In the counterexample leading to statement $4, \alpha$ is not onto; in that leading to statement $6, \alpha$ is not one-one. Two interesting questions, not covered by the above theorems and statements, are these.
(i) If π is Pappian, and if α is a one-one collineation from \mathbf{Q} onto \mathbf{Q}^{\prime}, can α necessarily be embedded in a collineation from π onto π^{\prime} ? If so, can the Pappian condition be weakened?
(ii) Is it possible to weaken the condition in theorem 4 that π be a Moufang plane, and to assume only that π satisfies condition (ii) of theorem 3 ?

REFERENCES

[1] Aczél, J., McKiernan, M. A., On the Characterization of Plane Projective and Complex Moebiustransformations, Math. Nachr. 33, 315-337 (1967).
[2] Aczél, J., Collineations on Three and on Four Lines of Projective Planes over Fields, Mathematica 8 (31), 7-13 (1966).
[3] Corbas, Vassili C., Omomorfismi fra piani proiettivi, I, Rend. di Mat. (3-4) 23, 316-330 (1964).
[4] Hall, Marshall, Jr., The Theory of Groups (Macmillan, New York 1959).
[5] Hughes, D. R., On Homomorphisms of Projective Planes, Proceedings of Symp. in Applied Math., Vol. X. Combinatorial Analysis (Amer. Math. Soc., Providence, R.I. 1960), pp. 45-52.

ERRATA

[^0]
[^0]: R. G. Stanton and J. G. Kalbfleisch, Covering Problems for Dichotomized Matching, Aequationes Math. 1 (1968), 103-112.

 The sixth member of the set H at the end of section 4 should be $g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}$, not $g_{1} g_{2} g_{3} g_{5} g_{6}$ as given.

