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Abstract. Given a set P of points in the plane, and a set D of unit
disks of fixed location, the discrete unit disk cover problem is to find a
minimum-cardinality subset D′ ⊆ D that covers all points of P . This
problem is a geometric version of the general set cover problem, where
the sets are defined by a collection of unit disks. It is still NP-hard, but
while the general set cover problem is not approximable within c log |P|,
for some constant c, the discrete unit disk cover problem was shown to
admit a constant-factor approximation. Due to its many important appli-
cations, e.g., in wireless network design, much effort has been invested in
trying to reduce the constant of approximation of the discrete unit disk
cover problem. In this paper we significantly improve the best known
constant from 72 to 38, using a novel approach. Our solution is based on
a 4-approximation that we devise for the subproblem where the points
of P are located below a line l and contained in the subset of disks of D
centered above l. This problem is of independent interest.

1 Introduction

We consider the problem of covering a given set of points in the plane by a given
set of unit disks. Formally, we are given a set of points P in the plane, and a
set of disks D = {D1, D2, ..., Dn} of radius 1 and centers O = {o1, o2, ..., on}.
We would like to find a minimum-cardinality subset D′ ⊆ D, such that for each
point p ∈ P there exists a disk D ∈ D′ that contains p. We call this problem
discrete unit disk cover.

The discrete unit disk cover problem (DUDC) has numerous applications,
in particular in wireless network design. We are given a set of potential planar
locations for placing base stations, and a set of points in the plane representing
static clients. All wireless base stations have the same transmission range, where
a client can “hear” the signals of a base station if and only if he/she is located
within a disk of radius 1 around the base station. We are required to choose a
minimum set of base stations such that each client is served by one or more base
stations of the chosen set.

The problem of covering a given set of points by unit disks where the disk
center locations are not restricted to a given set of points but rather may be
chosen at any point in the plane, is studied in [4,5]. A polynomial-time approx-
imation scheme (PTAS) is given for this problem using a grid-shifting strategy.
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The discrete case, studied in this paper, where the center locations are restricted
to a given set, is harder to approach since in order to cover the points within a
constant size square one might need more than a constant number of the given
disks.

This problem is a geometric set cover problem, where the given sets are defined
by unit disks. It is still NP-hard [6]. However, this geometric restriction on the
sets allows us to achieve a constant factor approximation, while the general set
cover problem is not approximable within c log |P|, for some constant c, [9]. Due
to the importance of the discrete unit disk cover problem, a continuous attempt
has been made to achieve a constant approximation algorithm with a good con-
stant factor. Brönnimann and Goodrich [1] gave an ε-net based algorithm where
the constant factor is not specified. A 108-approximation for the discrete unit
disk cover problem was presented in [2]. Narayanappa and Vojtechovsky [8] later
improved this constant to 72 and stated that this is the best constant that can
be achieved using their technique. In this paper we show that this constant can
be reduced to 38 using a new approach.

Our algorithm is based on the single line problem, in which there exists a
separating line such that the points to be covered are all located on one side
of the line and contained in unit disks centered on the other side of the line.
The covering disks may be chosen from both sides of the line. We present a
4-approximation algorithm for this special case and use this solution for approx-
imating the general case. We partition the plane by a grid of width 3/2 and
apply the 4-approximation twice for each grid line (once for each direction). We
then consider each grid cell separately in order to take care of the uncovered
points.

2 A 4-Approximation for the Single Line Problem

2.1 Setting

Let l be a horizontal line. Let U denote the disks of D centered above l and
let L = D \ U . We first provide some notation for the arrangement formed by
the disks of U below l. Let B denote the region below l covered by the disks of
U . A disk D ∈ U is called a lower boundary disk if it contributes an arc to the
boundary of B, or equivalently, if there exists a point p ∈ D ∩ B that does not
belong to any other disk. (Otherwise it is called a non-boundary disk.) We then
call the region D ∩B a lower boundary segment and the arc circ(D)∩B a lower
boundary arc (see Figure 1).

Let S be the set of all lower boundary segments of U . Consider the arrange-
ment Cells(S) formed by the segments in S. Assume the boundary disks are
indexed according to their left intersection point with l, and associate with each
cell of Cells(S) the set of the indices of the segments that contain it. The next
lemma (whose proof is omitted for lack of space) states that for each cell in
Cells(S), the set of indices associated with it forms a consecutive set of indices
i, i + 1, . . . , j for some i ≤ j. We call such a cell an interval cell and denote it by
icell(i, j). We then say that S forms a semi-chain.
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Fig. 1. Segments and arcs

Lemma 1. Each cell of Cells(S) is an interval cell.

