
mathematics of computation
volume 57, number 195
july 1991, pages 415-434

COVERING RADIUS COMPUTATIONS
FOR BINARY CYCLIC CODES

RANDALL DOUGHERTY AND HEERALAL JANWA

Abstract. We compute the covering radius of each binary cyclic code of length
< 64 (for both even and odd lengths) and redundancy < 28 . We also compute
the covering radii of their punctured codes and shortened codes. Thus we give
exact covering radii of over six thousand codes. For each of these codes (except
for certain composite codes), we also determine the number of cosets of each
weight less than or equal to the covering radius. These results are used to
compute the minimum distances of the above cyclic codes. We use the covering
radii of shortened codes and other criteria for normality to show that all but
eight of the cyclic codes for which we determine the covering radius are normal.
For all but seven of these normal codes, we determine the norm using some old
results and some new results proved here. We observe that many cyclic codes
are among the best covering codes discovered so far, and some of them lead
to improvements on the previously published bounds on t[n , k], the smallest
covering radius of any binary linear [n , k] code.

Among some other applications of our results, we use our table of covering
radii and a code augmentation argument to give four improvements on the
values of dmax(n , k) .where dmix{n, k) is the largest minimum distance of any
binary [n , k] code. These results show that the covering radius is intimately
connected with the other three parameters of a linear code, n, k , and d . We
also give a complete classification (up to isomorphism) of cyclic self-dual codes
of lengths 42, 56, and 60.

The computations were carried out mainly on concurrent machines (hyper-
cubes and Connection Machines); we give a description of our algorithm.

1. Introduction

Coding theory consists of the study of transmission of information reliably
over a noisy channel (deep space, telephone, telegraph, magnetic tape, disc drive,
etc.). Algebra, combinatorics, graph theory, finite geometries, combinatorial
geometries, number theory, representation theory, and algebraic geometry have
contributed to this discipline and in turn have profited from it (see, for example,
MacWilliams and Sloane [20], Berlekamp [1], Goppa [13], or Hirschfeld [15]).

Let F2 denote the finite field of two elements. An [n, k] binary linear block
code C is a ^-dimensional subspace of F2 . For u,v £ F2 , let d(u,v)
denote the number of coordinate places where u and v differ; d(u,v) is
called the Hamming distance between u and v . The minimum distance of C

Received December 7, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 94B15, 94B05.

© 1991 American Mathematical Society
0025-5718/91 $1.00+ $.25 per page

415

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

416 RANDALL DOUGHERTY AND HEERALAL JANWA

is defined as d = min{d(u, v) | u, v e C and u ^ v} . The Hamming weight
wt(u) of a vector u is defined to be d(u, 0). Since C is a linear subspace
of F2 , the minimum distance of C is the minimum of the set of weights of
nonzero vectors in C. The covering radius of a block code C of length n is
the smallest integer R-R(C) such that all vectors in the containing space are
within Hamming distance R of some codeword of C . Cohen et al. [8] gives
a survey of present knowledge about R. For basic results from coding theory,
see Berlekamp [1], van Lint [28], MacWilliams and Sloane [20], or Pless [25].
From now on, an [n, k, d]R code is a linear code of length n , dimension k ,
minimum distance d, and a covering radius R.

For the last forty years, the main problems of coding theory have been op-
timization problems involving only the three parameters n, k, and d. Some
particular problems have been to maximize k and d (for fixed n) and to
find linear [n, k, d] codes (i.e., [n, k] codes with minimum distance d) with
simple decoding algorithms. However, recently there has been an intense in-
terest in codes with optimum covering radius [8]. It has been established that
the covering radius is a basic geometric parameter of a code and has many im-
portant applications (see Cohen et al. [8] for further references). This paper
concerns Open Problem 6 of [8], which asks for the determination of the cov-
ering radii of some classes of codes (e.g., Goppa codes, Justesen codes, cyclic
codes, quadratic residue codes, or Reed-Muller codes). We note that quadratic
residue codes are cyclic codes and Reed-Muller codes are extended cyclic codes.
Also, some extended Goppa codes are cyclic.

We have computed the covering radius of binary cyclic codes of length < 64
(for both even and odd lengths) and redundancy < 28. Downey and Sloane
[12] give the covering radii of some cyclic codes of odd length < 31 (see also
Mattson [21] and Cohen et al. [8]), and we verify these results. The covering
radii of a few other codes, such as the [47, 24, 11] quadratic residue code and
the 1-, 2-, and 3-error-correcting BCH (Bose-Chaudhuri-Hocquenghem) codes of
lengths 2m -1, m > 2 , are also known [8]. The problem of computing covering
radii is known to be both NP-hard and co-NP-hard (in fact, n2-complete [23]),
and hence strictly harder than any NP-complete problem unless NP = co-NP.

We show that all but eight of the cyclic codes for which we compute the
covering radius are normal, and we determine the norm for all but seven of
the normal ones. Normal codes are important because they can be efficiently
combined to give good codes by using the "amalgamated direct sum" construc-
tion given in Graham and Sloane [14]. We prove normality and determine
the norms of most codes by determining the covering radii of shortened codes
and punctured codes and then applying several results, some of which are new.
Computing the norm seems to be at least as hard as computing the covering
radius (see §3).

We also determine the number of cosets of each weight less than or equal to
R ; this is extremely difficult to calculate for a general code and is known only
for very few codes [20, pp. 18-19]. The coset weights give the exact value for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 417

the decoding error probability if C is used for error correction and maximum
likelihood decoding is used [20, pp. 15-19]. As an application of these numbers,
we determine the minimum distance for all cyclic codes for which we compute
the covering radius.

One goal of this paper is to give tighter bounds on the values of the following
two functions connected with the covering radius:

(1) The smallest covering radius of any [n, k] binary linear code, denoted
by t[n, k]. Graham and Sloane [14] give a table of bounds on t[n, k]
for n < 64. We give twelve improvements of upper bounds in this
table. Some of our codes achieve the exact value of t[n, k].

(2) The least length of a code of codimension m and covering radius R,
denoted l(m, R) [4] (the codimension of an [n, k] code is n - k).
Brualdi and Pless [3] include a table of bounds on l(m, R) for m < 24 ;
we give improvements of three upper bounds in this table.

For all of the cyclic codes in our table, we also determine the covering radius
of the corresponding punctured and shortened codes. In all, we determine the
covering radius for over six thousand codes.

As an application of all the parameters we compute, we give a complete
classification (up to isomorphism) of cyclic self-dual codes of lengths 42, 56,
and 60.

Among other applications of our results, we use our table of covering radii
and a code augmentation argument to give four improvements on the known
bounds of dmax(n, k), where dmàX(n, k) is the largest minimum distance of
any binary [n, k] code. These results show that the covering radius is closely
connected with the other three parameters of a linear code, n, k , and d.

