUNCTIONS

test function
T1 g(x2, · · · , xn) = 1 + 9(

P
n

i=2
xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 −

p
f1/g n = 30

f1(x1) = x1 i = 1, . . . , n
f2(~x) = g(x2, · · · , xn).h(f1, g)

T3 g(x2, · · · , xn) = 1 + 9(
P

n

i=2
xi)/(n − 1) xi ∈ [0, 1]

h(f1, g) = 1 −

p
f1/g − (f1/g) sin(10πf1) n = 30

f1(x1) = x1 i = 1, . . . , n
f2(~x) = g(x2, · · · , xn).h(f1, g) + 1

T4 g(x2, · · · , xn) = 1 + 10(n − 1)+
(
P

n

i=2
(x2

i
− 10cos(4πxi)) x1 ∈ [0, 1]

h(f1, g) = 1 −

p
f1/g xi ∈ [−5, 5]

f1(x1) = x1 n = 10
f2(~x) = g(x2, · · · , xn).h(f1, g) i = 2, . . . , n

T6 g(x2, · · · , xn) = 1 + 9[(
P

n

i=2
xi)/9]0.25 xi ∈ [0, 1]

h(f1, g) = 1 −

p
x1/g n = 10

f1(x1) = 1 − exp(−4x1)sin6(6πx1) i = 1, 2, . . . , n
f2(~x) = g(x2, · · · , xn).h(f1, g)

In the following, the properties of the Pareto-optimal fronts

and the difficulties of the test functions are summarized.

- T1: (2-objective, 30 parameters)

Pareto-optimal front: Convex, continuous, uniform distri-

bution of solutions

Difficulty: Large number of parameters

- T3: (2-objective, 30 parameters)

Pareto-optimal front: Convex, disconnected-continuous

Difficulties: Large number of parameters, discontinuous

front

- T4: (2-objective, 10 parameters)

Pareto-optimal front: Convex, continuous

Difficulty: Large number of local Pareto-optimal

fronts (219)

- T6: (2-objective, 10 parameters)

Pareto-optimal front: Non-convex, disconnected-

continuous, non-uniform density of solutions

Difficulties: adverse density of solutions, non-convex

front and discontinuous front

3Test function T6 has a disconnected Pareto-optimal front which is a
different version as described in [2].

1407



A. Parameter Setting

The parameters are selected as follows.

- Inertia weight: 0.4

- Turbulence factor: 0.07

- Population size: initial run: 100 for T6, 200 for T1 and

T3, 300 for T4, covering: 200

- Number of generations: initial run: 200 for T1 and T3,

2000 for T4 and T6, covering: 500 for T1 and T3, 2000

for T4 and T6

- Archive size: initial run: 50, covering: not restricted

B. Results

Figure 4–7 show the results of covering the T1, T3, T6 and

T4 test functions.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
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f1
0 0.5 1

0
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0.4

0.6

0.8

1

1.2

1.4
(b)

f1

f2

Fig. 4. Solutions of the T1 test function (a) with clustering (a = 50),
(b) covered front
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0 0.5 1

0

0.5

1

1.5
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2.5
(b)

f1

f2

Fig. 5. Solutions of the T3 test function (a) with clustering (a = 50),
(b) covered front

Covering the test function T4 is not as simple as the other

test functions. This test function has a lot of local Pareto-

fronts. By running the covering MOPSO to cover the front,

it is observed that the solutions are not already converged

to the true Pareto-optimal front. In this case the covering

MOPSO improves the convergence of solutions. Indeed, the

solutions shown in Figure 7 (1st Run) are not actually on the

true Pareto-optimal front, although the MOPSO method has

obtained obviously higher converged solutions than the other

methods, e.g., [14] (this is also explained in [2]). One reason

is the restricted number of generations. We have to notice that

the obtained solutions from the first run have good diversity.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

f1
0 0.5 1

0

0.2

0.4

0.6

0.8

1
(b)

f1

f2

Fig. 6. Solutions of the T6 test function (a) with clustering (a = 50),
(b) covered front
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(b)
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f2

0 0.5 1
0

1

2

3

4

5
(a)

f1

1st Run
2nd Run
3th Run
4th Run

Fig. 7. Solutions of the T4 test function (a) with clustering, obtaining the
converged front needs several runs, (b) covered front

Therefore, these solutions are considered as the initial archive

of another run and the output of this second run are given as

the initial archive of the next run. This procedure is repeated

several times until the true Pareto-optimal front is reached4.

Now the covering process can be started to cover the front.