Consider the basic problem of covering the points of P that belong to B using
only lower boundary disks. The following observation implies that the restriction
to the set of lower boundary disks (rather than to the set U) increases the size
of the solution by a factor of at most 2.

Observation 1. For any non-boundary segment s, there exist two consecutive
boundary disks Di, Di+1 that completely cover s. I.e., P ∩ s ⊆ Di ∪ Di+1.

Proof. Take the disk Di to be the boundary disk that appears immediately
before s (according to the left intersection point with the line l). ��

An interval cell is said to be occupied if it contains a point of P . For an interval
[i, j] ⊆ [1, k] let Occ(i, j) denote the set of points of P contained in the occupied
cells that correspond to subintervals of [i, j]. The following greedy algorithm
finds a cover C of the points of P that belong to B, using a minimum subset
of boundary disks. Initially set C = ∅. At each step of the algorithm let i be
the largest index such that all the points of Occ(1, i) are covered by the disks in
C ∪ Di, and add Di to C. It is straightforward to see that the cover C is indeed
of minimum cardinality if the covering set must consist of boundary disks.

2.2 Assisted Covers

Let S be the semi-chain formed by the lower boundary segments. Consider a
disk D̃ centered below l, that intersects B. An interval [i, j] ⊆ [1, k] with i < j is
said to be assisted by D̃ if the set {Di, Dj, D̃} covers all the points in Occ(i, j).
We then say that {Di, Dj, D̃} is an assisting set for [i, j]. (For j = i+1, we take
the assisting set of [i, j] to be {Di, Dj}). A left assisting pair of an interval [i, j]
with i < j is a pair {Di, D̃} where {Di, Dj, D̃} forms an assisting set for [i, j].
(For j = i + 1 or i = k (the last disk), we take the left assisting pair of [i, j]
to be Di, that is, each chain disk itself is considered to be a left assisting pair.)
Given the semi-chain S, an assisted cover for S is a family F of left assisting
pairs that covers all the points of P contained in Cells(S).

In the example shown in Figure 2, the intervals [1, 3] and [2, 4] are assisted
by D̃. The assisting sets are {D1, D3, D̃}, {D1, D2}, {D2, D3}, {D2, D4, D̃} and
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Fig. 2. D̃ assists the intervals [1, 3] and [2, 4]

{D3, D4}. The left assisting pairs are {D1, D̃}, {D1}, {D2}, {D2, D̃}, {D3} and
{D4}. The family F = {{D1}, {D2, D̃}, {D4}} forms an assisted cover.

Let D∗ denote a minimum-cardinality (regular) cover of the points of P con-
tained in B. Note that D∗ can make use of all the disks in D. Put d∗ = |D∗|. We
now define the minimum assisted cover problem for S, and show that a solution
to this problem approximates d∗.

Minimum Assisted Cover Problem: Given a semi-chain S, find a minimum-
cardinality assisted cover F for S.

For this problem we have the following lemma.

Lemma 2. The minimum assisted cover problem has a polynomial-time solution.

Proof. Given the semi-chain S, the solution is constructed via an immediate
reduction to the minimum half-open interval cover problem, defined as follows.
Given a set I of points on the real line, and a family J of half-open intervals
of the form [a, b) (where a and b are both integers), find a minimum-cardinality
family J ′ ⊆ J that covers the points of I (assuming such a cover exists).

This one-dimensional problem can be solved easily using a greedy algorithm.
The reduction is constructed as follows. For each point p ∈ P ∩ B consider the
largest index i such that si contains p. Let I be the set of indices corresponding
to the points of P ∩B. The family J consists of all half-open intervals [i, j) such
that for some D̃, {Di, D̃} is a left assisting pair for the interval [i, j], including
the half open intervals of the form [i, i + 1) (and the interval [k]). ��

Let Single Line denote the procedure that solves the minimum assisted cover
problem for the semi-chain S using the reduction defined above, obtaining a
family F of left assisting pairs. Partition the disks participating in F into two
sets: the set U ′ of disks that belong to S (centered above l) and the set L′ of
assisting disks. Clearly U ′ ∪ L′ is a cover of the points of P contained in B. Our
goal is to show that |U ′ ∪ L′| ≤ 4d∗.