The organization of the paper is as follows. In §2 we collect the necessary
background from coding theory. Section 3 lists the required results to determine
the normality and the norm for the cyclic codes mentioned above. Section 4
contains the details of the algorithm used. Section 5 consists of a description
of how we generate our list of cyclic codes, including a discussion of trivial and
composite codes. In §6, we discuss the results we obtain and their applications.
The Appendix, on microfiche, contains two long tables containing the following
data: Table 1 lists the cyclic codes of length at most 64 and codimension at most
28 (omitting some trivial and composite codes), with the roots and computed
parameters for each code; Table 2 gives the coset weight distribution of each
listed cyclic, punctured cyclic, or shortened cyclic code.

2. Background

We use the notation of Cohen et al. [8].
Let G be a k x n binary matrix whose rows form a basis for an [n, k]

binary linear code C. Then G is called a generator matrix for C. If we define
the inner product of two vectors in F" in the usual way, then the orthogonal
complement of C is called its dual code and denoted C . The dimension

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

418 RANDALL DOUGHERTY AND HEERALAL JANWA

of C1" equals n - k , and a generator matrix for CA~ is called a check matrix
for C.

We will need the following well-known facts about R, for which references
are given in Cohen et al. [8, pp. 328-331].

Fact I. If H is any check matrix of C, then R(C) is the least integer such that
every syndrome is a sum of R(C) or fewer columns of H, where a syndrome is
any column of length n-k over GF(2).

Fact 2 (Redundancy bound). R(C) < n - k .

Fact 3 (Sphere-covering-bound). 2"~k < £fj^ (?).
A code C is called even if all vectors in C have even weight.

Fact 4. If C is even, then

T (?)>2"-k-1 and V (* ,)>2"-k-x.
2áíc)W" 2i+ö(C) v2i+i;-

Fact 5 (Delsarte bound). If s' is the total number of nonzero weights in C ,
then R(C)<s'.

Fact 6 (Supercode lemma). If Cx is a proper subcode of C2, then

R(CX) > max{min{wt(x) | x £ C2\CX}, R(C2)} .

Fact 7. Appending an overall parity check or an extra zero bit increases the
covering radius by one. Puncturing a code on p coordinates (i.e., removing these
coordinates) reduces the covering radius by at most p .

Fact 8. The [n, 1, n] code has covering radius \n/2\ .

Let d(C) denote the minimum distance of C.

Fact 9 (Sphere-packing bound). // e(C) = [(d(C) - 1)/2J, then
e(C) /„\Z <2-\
¡=o x '

If we take all code vectors in C which have a zero in the first coordinate
(assuming that this does not include all of C) and drop this coordinate from
these codewords, then we get the [n - 1, k - 1, ds] shortened code Cs (where
ds> d). A check matrix for Cs can be obtained by dropping the first column
from a check matrix for C. In Table 1, Rs = R(CS). From Fact 1, it is clear
that R < Rs. For an important application of Rs, see Proposition 1 in §3.

Let C denote the code obtained from C by dropping the first coordinate.
(C is called a punctured code.) Then Fact 7 implies that Rp :- R(Cp) < R(C).
For some applications of Rp , see §6.1 below.

The weight wt(Z>) of a coset D of C is defined to be the least weight of a
vector in D. A vector of weight wt(Z>) in D is called a coset leader. Let or-
denóte the number of cosets of C of weight i.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 419

Let C# , C? , and C^s denote, respectively, cyclic code number # of length
n in Table 1, its punctured code, and its shortened code.

An [n, k, d]R code is a linear code of length n , dimension k, minimum
distance d, and covering radius R .

3. Norms and normal codes

Fix i £ {0, 1}, and let C^ (respectively c\!)) denote the subcode of C
consisting of codewords with z'th coordinate equal to 0 (respectively 1). We
assume that C is not identically zero at i. Let

(1) N{i) := max{d(x, C(0i]) + d(x, cf) | x £ F2}.

Then A(,) is called the norm of C with respect to the coordinate position i,
and A^C) := N := min1<;<ii N(,) is called the norm of C ; coordinate positions
i for which N = N1-1' are called acceptable. (Note that all coordinate positions
of a cyclic code are acceptable.) The code is called normal if N <2R+ I.

Cohen, Lobstein, and Sloane [9] give the following sufficient condition for
normality.

Proposition 1. Let Rs denote the covering radius of a shortened subcode of a
binary linear code C. If Rs < R + 1, then C is normal.

Other conditions ensuring normality have been established in a series of pa-
pers, starting with Graham and Sloane [14], where all [n, k] codes with n < 8
or k < 2 were proved normal. After extensions in Cohen, Lobstein, and Sloane
[9] and Sloane [26], the latest improvements appeared in Kilby and Sloane [19]
and Janwa and Mattson [18].

Proposition 2. An [n , k, d] binary linear code C is normal provided that n <
14, or k< 5, or d < 5, or R<2 [19], or n = 15, or n-k<Z [18].

We use Propositions 1 and 2 to prove normality for all but the following
codes in Table 1: C21 , Cg6, CX7, Clg, C23, C, , C2 , Cx , and C554 .

The code C21 has been shown to be normal [12]. We thus have eight cyclic
codes of lengths < 64 and redundancy < 28 for which we have not shown
normality. Downey and Sloane [12] show that all cyclic codes of odd lengths
< 25 and some codes of lengths 27 and 31 are normal; we verify their results
for these codes.

3.1. Determination of norms. In this section we prove that the parameters
R, Rn, and Rr and the evenness of cyclic codes are enough to determine the
norm for all of the cyclic codes of length < 64 and redundancy < 28 except
for the eight codes listed in the preceding section and seven additional codes.
The norm for cyclic codes of odd lengths < 25 and some codes of lengths 27
and 31 has already been computed by Downey and Sloane [12], and we verify
their results for these codes.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

420 RANDALL DOUGHERTY AND HEERALAL JANWA

Determining the norm of a binary linear code (theoretically or computation-
ally) seems to be at least as difficult as determining the covering radius. This is
clearly true for normal codes, for which we have R(C) = [N(C)/2\. One can
in fact show that the problem of computing covering radii is polynomial-time
reducible to the problem of computing norms: if C is a code with check matrix
H, and C' is the code whose check matrix consists of two copies of H side
by side, then Theorem 2(a) in §5 implies that R(C) = [N(C')/2\.
Proposition 3 (Graham and Sloane [14]). If C is an even code, then the norm
of C is even. Furthermore, if C is normal, then N — 2R(C).

To apply this result to cyclic codes, we note that any cyclic code with root 0
among its roots is an even code.

Theorem 2.3 from Janwa and Mattson [18] immediately yields the following
tool for the determination of norms.
Proposition 4. Let C be a normal cyclic code, and let C* denote its punctured
code at the coordinate *. If R(C*) = R(C), then N(C) = 2R(C) + 1.

We now prove a partial converse to Proposition 4.

