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COVERING THE INTEGERS BY ARITHMETIC SEQUENCES. II

ZHI-WEI SUN

Abstract. Let A = {as + nsZ}ks=1 (n1 6 · · · 6 nk) be a system of arith-
metic sequences where a1, · · · , ak ∈ Z and n1, · · · , nk ∈ Z+. For m ∈ Z+

system A will be called an (exact) m-cover of Z if every integer is covered
by A at least (exactly) m times. In this paper we reveal further connec-
tions between the common differences in an (exact) m-cover of Z and Egyp-
tian fractions. Here are some typical results for those m-covers A of Z: (a)
For any m1, · · · ,mk ∈ Z+ there are at least m positive integers in the form
Σs∈Ims/ns where I ⊆ {1, · · · , k}. (b) When nk−l < nk−l+1 = · · · = nk
(0 < l < k), either l > nk/nk−l or Σk−ls=11/ns > m, and for each positive

integer λ < nk/nk−l the binomial coefficient
( l
λ

)
can be written as the sum of

some denominators > 1 of the rationals Σs∈I1/ns − λ/nk, I ⊆ {1, · · · , k} if
A forms an exact m-cover of Z. (c) If {as + nsZ}ks=1

s6=t
is not an m-cover of Z,

then Σs∈I1/ns, I ⊆ {1, · · · , k} \ {t} have at least nt distinct fractional parts
and for each r = 0, 1, · · · , nt − 1 there exist I1, I2 ⊆ {1, · · · , k} \ {t} such that
r/nt ≡ Σs∈I11/ns − Σs∈I21/ns (mod 1). If A forms an exact m-cover of Z
with m = 1 or n1 < · · · < nk−l < nk−l+1 = · · · = nk (l > 0) then for every
t = 1, · · · , k and r = 0, 1, · · · , nt − 1 there is an I ⊆ {1, · · · , k} such that
Σs∈I1/ns ≡ r/nt (mod 1).

1. Background and Introduction

Let N = {0, 1, 2, · · · } be the set of natural numbers and Z+ = {1, 2, 3, · · · } the
set of positve integers. For a ∈ Z and n ∈ Z+, we call the infinite set

a+ nZ = {a+ jn}+∞j=−∞ = {· · · , a− 2n, a− n, a, a+ n, a+ 2n, · · · }
an arithmetic sequence with common difference n (abbreviated to AS(n)) and its
finite subsequence

{a+ jn}l+m−1
j=m = {a+mn, a+ (m+ 1)n, · · · , a+ (l +m− 1)n}

an arithmetic progression of length l with common difference n (in short, APn(l)).
Let m be a positive integer. A finte system

A = {as + nsZ}ks=1 (a1, · · · , ak ∈ Z and n1, · · · , nk ∈ Z+)(1)

of arithmetic sequences is said to be an (exact) m-cover of S ⊆ Z if

|{1 6 s 6 k : x ∈ as + nsZ}| > m (resp. |{1 6 s 6 k : x ∈ as + nsZ}| = m)

for all x ∈ S. Instead of the term ‘1-cover’ we simply use the word ‘cover’.
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For any n ∈ Z+, {r + nZ}n−1
r=0 is an exact cover of Z. In this trivial cover of Z

all the common differences are equal. Clearly m (exact) covers of Z form together
an (exact) m-cover of Z. It is known that for each m = 2, 3, 4, · · · there exists an
exact m-cover of Z no subcover of which is an exact n-cover of Z with 0 < n < m
(cf. [26]). Observe that if A is an m-cover of S then so is A together with a+ nZ
where a ∈ Z and n ∈ Z+. If (1) is an m-cover of S but {as + nsZ}ks=1

s6=t
is not, then

we say that (1) forms an m-cover of S with at+ntZ essential. A minimal m-cover
is an m-cover in which all the arithmetic sequences are essential.

At the beginning of the thirties P. Erdös ([6]) introduced the concept of cover of
Z (by arithmetic sequences) and gave a nontrivial example

{2Z, 3Z, 1 + 4Z, 3 + 8Z, 7 + 12Z, 23 + 24Z}
which was used to show that there are infinitely many odd positive integers not of
the form 2k + p with k > 1 and p an odd prime. Since then covers of Z have been
investigated by many authors. A central problem in this area is to characterize the
common differences in an arbitrary (exact) m-cover of Z.

By a simple cardinality argument, Σks=11/ns > m if (1) is an m-cover of Z, and
(1) is an exact m-cover of Z if and only if it’s an m-cover of Z with Σks=11/ns = m.
Observe that the arithmetic sequences in an exact cover (of Z) must be pairwise
disjoint, so a necessary condition for (1) to be an exact cover of Z is that (ns, nt) > 1
if 1 6 s < t 6 k. (In this paper (m1, · · · ,mk) or (mi)

k
i=1, and [m1, · · · ,mk] or

[mi]
k
i=1 stand for the greatest common divisor and the least common multiple of

not all zero integers m1, · · · ,mk respectively.) Besides these trivial things what
more can we say about the common differences in an m-cover of Z? Here are three
main conjectures the second of which implies the third one (cf. [8], [14]).