Let us now analyze the sizes of the sets U ′ and L′. We have the following
lemmas.
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Lemma 3. The family F and the set U ′ obtained by invoking Procedure Single Line
satisfy |F| = |U ′|.

Proof. Thisholdssincethechaindisksofthe leftassistingpairs inF aredistinct. ��

Lemma 4. The sets U ′ and L′ obtained by invoking Procedure Single Line, sat-
isfy |L′| ≤ |U ′|.

Proof. Follows from the definition of left assisting pairs; for each assisting disk
taken into L′, at least one additional disk is taken into U ′. ��

Consider an assisting disk D̃. Let l(D̃) (respectively, r(D̃)), denote the leftmost
(respectively, rightmost) point at which D̃ intersects the boundary of S. Let
left(D̃) denote the index i such that Di contains l(D̃). Let right(D̃) denote the
index j such that Dj contains r(D̃). We refer to the disk Dleft(D̃) (respectively,
Dright(D̃)) as the left bounding disk (respectively, right bounding disk) of D̃. In
Figure 2, left(D̃) = 1 and right(D̃) = 4.

For two assisting disks D̃ and D̃′, we say that D̃ is dominated by D̃′ with
respect to the interval [i, j] if all points in Occ(i, j) that are covered by D̃ are
also covered by D̃′. An assisting disk D̃ is called strong assisting if its center
point o(D̃) lies above at least one of the points l(D̃) or r(D̃) (defined above).
Otherwise D̃ is called weak assisting. For an assisting disk D̃, let the left-right
arc of D̃ denote the upper part of circ(D̃) enclosed between l(D̃) and r(D̃).

We now have the following observations.

Observation 2. Consider an interval [i, j] and two weak assisting disks D̃ and
D̃′ such that left(D̃) ≤ i and left(D̃′) ≤ i. Then either circ(D̃) and circ(D̃′)
intersect each other exactly once in Cells(i + 1, j − 1), or there is a dominance
relationship between D̃ and D̃′ with respect to [i + 1, j − 1].

Proof. By the definition of weak assisting disks, the left-right arcs of D̃ and D̃′
belong to the upper half-circles of circ(D̃) and circ(D̃′), respectively. Therefore
these arcs intersect each other at most once within Cells(S). If they do not
intersect each other within Cells(i+1, j −1) (see Figure 3(b)), then there must
be a dominance relationship between them with respect to [i+1, j−1]. Moreover,
as shown in Figure 3(a), if they do intersect each other within Cells(i+1, j−1),
then the subarc of the left-right arc of D̃ to the right of the intersection point is
contained in D̃′ (or vice versa). ��

Observation 3. Let D̃ be a strong assisting disk, and suppose w.l.o.g. that
o(D̃) is above r(D̃). Then D̃ intersects its right bounding disk above the line l.

Proof. Let D be the right bounding disk of D̃, and let a and b denote the two
intersection points of D and D̃, where a = r(D̃). By symmetry considerations,
segments o(D̃), a and o(D), b are parallel. Therefore b must be above o(D) which
is above l. ��
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Fig. 4. {Di, Dj , D̃} is an assisting set for the interval [i, j]

Observation 4. Consider an assisting disk D̃ that covers the intersection point
of arc(i) and arc(j) of the chain S, such that left(D̃) ≤ i and right(D̃) ≥ j.
Then {Di, Dj, D̃} is an assisting set for the interval [i, j].

Proof. Consider the disks Di, Dj and Dk, where i < k < j. Consider an assist-
ing disk D̃ that satisfies the conditions of Observation 4, i.e., D̃ contains the
intersection point c of arc(i) and arc(j) and left(D̃) ≤ i and right(D̃) ≥ j. Let
a be the intersection point of Di and Dk below l, and let b be the intersection
point of Dk and Dj below l. As shown is Figure 4, D̃ intersects Di in two points,
with one point to the left of a and one point to the right of c. This implies that
the arc between a and c is contained in D̃. Similarly, the arc between c and b is
contained in D̃. Also D̃ intersects Dk in two points, with one point to the left of
a and one point to the right of b. Therefore, all the area of segment(k) outside
Di ∪ Dj is contained in D̃. ��

We now show that the number of disks participating in the minimum assisted
cover F is bounded by four times the size d∗ of D∗, the minimum-cardinality
cover of the points of P contained in B.