Theorem 1. // R(C*) + 1 = R(C) = R(CS), then N(C) = 2R(C) (where Cs is
the shortened subcode of C at *).
Proof. First note that since R(C) = R(CS), C is normal at * . We may assume
that * is the first coordinate. Clearly, C* = (C0)* U (Cx)*. Let x = (e, x*) be
any vector. Then

d(x*, C*) = min{d(x*, (C0)*), d(x*, (Cx)*)} < R(C*) = R(C) - 1.
On the other hand,

max{oV , (C0)*), d(x*, (Cx)*)} < R(CS) = R(C).
Now,

d(x,C0) + d(x,Cx) = l+d(x*,(C0)*) + d(x\(Cx)*)
= l+mm{d(x*,(C0)*),d(x*,(Cx)*)}

+ max{d(x*,(C0)*),d(x*,(Cx)*)}
< I + (R(C) - I) + R(C).

Therefore, N(C) < 2R(C). On the other hand, by (1), N(C) > 2R(C). D
Theorem 1 implies that the norm of C\ (which is not an even code) is 6,

as is known from Downey and Sloane [12].
Propositions 3 and 4, Theorem 1, and the results in §5 suffice to determine the

norm for all codes of lengths < 64 and redundancy < 28 except for the eight
listed in the preceding section and the following seven: Cfifi, C7 , C7Q, Ct5
Qi ' Ç477 ' an" Q80

'66 ' ^7 » ^79 ' ^82 '

4. Details of the algorithm

The covering radius computations are done using a very efficient algorithm
which is, so far as we can determine, different from previously used algorithms.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 421

The starting point is Fact 1, which tells us that, in order to determine whether a
code has covering radius at most j, we must find out whether every syndrome
is a sum of j or fewer columns of the check matrix H. Therefore, we compute
checklists L0, Lx, etc., where L is an array of length 2m (m = n - k) in
which entry number / is 1 if syndrome number i is a sum of j or fewer
columns of H, and 0 otherwise; when we reach a j for which L is all l's,
we are done. At each step j we compute the number Nj of l's in L ; then
the numbers N¡ - ¿V_, give the coset weight distribution of the code.

Computing L. directly would involve looking at all £/=o (/) sets °f J or
fewer columns of H and checking off their sums on the checklist; of course, if
we already have L_,, we can just look at the (") new subsets. This becomes
infeasible quite rapidly as j grows. However, there is a much better way to
get L from L_,. This is to note that a sum of j or fewer columns of H is
either a sum of j - 1 or fewer columns of H or the sum of one column of H
and a syndrome which is a sum of j - 1 or fewer columns of H. Therefore,
if we assume that the /th column of H is syndrome number h¡, we can write
the algorithm for computing Lj from L._, as follows:

for / from 1 to « do
for i from 0 to 2m - 1 do

L;(i ©A,) ̂ L/í © A,) V !,._,(/)

Here V is just the "or" operation, and © is the operation on syndrome numbers
corresponding to addition of syndromes. If we use the obvious representation
in which syndrome number i is the ra-bit binary expansion of i, then ©
is just an exclusive-or operation on binary representations, which is a built-in
operation on most computers.

Note that, as i runs through all numbers from 0 to 2m - 1, so does z © h¡;
hence, we can interchange i and / © h¡ in the last line above. Also, instead of
getting Lj_x(i © h¡) directly from L._,, we can get it from L;_,(z © h¡_x) : if
d¡ = hl®hl_x, then L-X(i®h,) = Li_x((i®hl_x)®dl). (The reason fordoing
this will be explained later.) Therefore, we can write the algorithm as

L^Lj_x
for / from 1 to « do begin

L' <- L translated by d¡
L^L'
Lj ^LjWL

end

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

422 RANDALL DOUGHERTY AND HEERALAL JANWA

where dx = hx and "Z/ <- L translated by d¡ " is:

for i from 0 to 2m - 1 do
L'(i) <- L(i®d¡)

Since each entry of the checklist is a single bit, we can store a number of
such entries in a single computer word; it will be convenient to restrict this
number to be a power of 2, say 2 . Then we can consider an m-bit syndrome
number i to consist of two parts; the first m — b bits of i identify a word
within the checklist, and the remaining b bits choose a particular bit within
this word. Then operations such as "L <- L, V L " can easily be done a word
at a time. Somewhat surprisingly, so can the operation "l/ <— L translated by
d¡," because the operation © acts on the bits of a syndrome number separately.
If we now index checklists by the top m - b bits of a syndrome number, and
if we write d¡ as 2 d\ + dj , then "L1 <— L translated by d¡ " becomes

for /' from 0 to 2m~ - 1 do
L'(i)^S(L(i®d¡),d¡b))

and the rest of the algorithm in the preceding paragraph is unchanged. (Here,
S(K, x) does bit-swapping in K as specified by x ; bit number i of S(K, x)
is equal to bit number i © x of K.)

This completes the outline of the sequential algorithm. (Of course, there are
a number of tricks one can use to speed up the bit-swapping, the counting of l's
in L., and so on.) It is not difficult to convert this to a concurrent algorithm;
simply split the checklists up among the processors. Again, it will be convenient
to assume that the number of processors is a power of 2, say 2'. We now split
each m-bit syndrome number into three parts: the top t bits give a processor
number, the next m-t-b bits give a word number for the part of the checklist
within this processor, and the bottom b bits give a bit number within the word.
The algorithm can be written out exactly as above; the only communications
needed to get L¡ from L , , are in the translation step when the top bits of
d¡ are not all 0. The fact that © acts on top bits, middle bits, and bottom
bits separately means that each processor needs to communicate with only one
other processor during this translation. On a hypercube architecture, each of
the t top bits refers to communication along one of the t dimensions of the
cube; if t' of the top t bits of dl are 1, then the translation by d¡ requires
swaps along t' dimensions.

Certain manipulations of the matrix H do not change the covering radius
of a code; these include row interchanges, column interchanges, and elementary
row operations (but not elementary column operations). Therefore, one can
preprocess H in order to reduce the number of nonzero top bits or bottom bits
in the syndromes d¡. For example, one can arrange that the first m columns
of H form an upper triangular matrix with all l's above the diagonal (so d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 423

only has one nonzero bit for I < m) and then sort the remaining columns by
their top and/or bottom bits; the best thing to do depends on the machine one
is using. Note that column interchanges would not be helpful if we were using
the numbers h¡ directly; this is why we use the differences d¡ instead.