Figures 7 (a) and (b) show different steps in optimizing the test

function T4. The reason on repeating the MOPSO instead of

running it for a large number of generations is that when there

are many local optima, the optimization method needs a lot

of computational time to find solutions with high convergence

and diversity of solutions simultaneously. The initial archive

helps the initial particles to be divided in small groups and

search the space faster. The covering result in Figure 7 (b)

shows the good potential of MOPSO (Sigma method) in

solving very difficult MOPs, where the recorded results of the

MOEA method [14] are not on the true Pareto-optimal front.

For evaluation of the covered solutions, Euclidian distance

between two neighbor solutions are computed. Table II shows

the minimum and maximum obtained distances between the

covered solutions. The computational times are also recorded

in this table.

Very low values of Dmax show that the solutions are very

close to each other. However, if we run the MOPSO for a larger

number of generations than the recorded value, we obtain more

solutions and closer to each other. For obtaining faster results

we can also apply the ǫMOPSO algorithm [9]. For the initial

4This needs a priori knowledge about the true Pareto-optimal front, which
is available for this test function.
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TABLE II

COMPUTATIONAL TIME OF INITIAL (tinit) AND COVERING (tcover ) RUNS

OF MOPSO IN SECONDS. Dmin AND Dmax ARE THE MINIMUM AND

MAXIMUM DISTANCES BETWEEN THE NON-DOMINATED SOLUTIONS OF

THE APPROXIMATED PARETO-FRONT

test tinit tcover Dmin Dmax

T1 103.41 117.93 0.000 0.014
T3 20.70 35.71 0.000 0.009
T4 71.15 300.50 0.0024 0.025
T6 17.08 500.37 0.000 0.007

run, ǫ can be larger than for the covering process.

Further, the covering MOPSO is compared with a simple

MOPSO with unrestricted archive size. The simple MOPSO

should be able to find a large set of non-dominated solutions

after a high number of generations. The following parameters

are selected for the simple MOPSO: 6000 generations, pop-

ulation size of 200, inertia weight 0.4 and turbulence factor

of 0.1. The method is tested on the test function T1. The

computational time for the simple MOPSO is 1779.61 seconds

and the minimum and maximum distances between the non-

dominated solutions are 0.000 and 0.1 respectively. These

results show that not only the simple MOPSO takes much

more time than the covering method (8 times), but also there

is still a maximum gap of 0.1 between the non-dominated

solutions.

V. CASE STUDY

For having a comparison with the previously proposed

covering method using the Hybrid MOEA, a real world

example on antenna design is studied here. It is a basic

problem in antenna design to construct the shape or choose

the feeding of the antenna to optimize the performance of

the antenna. The fixed geometry of the antenna and the wave

propagation of the fields generated by currents on the antenna

are studied by [7] as a multi-objective optimization problem.

The optimization problem is a 2-objective problem: maximize

the radiation efficiency in a particular direction and minimize

the power radiated into other directions. This problem can also

be converted to a minimization problem as follows:

f1(xν , yν) = −4π2

∣

∣

∣

∣

∣

n
∑
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subject to the constraints

xν , yν ∈ ℜ (ν ∈ Z, |ν| ≤ n)

2π

n
∑

ν=−n

(x2
ν + y2

ν) ≤ 1

with the specific discretization points sη = 3

4
π + η π

10
. Here,

Jν denotes the Bessel function of ν-th order. We have tested
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Fig. 8. Antenna design problem, Results of MOPSO (a) archive size: 50
(b) covered Pareto-optimal front (objective space)

the algorithms for n = 5 and ℓ = 10. Since Jν(x) =
(−1)νJ−ν(x) and C ∼= ℜ2, this leads to a model with 12 free

parameters. This antenna design problem is studied in [13].

The experiments are done by applying the covering MOPSO

and Hybrid MOEA. The selected parameters are set as follows.

- Inertia weight: initial run: 0.75, covering: 0.5

- Turbulence factor: 0.1

- Population size: initial run: 300, covering: 500

- Number of generations: initial run: 500, covering: 1000

- Archive size: initial run: 50, covering: unrestricted

For the initial run, the inertia weight is selected 0.75, which

is bigger than for the covering process. The reason is that

the high value of inertia weight leads the solutions to high

convergence and together with clustering (restricted archive)

to a good diversity of solutions. But in the covering process,

we need to explore the area around each non-dominated

solution. Therefore, the inertia value should be decreased

so that the particles may have the chance to search their

local neighborhood areas. Figure 8 shows the results of the

initial run of MOPSO and the covered Pareto-optimal front.