Lemma 5. The set U ′ obtained by invoking Procedure Single Line satisfies |U ′| ≤
2d∗.
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Proof. Let U∗ be the subset of U used in the optimal solution D∗, and let L∗

be the assisting disks used in D∗. We now transform U∗ into a set of boundary
disks that, together with L∗, forms an assisted cover.

If U∗ contains non-boundary segments, then we replace each non-boundary
segment s in U∗ by the two boundary segments that contain it (see Observa-
tion 1). This manipulation results in a set U∗∗ of boundary disks with |U∗∗| ≤
2|U∗|.

We now differentiate between the strong and weak assisting disks in L∗. Set
Uw = ∅. Note that by Observation 2, the weak assisting disks D̃ in L∗ can be
ordered from left to right according to their leftmost intersection l(D̃) with the
boundary of B. For each disk D̃i in this ordered set, if the left-right arcs of D̃i

and ˜Di+1 intersect each other within B, then add a disk of S that contains this
intersection point to the set Uw. Otherwise, add Dright(D̃i) to Uw.

For the strong assisting disks, let Us be the set of their left and right bounding
disks, i.e.,

Us = {Di | i = left(D̃) or i = right(D̃) for some strong D̃ ∈ L∗} .

Consider the combined set of upper disks U∗∗ ∪Uw ∪Us. We now show that this
combined set forms together with L∗ an assisted cover.

Consider two consecutive disks Di and Dj in U∗∗∪Uw∪Us, under the ordering
of the semi-chain S. If there are occupied inner cells, i.e., if Occ(i+1, j − 1) �= ∅,
then the points in these cells are covered in the optimal solution D∗ by the disks
of L∗. We will show that a single disk of L∗ is enough to cover the points in
Occ(i+1, j −1). Let L∗

(i,j) denote the set of disks in L∗ that actually participate
in covering the points in Occ(i + 1, j − 1) in the optimal solution. (I.e., disks
that are dominated with respect to [i + 1, j − 1] are not taken into L∗

(i,j)). If
L∗

(i,j) includes a strong assisting disk D̃, we know that left(D̃) is outside the
interval [i + 1, j − 1] (because Dleft(D̃) ∈ Us and Dk /∈ Us for i < k < j) and
similarly right(D̃) is outside the interval [i+1, j−1]. Consider the following two
cases. If both left(D̃) and right(D̃) are on the same side of [i+1, j − 1], then D̃
does not cover any internal points of Cells(i + 1, j − 1) and thus cannot assist
this interval. If left(D̃) ≤ i and right(D̃) ≥ j, then by the definition of strong
assisting disk and by Observation 4, we have that {Di, Dj, D̃} is an assisting set
for this interval. Therefore, if such a strong assisting disks exists then no more
disks are needed.

Otherwise, we know that L∗
(i,j) consists only of weak assisting disks and let D̃

be the leftmost disk in L∗
(i,j). But if more than one weak assisting disk is needed

to cover the points in Occ(i + 1, j − 1), then by Observation 2, the successor of
D̃ in the weak assisting ordering, intersects D̃ within Cells(i + 1, j − 1). This
cannot happen since Di and Dj are consecutive. (Note that the left-right arcs
of D̃ and its successor are not disjoint, otherwise we would have added the right
bounding disk of D̃).

We have shown that for each pair of consecutive disks Di, Dj ∈ U∗∗ ∪Uw ∪Us

there exists at most one assisting disk D̃ ∈ L∗ such that {Di, Dj, D̃} is an
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assisting set for the interval [i, j]. We can now claim that the set L∗∪U∗∗∪Uw∪Us

forms an assisted cover F ′ and the number of left assisting pairs in F ′ is at most
|U∗∗ ∪ Uw ∪ Us| ≤ 2(|U∗| + |L∗|).

As Procedure Single Line finds a minimum-cardinality assisted cover F for S,
recalling Lemma 3 we have that |U ′| = |F| ≤ |F ′| ≤ 2(|U∗| + |L∗|) = 2d∗. ��
Corollary 1. The number of disks of D participating in F is at most 4d∗.

Proof. The number of disks participating in F is |U ′| + |L′| ≤ 2|U ′| ≤ 4d∗. ��
The following theorem summarizes the result of this section.