We have implemented this algorithm on several machines; in each case it
was efficient enough that the main constraint on our computations was not
the available CPU time but the size of main memory. The algorithm requires
enough space for three checklists of 2m bits apiece, plus a small amount of
additional memory. For each machine, there were maximum numbers T, M,
and B of top bits, middle bits, and bottom bits, respectively; this allowed
covering radius computations for codes of codimension up to T + M + B. We
have the program running on an IBM PC-compatible computer (T = 2, M =
14,5 = 4; T is nonzero because the segmented memory prevents us from using
M = 16), various Caltech hypercubes (a 32-node Mark III has T = 5, M = 18,
and B = 5), and a 16K-node Connection Machine 2 (T = M = 14,5 = 0).
The PC-compatible took about 12 minutes to handle a [41, 21]6 code; an average
[63, 35]9 code took about 80 minutes on the Mark III and 7 minutes on the
CM-2. Note that the overall running time for the algorithm on a particular
machine is basically 0(Rn2m) (so the [63, 35]9 code requires about 600 times
as much work as the [41, 21]6 code); differences based on the particular bits in
the check matrix, rather than on its size, were a relatively minor factor in the
computation times.

We performed a number of consistency checks to make sure that the programs
were giving correct results. Of course, we ran some smaller codes for which
we already knew the coset weight distributions, and we compared our results
with those in previously published tables (Peterson and Weldon [24], Downey
and Sloane [12]). We computed the parameters R(C) and e(C) (see Fact
9) and verified the following: e(Cp) < e(C) < e(Cp) + 1, e(C) = e(Cs),
R(Cp) < R(C) < R(Cp) + 1 , R(C) < R(CS) < n, and R(C) < n/2. Finally,
we verified the properties listed in the next section for the relevant codes in the
list.

We also implemented a backtrack search algorithm using the original defini-
tion of covering radius, in the hope that it would give useful results for codes
of small dimension; it has given improved lower bounds for the covering radius
of some codes, but it takes too long to run to completion (giving an exact value
for R) in almost all cases.

5. Code list and composite codes

Because of the difficulties we have had in comparing our data to that in
previously published tables (e.g., the table in Peterson and Weldon [24]), we
have concluded that it will be useful to other researchers for us to include an
explicit description of how we generated our list of cyclic codes.

A binary cyclic code of length n and dimension k is determined by a gener-
ating polynomial g, a polynomial over GF(2) of degree n - k which divides

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

424 RANDALL DOUGHERTY AND HEERALAL JANWA

xH— 1. (If s is the sequence of n — k+1 O's and l's giving the coefficients of g,
then the code is generated by the vectors O'sO ' for 0 < i < k .) If we write
n = n0ne , where n0 is odd and ne is a power of 2, then xn — 1 = (x"° - I)"',
where x"° - 1 has no repeated roots; in fact, if Ç is a primitive «0th root of
unity over G F (2), then the roots of x"° - 1 are f ' for 0 < i < no. Two
roots (' and ÇJ are roots of the same irreducible factor of x"° - 1 if and only
if j = 2mi (modn0) for some m (and vice versa). This defines an equiva-
lence relation on the set {0, 1, ... , n0 - 1} ; the equivalence classes for this
relation are known as cyclotomic cosets. In order to specify the polynomial g,
we must give a multiplicity (from 0 to ne) for the roots corresponding to each
cyclotomic coset. We can refer to a cyclotomic coset by giving its least member;
hence, g can be represented by a list (with multiplicities and, for convenience,
sorted in increasing order) of cyclotomic coset numbers.

The generating polynomial h for the dual code (also known as the check
polynomial of Xaç. original code) has degree k and is related to g by the formula
xkh(x~x)g(x) = x" -\.

Suppose g is given by a list / of cyclotomic coset numbers, and we obtain a
new list /' as follows: fix some odd number m relatively prime to n0 , and get
/' from / by replacing each number i with the least number equivalent to mi
(and then sorting). If g is the corresponding polynomial, then g'(x) = g(xm)
(modx" - 1), so the code for g' can be obtained from the code for g by
just permuting the coordinates (moving coordinate number i to the position
of coordinate number m /mod«). Such codes are called equivalent; equivalent
codes will have the same parameters, so we only need to work with one of them
(say, the one whose root list comes first in lexicographic order). This also means
that it did not matter which primitive «0th root of unity we chose above.

To generate our list of codes, we started by generating all possible root lists,
keeping only the first one in lexicographic order from each class of equivalent
codes. For a given n , these were sorted primarily in decreasing order of k and
secondarily in lexicographic order. (We did not sort on d because d could not
be computed in advance.) We then eliminated certain trivial and composite
codes. Consider the following list of possible properties of a code C given as
above:

(1) k< 1.
(2o) n and the listed root numbers have a common odd divisor m > 1.
(2e) No root has multiplicity greater than ne/2.
(3o) n and the cyclotomic coset numbers which do not occur in the list with

multiplicity ne have a common odd divisor m > 1.
(3e) All cyclotomic coset numbers occur in the list with multiplicity at least

ne/2.
(4o) There is an odd number m > 1 dividing n0 such that g(x) is of the

form g'(xm) for some polynomial g .
(4e) All roots have even multiplicity.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 425

In case (1), the code is trivial (either the all-0 vector and the all-1 vector,
or just the all-0 vector). In each of the other six cases, the code is composite,
obtained from a code of length n = n/m, where we define m to be 2 in the
"e" cases.

In cases (2o) and (2e), g(x) divides x" - 1, so we can consider the cyclic
code C' of length n with generator polynomial g. Then a member of GF(2)"
is in C if and only if, when it is broken up into m blocks of length n , the
sum of these blocks is in C'. In other words, C is the inverse image of C'
under the linear map from GF(2)" to GF(2)" which divides a vector into m
parts and adds them.

In cases (3o) and (3e), the check polynomial h(x) divides x" - 1, so we
can define C' to be the cyclic code of length n with check polynomial h(x).
Then C is a repetition code based on C' ; a member of G F (2)" is in C if and
only if its m blocks of length n are identical and in C'. Theorem 2 shows
that the covering radius of a repetition code is close to half its length, so such
codes are not of interest for covering radius studies. (Codes of type (3o) were
left in our code list anyway, for reasons explained below.)

In cases (4o) and (4e), we have g(x) = g'(xm), and we can define C' to
be the cyclic code of length n with generating polynomial g . Here we break
a vector of length n into m pieces each of length n by putting coordinates
0, m, 2m, ... in one piece, coordinates 1, m + 1, 2m + 1, ... in another
piece, and so on; the vector is in C if and only if all these pieces are in C'.
Hence, except for a rearrangement of coordinates, C is just the direct sum of
m copies of C'.

Most of the parameters of composite codes can be obtained from those of
the corresponding smaller codes as follows:

Theorem 2. Suppose C is a binary linear code of length n, C' is a binary linear
code of length n , and n = mn , where m > 1.

(a) If C is an m-ary inverse image of C' (i.e., a vector is in C if and only
if, when it is broken into m parts of length n , the sum of those parts is in C1),
then the covering radius and coset weight distribution of C are the same as those
of C' ; furthermore, d(C) = min(d(C'), 2), R(Cp) = R(C'p), R(CS) = R(C'),
and N(C) is 25(C) + 1 if R(C') = R(C'p), 25(C) otherwise (so C is always
normal).