In Figure 8 (b), the top left part of the approximated Pareto-

front is not covered completely. This is because of the limited

number of generations. The computational times for the initial

run and the covering are 160 and 349 seconds respectively.

The Hybrid MOEA is tested on this example as follows. The

SPEA method [14] is used as the MOEA. First the problem
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is solved by the MOEA method with following parameters.

Then the Static Recovering method is applied on it to cover

the Pareto-optimal front.

- population size: 1000

- length of individual bitstrings: 13

- number of generation: 500

- archive size : 1000

Figure 9 shows the result of the Hybrid MOEA. The total

running time is 20 minutes for the MOEA result and another

15 minutes for the recovering process. The computational time

of the method is much higher than our new MOPSO technique.

The selected population size is very high. This is needed in

-300 -250 -200 -150 -100 -50 0
0

50

100

150

200

250

Fig. 9. Result of Hybrid MOEA using Static Recovering technique (objective
space) [13]

order to obtain high convergence and diversity of solutions by

MOEA. Therefore, the recovering method is able to cover the

Pareto-front faster. The archive size is also very high. The

existence of the restricted archive is necessary to obtain a

good diversity of solutions. The high value of the archive size

helps the recovering technique to operate faster to cover the

front. For a lower amount of solutions, the Static Recovering

needs more computational time to recover the Pareto-optimal

front. As it can be observed in Figure 9, there are local

improvements. Figure 10 shows the comparisons of selected

areas from Figures 8 and 9. Here, the result of a MOEA

method is also shown. Indeed, the Hybrid MOEA together

with the recovering techniques brings more convergence to the

results of the MOEA and therefore covering the Pareto-front

is possible.

A. Comparison

Figure 10 shows the results of covered Pareto-optimal front

by Hybrid MOEA in [13], MOEA and covered MOPSO.

We can observe that for the selected part of the objective

space, the MOPSO method can find solutions with even

better convergence than the Hybrid MOEA. The quantitative

comparison between the solutions are done by applying the

Cmetric [14]:

- C(MOPSO, Hybrid MOEA) = 0.97
- C(Hybrid MOEA, MOPSO) = 0.00

The approximated Pareto-optimal solutions obtained from the

covering MOPSO dominate 97% of the covered solutions

by the Hybrid MOEA. It means that the covering MOPSO

improves the convergence of the solutions, but the Hybrid

MOEA makes local improvements around each non-dominated

solution. However, it must be emphasized that the MOPSO is

able to cover more solutions on the Pareto-optimal front if

we run it for a larger number of generations. The minimum
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Fig. 10. Comparison of Hybrid MOEA (HMOEA), MOEA and MOPSO
for the selected part of the objective space of the antenna design problem
(objective space)

and maximum distances between the covered solutions by

MOPSO are Dmin = 0.000 and Dmax = 4.75, respectively.

The MOPSO covering process can be terminated by assigning

a threshold on the maximum distance between the neighbor

solutions.

Here, we conclude that the covering MOPSO can cover the

approximated Pareto-optimal front much faster than the Hybrid

MOEA, while improving the convergence of the solutions.

VI. CONCLUSION AND FUTURE WORK

Covering the Pareto-optimal front in multi-objective opti-

mization is studied in this paper. The proposed new method

uses the property of moving particles in MOPSO and divides

the population of the covering MOPSO into subswarms. The

subswarms try to cover the gaps between the non-dominated

solutions found in the initial run. The proposed covering

method is tested on different test functions. The results show

that the approximated Pareto-optimal front can be covered by

the particles with high granularity.

It must be emphasized that the proposed method is not just

applicable to 2-objective multi-objective optimization prob-

lems and can be used for any desired number of objectives.

The covering method is also compared with the Hybrid

MOEA, which is also a covering technique in MO. The

Hybrid MOEA is a possible covering technique which uses

a local search around the found solutions. The methods are

compared through an example in antenna design. The covering

MOPSO covers the approximated front not only is much less

computational time, but also with better convergence than the

Hybrid MOEA. Indeed, this application shows that the cover-

ing MOPSO improves the convergence of the solutions, where

the other covering methods e.g., Hybrid MOEA, perform a
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local search. Also, it must be emphasized that the Hybrid

MOEA is applicable for low number of parameters, where

the covering MOPSO can be used for problems with desired

number of parameters. The use of ǫMOPSO can also help

to win some computational time. This will be performed in

future.
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