Theorem 1. One can compute a 4-approximation for the Single Line Problem
by invoking Procedure Single Line.

3 A 38-Approximation Algorithm for DUDC

In this section we present an approximation algorithm for our main problem:
Given a set P of points in the plane and a set D of unit disks, find a subset
D′ ⊆ D of minimum cardinality, such that P ⊆ ∪D∈D′D. We show that this
algorithm computes a 38-approximation.

The algorithm first lays a regular grid over the input scene, such that the dis-
tance between two consecutive vertical lines (alternatively, horizontal lines) is 3/2.
Let V (resp., H) be the set of vertical lines (resp., horizontal lines) of the grid.

The algorithm consists of two stages. In the first stage, for each line l ∈ V ∪H
such that there exists a disk in D that is intersected by l, we apply the 4-
approximation algorithm for the single line problem (presented in Section 2)
twice; once for each side of l. For a more detailed description, assume w.l.o.g.
that l is vertical and let Dl

l ⊆ D (resp., Dr
l ⊆ D) be the subset of disks that are

intersected by l and whose centers lie to the left (resp., to the right) of l. We
apply the 4-approximation algorithm twice. Once to the set Dl

l (using the disks
in D \ Dl

l as assisting disks), in order to cover the points in P that lie in the
union of the disks in Dl

l and to the right of l, and once to the set Dr
l in order to

cover the points in P that lie in the union of the disks in Dr
l and to the left of l.

Consider now an arbitrary point p ∈ P . If there exists a disk in D that contains
p and whose center does not lie in the same grid-square as p, then p is already
covered in the first stage of the algorithm. Let Q ⊆ P be the subset of points
that are not yet covered. Then, for each p ∈ Q, p can only be contained in disks
whose centers lie in the grid-square of p. Thus, in the second stage, we consider
each (non-empty) grid-square separately. For each such square S (of side length
3/2), we would like to cover the points in Q ∩ S by disks whose centers lie in
S. This can be done by applying the 6-approximation algorithm described in
Section 4.

3.1 Analysis

It is clear that at the end of the second stage each point in P is covered. We
now prove that the size of the subset (i.e., cover) computed by our algorithm is
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Fig. 5. The cell S

at most 38 times the size of an optimal cover. We first claim that a disk in D
can participate in at most 8 applications of the algorithm of Section 2.

Claim. Let D be a disk in D. Then, in the first stage of the above algorithm, D
can participate in at most 8 applications of the algorithm of Section 2.

Proof. Let o be the center of D, and let S be the grid-square in which o lies.
Divide S into 9 equal squares by lines l1, l2, l3, and l4, as depicted in Figure 5.
We distinguish between three cases, depending on the location of o within S.

Case 1: o ∈ S1 (or in any other corner sub-square of S). In this case D can
participate as a non-assisting disk in at most 2 applications of the algorithm of
Section 2 (namely, vj (left) and hi (up)). It can also participate as an assisting
disk in at most 6 applications (namely, vj−1 (right), vj (right), vj+1 (left), and
hi−1 (down), hi (down), hi+1 (up)). Thus in total D can participate in at most
8 applications of the algorithm of Section 2.
Case 2: o ∈ S3 (i.e., in the middle sub-square of S). In this case D can participate
as a non-assisting disk in 4 applications of the algorithm of Section 2 (namely,
vj (left), vj+1 (right), and hi (up), hi+1 (down)). It can also participate as an
assistant disk in 4 applications (namely, vj (right), vj+1 (left), hi (down), and
hi+1 (up)). Thus in total D can participate in at most 8 applications.
Case 3: o ∈ S2 (or in any other of the remaining sub-squares of S). In this case
D can participate as a non-assisting disk in 3 applications of the algorithm of
Section 2 (namely, vj (left), vj+1 (right), and hi (up)). It can also participate
as an assisting disk in 5 applications of the algorithm of Section 2 (namely, vj

(right), vj+1 (left), and hi−1 (down), hi (down), hi+1 (up)). Thus in total D can
participate in at most 8 applications. ��

Theorem 2. The algorithm above computes a 38-approximation for DUDC.