(b) If C is an m-fold repetition code based on C', then d(C) = md(C').
If C' has no identically-0 coordinates, then \m/2\n + R(C') < R(C) < [n/2\
if m is odd and R(C) = n/2 if m is even; furthermore, when m is even, we
have N(C) = 25(C) = n (so C is normal), R(Cp) = n/2 - 1, and R(CS) =
(n + z + \)m/2 - 1, where z is the number of coordinates at which C's is
identically 0. (If C1 is cyclic, then z = 0 unless C' is itself a repetition code,
in which case z = m - 1, where m is the maximal repetition multiplicity of
C)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

426 RANDALL DOUGHERTY AND HEERALAL JANWA

(c) If C is the direct sum of m copies of C1, then d(C) = d(C'), R(C) =
mR(C'), and if w and w' are the polynomials with coefficients given by the
coset weight distributions of C and C', then w = w'm. Also, R(C) =
R(C'p) + (m- l)R(C'), R(CS) = R(C'S) + (m - l)R(C'), and N(C) = N(C') +
2(m - l)R(C') (so C is normal if and only if C' is normal).

Note. In each case above, any coordinate of C corresponds to a particular
coordinate of C' ; when we make a statement such as R(C') — R(C), we mean
that C' is to be punctured in the coordinate corresponding to the coordinate
in which C is punctured. Shortened codes and norms are treated similarly.

Proof of Theorem 2. (a) Let y/: GF(2)" -» GF(2)n be the linear map defined by
V{u)j = Xw=,(modrt') ui • Tnen C is tne inverse image of C' under y/ , and the
cosets of C are just the inverse images of the cosets of C'. Clearly, wt(y/(u)) <
wt(u) (every nonzero y/(u). requires at least one corresponding nonzero u¡),
while, for v of length n , wt(v) = wt(v'), where v' is v followed by n - n
O's (so y/(v') = v). This shows that each coset of C has the same weight
as the corresponding coset of C', so C and C' have the same coset weight
distribution and hence the same covering radius. It is easy to verify that d(C) —
1 if and only if d(C') = 1, and that d(C) < 2 in any case (the vector with l's at
coordinates 1 and «' + 1 and O's elsewhere is in C), so d(C) = min(o'(C'), 2).

If we puncture C and C' at corresponding coordinates i and j, then we
can define a linear map i¡/': GF(2)n -* GF(2)" by letting y/'(u) be y/(u)
without coordinate j . Then i//'(u) will not depend on «., so we get an induced

1 ' 1
map y/" : GF(2)"~ —> GF(2)" " . It is easy to verify that C is the inverse
image of Cp under y/" , so R(Cp) = R(Cp) as before.

If u has length n and ui■ = 0, then we can convert y/(u) into a member
of C' by modifying at most R(C') coordinates. By doing corresponding mod-
ifications at coordinates of u other than ui (which is possible because each
coordinate of C' corresponds to more than one coordinate of C), we can con-
vert u into a member of C which also is 0 at coordinate i. This shows that
R(CS) < R(C') ; since R(CS) > R(C), we have R(CS) = R(C'). A similar argu-
ment shows that any u with ui - 1 is within distance R(C') of a member of
C which is also 1 at coordinate i. It follows that A^C) < 25(C) + 1 , so C is
normal. If R(C') = R(Cp), we can choose u such that d(y/'(u), C'p) = R(C) ;
this implies d(u, Ce(i)) > R(C) and d(u, C¡'2£) > R(C) + 1, where £ = «,-,
so N{i)(C) = 25(C) + 1. On the other hand, if R(C') > R(Cp), then for any
u we have d(u, C{J]) < R(C) and d(u, C{'2£) < R(C) + 1 , and equality can
never hold in both places because d(y/'(u), Cp) < R(C), so N '(C) = 25(C).

(b) If a word in C' has weight w , then the corresponding repeated word of
C has weight mw , so d(C) = md(C'). If m is even and u consists of n/2
l's followed by n/2 O's, then u is at distance n/2 from any repeated word

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 427

at all, so R(C) > n/2. If m is odd and u is at distance R(C') from C',
then the vector u consisting of u followed by n(m - l)/2 l's followed by
n(m - l)/2 O's must be at distance at least R(C') + n(m - l)/2 from any
repeated member of C' (one must change R(C) of the first n coordinates
and n(m- l)/2 of the rest), so R(C) > R(C') + n(m- l)/2. For N(C) < n
and hence R(C) < n/2 when C has no identically-0 coordinates, see Graham
and Sloane [14].

(Similar arguments appear in Graham and Sloane [14], Mattson [22], and
Kilby and Sloane [19].)

Now assume m is even; then N(C) > 25(C) = n, so N(C) = n. If C
has no identically-0 coordinates, then neither does C , so R(C) - 1 < R(C') <
[(n - 1)/2J, which gives R(Cp) = n/2 - 1. But Cs has exactly (z + \)m - 1
identically-0 coordinates, and what remains when these are deleted is another
repetition code of multiplicity m, so R(CS) = (z+l)m-l + m(n - z - l)/2 =
m(n' + z+l)/2- 1.

(c) For d(C) = d(C'), note that any nonzero word in C must be nonzero in
at least one of the m blocks of length n and hence must have weight at least
d(C') in that block; on the other hand, one nonzero block will suffice. Each
coset of C is a product of a sequence of m cosets of C', and the weight of
the C-coset is clearly the sum of the weights of the C'-cosets; it is now easy to
derive the relation between the coset weight polynomials of C and C', and the
equation R(C) = mR(C') follows immediately. The last three equations are
easy to prove, using the fact that, when working with a particular coordinate of
C, the block containing that coordinate can be manipulated independently of
the remaining blocks. D

In our list of cyclic codes, we omitted those codes of types (1), (2o), (2e),
(3e), and (4e); these can all easily be identified just by looking at n and the list
of roots (but we did not do it manually, of course). Codes of types (3o) and
(4o) are not so easily identified by inspection; one needs a list of cyclotomic
coset numbers as well for (3o), and (4o) requires knowing which cyclotomic
coset numbers have to have the same multiplicity in order for g(x) to be of
the form g'(xm). Furthermore, such codes were included in the published
code lists we looked at. (We found no published lists of cyclic codes of even
length, so we had no examples to go by there.) Therefore, we included these
codes in our code list, and then verified the properties listed above to check the
correctness of our computations; the property w = w'm for codes of type (4o)
was an especially convincing test. (Table 1 indicates which codes are of types
(3o) and (4o).)

6. Results and applications

The Appendix on microfiche consists of two long tables containing the results
of our covering radius computations. Table 1 lists the cyclic codes of length at
most 64 and codimension at most 28 (omitting the trivial or composite codes of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

428 RANDALL DOUGHERTY AND HEERALAL JANWA

types (1), (2e), (2o), (3e), or (4e)), with the roots and the following parameters
for each code: the minimum distance, the sphere-covering lower bound, the
covering radii of the code and its punctured and shortened codes, and the norm
(if known).

From the data, we conclude that all but eight of the cyclic codes for which
we compute the covering radius are normal, and we determine the norm for all
but seven of the normal ones (see §3 for details).

To compute the sphere-covering lower bound on the covering radius, we have
applied Fact 4 to cyclic codes having 0 among their roots because such codes
are even-weight codes. Note that Fact 4 gives a better lower bound (on the 5
of an even code) than Fact 3 for some codes, such as C2 and C2 .

Table 2 gives the coset weight distributions of the codes in the list and the
corresponding punctured and shortened codes. As an application of these num-
bers, we determine the minimum distance a* of a cyclic code C as follows:
Let the distribution of coset weights of C be {q0 , ax, ... , a } . Let e be the
largest integer such that a. = (") for 0 < i < e. Then it is not difficult to see
that d is either 2e + 1 or 2e + 2. Therefore, since e can be determined from
Table 2, d can be determined to within 1. Since C is a cyclic code, C has
minimum distance d - 1. Therefore, if e■= e from Table 2, then d = 2e + 2,
and if e = e - 1, then d = 2e + 1. Once we determine d, we know that, since
C is cyclic, the minimum distance of its shortened code Cs is also d.

We give the following applications of our results.

6.1. The amalgamated direct sum construction. Suppose A is an [nx, kx]Rx
code and B is an [n2, k2]R2 code. The amalgamated direct sum (ADS) of
A and B, denoted A®B [14], is an [nx + n2 - 1, kx + k2 - 1] code. As an
application of normality, if A and B are normal, then R(AéB) < R(A)+R(B)
[14]. As an application of norms, if we know that the normal codes A and
5 have even norms, then the upper bound on R(AéB) can be improved to
R(A®B) = R(A) + R(B) - 1, and the resulting code is normal [18].

Janwa and Mattson [18] give several applications of the covering radii of
punctured and shortened codes in the ADS construction.

6.2. Improvements to the table of t[n, k]. We show for twelve new values of
n and k that the function t[n, k] attains the sphere-covering lower bound.
Thus, we give a dozen improvements in Table I of t[n, k] in Graham and
Sloane [14]. We also show that each of these covering radii is attained by a
normal code; this lets us use the ADS construction to get good covering codes
of larger lengths.

1. i[49, 33] = i[50, 34] = i[51, 35] = 4: Graham and Sloane [14] have
4 < t[n, k] < 5 for each of these values of n and k . The [51, 35] cyclic code
C = C851 with roots 1, 9 has 5 = 4. By computation, R(CS) = R(CSS) = 4.
Therefore, t[49, 33] = /[50, 34] = t[5l, 35] = 4. Since R(CSSS) = 5 , again by
computation, the normality of the three codes follows from Proposition 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 429

Note that the code Cx2 also attains the bound i[50, 34] = 4. It is normal,
since another computation shows that the covering radius of its shortened code
is 4.

2. t[52, 36] = 4 : If we add any column to a check matrix for C851 , then
we get a [52, 36] code C+ whose covering radius is at most 4. Since 4 <
i[52, 36] < 5 [14], we conclude that t[52, 36] = 4. For the normality of C+ ,
observe that C8 is a shortened code of C+ .

3. t[59 + i, 39 + /'] = 5 for 0 < i < 5 : Graham and Sloane [14] have 5 <
t[n, k] < 6 for each of these values of n and k. The [59, 39] code C2Q6p has
5 = 5. Therefore, i[59, 39] = 5 . If we take any check matrix for D = C206
and augment it by adjoining any i columns (/ > 0), we get a [59 + i, 39 + i]
code Dt with covering radius at most 5. Therefore, i[59 + i, 39 + /] = 5 for
1 < i < 5. For normality of D¡ (1 < i < 5), note that DiX is its shortened
code and apply Proposition 1.

The [63, 43] cyclic code C"2 with roots 1, 5, 21, 31 also has 5 = 5. It
is normal, because the covering radius of its shortened code is 6.

4. i[63, 49] = r [64, 50] = 3 : Graham and Sloane [14] have 3 < t[n, k] < 4
for each of these values of n and k. The [63, 49] cyclic code C36 with
roots 1,5,21 has 5 = 3. Therefore, i[63, 49] = 3. It is normal, because its
shortened code has 5 = 4. By adding a column to a check matrix for C36 ,
we get a [64, 50] code with 5 at most 3. Thus, t[64, 50] = 3. It is normal
because C36 is its shortened code.

We also have:

[15, 11]1©[49, 33]4 = [63,43]5,
[16, 12]1©[49, 33]4 = [64,44]5,
[15, 11]1©[50, 34]4 = [64,44]5.

Theorem 19 from Graham and Sloane [14] implies that the resulting codes are
normal.

Calderbank and Sloane [7] have also shown that t[64,44] = 5, since
[42, 33]2©[23, 12]3 = [64, 44]5. (For t[42, 33] = 2, see Brualdi, Pless, and
Wilson [4].)

(Note. The [42, 33]2 code constructed by Brualdi, Pless, and Wilson [4] is
normal by Proposition 2 (see also Calderbank and Sloane [7, p. 1280]). There-
fore, by Theorem 20 of Graham and Sloane [14], there exists a [43, 34]2 nor-
mal code; since Graham and Sloane [14] give 2 < t[43, 34] < 3, we must have
r[43,34] = 2.)

Our computations also show that many of the bounds given in [14], which
were achieved by codes coming from an amalgamated direct sum construction,
are in fact attained by cyclic codes, whose symmetry makes them easier to work
with.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

430 RANDALL DOUGHERTY AND HEERALAL JANWA

6.3. Improved bounds on l(m, 5). The results of §6.2 yield improvements in
the known values of l(m, 5) [3] for the following three values of (m, 5) :

1. 47 < /(14, 3) < 63 (from 47 < /(14, 3) < 71) ;
2. 36</(16,4)<49 (from 36 < /(16, 4) < 51) ; and
3. 43 < /(20, 5) < 59 (from 43 < /(20, 5) < 63).

6.4. Improved bounds on dmix(n, k).

Definition 1. For given n and k , let

dmax(n, k) = max^l there exists an [n , k, d] code}.

The latest table of upper and lower bounds on dmax(n, k) appears in Verhoeff
[29].
Theorem 3. We have the following four improvements of the lower bounds on
¿max(">^):

(i) 0^(45, 16) > 13 (from 12);
(ii) ¿max(46,16)>14 (from 13);

(iii) dmJ5l, 25) > 11 (from 10); and
(iv) ¿max(52>25)>12 Wrom 11).

For the proof we need the following lemma.