Proof. Consider a disk D in an optimal solution. By Claim 3.1 we know that
D can contribute to the solution of at most eight single line problems and one
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single square problem. Since each of these problems is solved separately, and
since the approximation ratio for the single line problem is 4 and for the single
square problem is 6, we obtain that the approximation ratio of the algorithm
above is 8 × 4 + 1 × 6 = 38. ��

Remark. The choice of grid-square size 3/2 × 3/2 seems to be optimal (in our
approach). By increasing the grid-square size one can reduce the number of
applications of the single line algorithm a disk participates in. For example, for
a square size 2 × 2 this number is 6, and for a square of size 3 this number is
only 4. However, the approximation ratio for the single square problem increases,
and the final approximation ratio that is obtained is greater than 38. Trying to
decrease the squares to, e.g.,

√
2 ×

√
2 increases the number of applications of

the single line algorithm a disk participates in to 10, which already gives a final
approximation ratio that is greater than 38.

4 A 6-Approximation for the Single
(3

2 × 3
2

)
-Square

Problem

Let S be a grid square of side length 3/2. In this section we devise a constant-
factor approximation algorithm for covering the points P ′ of P that lie in S using
the centers O′ of O that lie in S; moreover we show that this constant is 6.

We divide the square S into nine equal squares by lines l1, l2, h1 and h2
as shown in Figure 6, and distinguish between the different cases according to
the location of the center points of O′ with respect to the nine subsquares. For
each such case, we first check if there exists an optimal solution consisting of at
most two centers, and if yes we return this solution. Otherwise, we apply the
appropriate combination of claims from the following series of nine claims, and
verify that by doing so we obtain an at most 6-approximation. For lack of space
only the first two claims are included in this version.

Claim 1. Any two centers oi and oj such that oi ∈ S1 and oj ∈ S3 satisfy
S2 ⊆ D(oi) ∪ D(oj), where D(o) is a unit disk centered at o.

Proof. Let p be a point in S2, and assume w.l.o.g. that p lies in the right side of
S2. Then the disk D(oj) covers p. ��

h2

l1 l2

h1

S1 S2 S3

S6S5S4

S7 S8 S9

Fig. 6. Square S
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Fig. 7. Claim 2

Remark. Claim 1, as well as all subsequent claims, has several symmetric for-
mulations.

Claim 2. Consider the centers that lie in S3 (alternatively S1, S7, or S9). Then
there exists a line l′ such that all the centers in S3 lie above l′, and there exists
a center o in S3 such that all points in S2 and S6 above l′ are covered by D(o).

Proof. Let o be the center in S3 closest to the intersection point p of lines h1
and l2. Draw a disk centered at p of radius d(p, o) (where d(p, o) is the distance
between p and o), and let l′ be the line defined by the intersection points of this
disk with the boundary of S3. See Figure 7.

W.l.o.g. we show that D(o) covers all points of S6 above l′. Notice that the
greatest distance between a point in the triangle formed in S6 and a point on
the arc is S3 is determined by the intersection point of l′ and the right side of
S and the intersection point of l′ and l2; moreover this distance is actually the
length of the diagonal of the squares Si (1 ≤ i ≤ 9) which is smaller than one.
Therefore, regardless of the location of o on the arc, D(o) covers all points of S6
above l′. ��

We now use the claims to obtain a 6-approximation for the singe (3/2 × 3/2)-
square problem. There are many cases to consider, depending on the location of
the center points. We have generated all of the cases systematically, and have
verified for each of them that an at most 6-approximation can be computed by
applying the appropriate combination of claims from the series of claims. Due
to the large number of cases and the resemblance between them, let us consider
two cases for example.

Example 1. All the centers are in one square Si (1 ≤ i ≤ 9). In this case we
optimally solve the problem of covering the points of P ′ using the centers in Si,
applying the algorithm of Lev-Tov [7] (that is not restricted to congruent disks).
Example 2. Assume all the centers are in squares S1 and S8. Apply Claim 2 to
the square S1 to obtain a line l′ and a center o ∈ S1, such that all the centers
in S1 are above l′ and all points above l′ in S2 and in S4 are covered by D(o).
We now apply the algorithm of Section 2 to the line l′ using the centers in S8 as
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assisting centers. Finally, the remaining uncovered points are covered optimally
using only the centers in S8. It is easy to verify that the approximation factor
in this case is 6 (actually, 5 1

3 ).
The following theorem summarizes the main result of this section.

Theorem 3. One can compute a 6-approximation for the single (3/2 × 3/2)-
square problem.
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