Lemma 1. Let C be an [n, k, d] code with R(C) < d. Then there exists an
[n + d-R,k+l,d] code.
Proof. Let x be a coset leader of C of weight 5. We adjoin d - 5 l's to x
to get the vector x = (x, 1, ... , 1). Let C' denote the code C extended by
adjoining d-R columns of zeros to C. Then D = (C', x) is an [n + d-R,
k + 1, d] code. D

Proof of Theorem 3. (1) The code C43 is a [43, 15, 13] 11 code. Therefore,
by Lemma 1, there exists a [45, 16, 13] code.

(2) If we append an overall parity check to the [45, 16, 13] code in (1), we
get a [46, 16, 14] code.

(3) The quadratic residue code C41 is a [47, 24, 11]7 code (5 = 7 was first
proved by Delsarte [10]). Therefore, by Lemma 1, there exists a [51, 25, 11]
code.

(4) Append an overall parity check to the [52, 25, 11] code in (3). G

Codes which improve known bounds for dmax(n, k) often also improve
known bounds for r(n, d), which is defined to be the minimal redundancy
of a binary code (linear or nonlinear) of length n and minimum distance d ;
the redundancy of a code of length n containing M code words is defined
to be n - log2 M. The best known redundancies are tabulated in Zinov'ev
and Litsyn [30], which gives the bounds r(45, 13) < 29, r(46, 14) < 30,
r(51, 11) < 27, and r(52, 12) < 28. Theorem 3 improves the latter two of
these to r(51, 11) < 26 and r(52, 12) < 27 . It also gives linear codes meeting

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

COVERING RADIUS COMPUTATIONS FOR BINARY CYCLIC CODES 431

the best known bounds for r(45, 13) and r(46, 14), whereas the only previ-
ously known codes meeting these bounds were nonlinear [30].

Remark I. The vector 150213061031031018 is a coset leader of C343 of weight
11. A check matrix for this code was generated by cyclic shifts of the vector
10271013021202130.

From C43 we generated a [45, 16, 13] code using the method outlined in the
proof of Lemma 1. The weight distribution of the resulting [45, 16, 13] code
is: A0= I, Ax3 = 318, Al4 = 415, Als = 453, Al6 = 1515, Axl = 2105,
Al8 = 3067, Al9 = 4800, A20 = 5554, A2X = 6938 , ^22 = 7540, ^23 = 7372,
A24 = 7372, A25 = 5648, A26 = 4444, A27 = 3447, A2S = 1790, A29 = 1304,
A30 = 901, A3X = 311, A32 = 152, A33 = 71, A34 = 17, A43 = 1. Here, Ai
denotes the number of codewords of weight i ; only nonzero Ai are listed.

The vector 16031037 is a coset leader of C, of weight 7. A check matrix for
C47 was generated by cyclic shifts of the vector 102210312021201202102101021.

The weight distribution of the resulting [51, 25, 11] code is: A0 - 1, Axx =
4333, Ax2 = 13017, AX3 = 160, AX4 = 608, Ax5 = 180433, Ax6 = 362934,
Ax7 = 16800, Axi = 40800, Axg= 1754332, A20 = 2509820, A2l = 326688,
A22 = 544480, A23 = 4672220, A24 = 5004772, A25 = 1496352, A26 =
1768416, A27 = 4252526, A2% = 3586630, A2g = 1768416, A30 = 1496352,
A3X = 1520662, ^32 = 1009745, ,433 = 544480, A34 = 326688, A35 =
192156, A36 = 93916, A37 = 40800, A3% = 16800, ^39 = 6204, ^40 = 2068,
A4X = 608, A42 = 160, ^43 = 45 , A44 = 9, A47 = 1.

6.5. New quasi-perfect codes. The following codes are quasi-perfect (i.e., 5 =
e + 1) and could be added to the list of quasi-perfect codes in Peterson and
Weldon [24, p. 122]: C]p, C]p, C92p, Cx2p, C\4p, C¿4, C\5p, Cx25p, C¡5,
r\5 r2\ r2\ r2\ r2\ r2\ r2\ r2\ ^28 ^30 ~30 ~30
'-lOp' Cl ' Cli ' C2p ' C3 ' C3i ' C4p ' C9 ' Clp ' ^lp ' C5p ' C6p '
r31 r31 r33 ^35 ^42 ^,42 ~42 ~42 ~42 ^42 ~42 r42Clp ' 2p ' 2p ' \p ' \p ' 2 ' C2s ' C3p ' C4p ' C5 ' C5s ' ("'7p '
•-,51 ^-r51 y^-f60 ^-»62 ^-r62 ^—.63 x-i63 ^>63 ^>63 ««^4 ^>63
Cls ' L2/> ' Clp ' Clp ' c2p ' Clp ' C2p > t-6p > C32p ' anQ C36 •

The following codes are known to be quasi-perfect, and we verify this: C34
and C31 [11]; C5X [16]; C715, C,17, and C23 [24, pp. 122-123]; C7, C,15, C31,
C31, C\3, and C,63 [8]; C23 [5]; and C7,, C,'s5, C3,1, and cf3 [17].

Of these quasi-perfect codes, the following are uniformly packed (i.e., for
these codes equality holds in Fact 5) and could be added to the lists of uniformly
packed codes in Calderbank and Kantor [6, pp. 117-118] and Brouwer, Cohen,
and Neumaier [2, pp. 355-357]; c\p, C\], CX5p , CX5p , C21, C21, C23p , C3Xpx,
^31 ~31 .-,51 ^60 ^,63 j ^,63C2p ' C4 > Cli ' Llp ' Clp ' ana C2p •

The cyclic code CXX1 [24, p. 122], the punctured Golay code C23 [5], the
code C, ' [16], 2-error-correcting BCH codes of lengths 2 m+x - 1 (including
C3) [20], and the shortened subcodes of the Hamming perfect codes (including
C\s, CxXs , C3] , and Cx3) [18] are known to be uniformly packed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

432 RANDALL DOUGHERTY AND HEERALAL JANWA

Calderbank and Goethals [5] prove that any uniformly packed code of length
21 has the same parameters as the code obtained by puncturing the Golay code
C23 twice. One such code is Cgx in our list. It is natural to conjecture that
there is only one uniformly packed code of length 21 ; J. I. Hall informs us that
this is indeed the case.

For connection between uniformly packed codes, strongly regular graphs,
and other combinatorial structures, see Chapter 11 of Brouwer, Cohen, and
Neumaier [2].

6.6. Equivalence of codes. Since equivalent linear codes have the same param-
eters given in Tables 1 and 2, our computations can be used to show nonequiv-
alence of cyclic codes or their punctured or shortened codes. We illustrate this
by completing the classification of all cyclic self-dual codes of length n up to 60
begun in Sloane and Thompson [27]. In that paper, an upper bound on the num-
ber c(n) of nontrivial, nonequivalent cyclic self-dual codes of length n is given.
It is shown there that for n < 54, only c(42) is not precisely known and that
1 < c(42) < 4. The upper bound is given by the four codes CX33, Cx34, Cx36 ,
and Cx37. Since their respective parameters (d, 5) are different, we conclude
that c(42) = 4.

From the upper bound on c(n) mentioned above, we also conclude that
1 < c(56) < 4 and 1 < c(60) < 2. For n = 56 the upper bound is given by the
four cyclic codes C106, C107, A , and B , where A is a direct sum code with
roots 0 1 and 5 is a direct sum code with roots 041 32 . From Table 1, we
have d(CXQ6) = 6 and </(C*7) = 4, and from §5 we have d(A) = d(Cx2) = 4
and d(B) = d(C2¡) = 4. Also, R(A) = 45(C214) = 12, R(B) = 2R(CX¡) = 14,
and R(C¡07) = 14. To distinguish B from CXq7 , note that the number of
cosets of weight 2 is 1498 for 5 and 1435 for C,5067 (see Table 2 and §5).
Therefore, the four codes are nonequivalent, so c(56) = 4. For n = 60 the

2 3 2 2two distinct nontrivial cyclic self-dual codes are a code C with roots 0 13 5 7
and a direct sum code D with roots 0 13 5 .By computation, R(C) = 15,
while from §5, R(D) = 25(C32°) = 14. Therefore, c(60) = 2.

Acknowledgments

We would like to thank Eric Van de Velde for useful discussions of the al-
gorithm and for his help in getting the program to run on hypercube systems.
We would also like to thank the Caltech Concurrent Computation Project, the
UCLA Cognitive Science group, and the Advanced Computing Laboratory at
Los Alamos National Laboratory for providing computing resources. We are
thankful to Henk van Tilborg for helpful discussions regarding the code exten-
sion techniques used in §6.4.

IBM PC is a trademark of IBM Corporation. Connection Machine is a trade-
mark of Thinking Machines Corporation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

covering radius computations for binary cyclic codes 433

Bibliography

1. E. R. Berlekamp, Algebraic coding theory, McGraw-Hill, New York, 1968.
2. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Springer-Verlag,

New York, 1989.
3. R. A. Brualdi and V. S. Pless, On the length of codes with a given covering radius, preprint.
4. R. A. Brualdi, V. S. Pless, and R. M. Wilson, Short codes with a given covering radius, IEEE

Trans. Inform. Theory IT-35 (1989), 99-109.
5. A. E. Calderbank and J.-M. Goethals, On a pair of dual subschemes of the Hamming scheme

Hn(q), European J. Combin. 6 (1985), 133-147.
6. A. E. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math.

Soc. 18(1986), 97-122.
7. A. R. Calderbank and N. J. A. Sloane, Inequalities for covering codes, IEEE Trans. Inform.

Theory IT-34 (1988), 1276-1280.
8. G. D. Cohen, M. G Karpovsky, H. F. Mattson, Jr., and J. R. Schatz, Covering radius—

survey and recent results, IEEE Trans. Inform. Theory IT-31 (1985), 328-343.
9. G. D. Cohen, A. C. Lobstein, and N. J. A. Sloane, Further results on the covering radius of

codes, IEEE Trans. Inform. Theory IT-32 (1986), 680-694.
10. Ph. Delsarte, Four fundamental parameters of a code and their combinatorial significance,

Inform, and Control 23 (1973), 407-438.
11. S. M. Dodunekov, Some quasi-perfect double error correcting codes, Problemy Peredachi

Inforrnatsii3(1984), 17-23.
12. D. E. Downey and N. J. A. Sloane, The covering radius of cyclic codes of length up to 31,

IEEE Trans. Inform. Theory IT-31 (1985), 446-447.
13. V. D. Goppa, Algebraico-geometry codes, Math. USSR-Izv. 21 (1983), 75-91.
14. R. L. Graham and N. J. A. Sloane, On the covering radius of codes, IEEE Trans. Inform.

Theory IT-31 (1985), 385-401.
15. J. W. P. Hirschfeld, Linear codes and algebraic curves, Geometrical Combinatorics (F. C.

Holroyd and R. J. Wilson, eds.), Pitman, 1984, pp. 35-53.
16. H. Janwa, Some new upper bounds on the covering radius of binary linear codes, IEEE Trans.

Inform. Theory IT-35 (1989), 110-122.
17. H. Janwa and H. F. Mattson, Jr., The covering radius and normality of t-dense codes,

presented in part at the IEEE Internat. Sympos. on Inform. Theory, Ann Arbor, Michigan,
October 1986 (to appear).

18. _, On the normality of binary linear codes, IEEE Trans. Inform. Theory (to appear).
19. K. E. Kilby and N. J. A. Sloane, On the covering radius problem for codes: (i) bounds on

normalized covering radius, (ii) codes of low dimension; normal and abnormal codes, SIAM
J. Algebraic Discrete Methods 8 (1987), 604-627.

20. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland,
Amsterdam, 1977.

21. H. F. Mattson, Jr., Another upper bound on covering radius, IEEE Trans. Inform. Theory
IT-29 (1983), 356-359.

22. _, An improved upper bound on covering radius, Applied Algebra, Algonthmics, and
Error-correcting Codes (Toulouse, 1984), Lecture Notes in Comput. Sei., vol. 288, Springer-
Verlag, New York, 1986, pp. 90-106.

23. A. McLoughlin, The complexity of computing the covering radius of a code, IEEE Trans.
Inform. Theory IT-30 (1984), 800-804.

24. W. W. Peterson and E. J. Weldon, Jr., Error-correcting codes, 2nd ed., MIT Press, Cam-
bridge, MA, 1972.

25. V. Pless, Introduction to the theory of error-correcting codes, Wiley, New York, 1981.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

434 RANDALL DOUGHERTY AND HEERALAL JANWA

26. N. J. A. Sloane, A new approach to the covering radius of codes, J. Combin. Theory Ser. A
42(1986), 61-86.

27. N. J. A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE Trans. Inform. Theory
IT-29 (1983), 364-366.

28. J. H. van Lint, Introduction to coding theory, Springer-Verlag, New York, 1982.
29. T. Verhoeff, An updated table of minimum-distance bounds for binary linear codes, IEEE

Trans. Inform. Theory IT-33 (1987), 665-680.
30. V. A. Zinov'ev and S. N. Litsyn, Table of best known binary codes, preprint, 1984.

Department of Mathematics, University of California, Los Angeles, California 90024
Current address: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
E-mail address : rld@function.mps.ohio-state.edu

Department of Mathematics, California Institute of Technology, Pasadena, Cali-
fornia 91125

Current address : School of Mathematics, Tata Institute of Fundamental Research, Colaba, Bom-
bay 400 005, India

E-mail address : janwa@tifrvax.bitnet

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