I. Erdös’ Conjecture. For any c > 0 there always exists a cover of Z with all the
common differences distinct and greater than c.

II. The Erdös-Selfridge Conjecture. If (1) forms a cover of Z with all the ns
distinct and greater than one, then ns is even for some s = 1, · · · , k.

III. Schinzel’s Conjecture. Providing (1) is a cover of Z, ns | nt for some s, t =
1, · · · , k with s 6= t.

We mention that under the Erdös−Selfridge conjecture for each polynomial
P (x) ∈ Z[x] with P (0) 6= 0, P (1) 6= −1 and P (x) 6≡ 1 there exist infinitely many
n ∈ Z+ such that xn + P (x) is irreducible over the rational field Q. This nice
application was first noted by A. Schinzel [14].

In [22] Z. W. Sun and Z. H. Sun showed that if A = {as + nsZ}ks=1 is a cover of
Z but {as + nsZ}ks=1

d-ns
is not then

|{1 6 s 6 k : d | ns}| > d/(d, [ns]06s6k
d-ns

)(2)

where d is any integer greater than n0 = 1, thus when (1) forms a minimal cover
of Z for any prime power pα dividing some of n1, · · · , nk we have

|{1 6 s 6 k : pα | ns}| > pδ

where δ is the smallest positive integer such that pα−δ divides one of those n0 =
1, n1, · · · , nk not divisible by pα. In 1966 Š. Znám [27] confirmed the following
conjecture of J. Mycielski: If A = {as + nsZ}ks=1 forms an exact cover of Z, then
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k > 1 + f(ns) for each s = 1, · · · , k where the Mycielski function f : Z+ → N is
defined by

f

(
r∏
i=1

pαii

)
=

r∑
i=1

αi(pi − 1) where p1 < p2 < · · · < pr are primes.

In 1975 Znám [29] conjectured further that k > 1 + f([n1, · · · , nk]) providing (1)
is a minimal cover of Z, this was confirmed by R. J. Simpson [15] in 1985. The
strongest result in this direction appeared in Theorem 11 of Z. W. Sun [17]: Let
(1) be a minimal m-cover of Z and d a divisor of N = [n1, · · · , nk] with 0 < d < N ,
then

|{1 6 s 6 k : ns - d}| > f(N/d)(3)

and moreover there exist l = f(N/d) distinct positive integers m1, · · · ,ml less than
N/d and l distinct indices i1 < · · · < il between 1 and k such that nis - dms for
every s = 1, · · · , l. In [17] the following conjecture was proposed.

IV. Sun’s Conjecture. Let (1) be a minimal cover of Z with n0 = 1 < n1 <
· · · < nk. Assume that N = [n1, · · · , nk] has the standard form pα1

1 · · · pαrr where
p1 < · · · < pr are primes. Set

{α ∈ N : pαs ‖ni for some i = 0, 1, · · · , k} = {αs0, αs1, · · · , αsis}
with 1 6 s 6 r and αs0 = 0 < αs1 < · · · < αsis = αs. (By pα‖n we mean pα | n
and pα+1 - n.) Then

|{1 6 i 6 k : ni = pβ1

1 · · · p
βs−1

s−1 p
αst
s for some β1 6 α1, · · · , βs−1 6 αs−1}|

> (αst − αs(t−1))(ps − 1)
(4)

holds for all s = 1, · · · , r and t = 1, · · · , is.

As

|{1 6 s 6 k : pαrr | ns}| > p
αrir−αr(ir−1)
r > 1 + (αrir − αr(ir−1))(pr − 1)

and

f(N) =
r∑
s=1

is∑
t=1

(αst − αs(t−1))(ps − 1),

the assertion in Sun’s conjecture implies that k > 1 + f([n1, · · · , nk]). Observe
that p1 = 2 if |{1 6 i 6 k : ni = pα11

1 }| > p1 − 1. So Conjecture II follows from
Conjecture IV.

It should be mentioned that almost nothing is known about the four conjectures,
among which the first and the second have been open for about fifty years.

Fortunately we have an already-proved conjecture of P. Erdös which asserts that
Σks=11/ns > 1 if (1) is a cover of Z with all the ns distinct and greater than one
(i.e. (1) cannot be an exact cover of Z if 1 < n1 < · · · < nk). In 1986 Simpson [16]
confirmed a conjecture of N. Burshtein [2] by showing that if (1) is an exact cover
of Z and p1 < p2 < · · · < pr are the prime factors of [n1, · · · , nk] > 1 then

max
16t6k

|{1 6 s 6 k : ns = nt}| > pr
r−1∏
i=1

pi − 1

pi
> p1 − 1 = p([n1, · · · , nk])− 1.

(Throughout this paper we use p(n) to denote the least prime factor of an integer
n > 1.) With the help of Merten’s theorem it follows that for each M ∈ Z+ there
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exists a number B(M) such that, in any exact cover of Z whose common differences
are repeated at most M times, the least common difference is not more than B(M).
This can be viewed as a negative answer to an analogy of Conjecture I for exact
covers of Z. In 1991 Sun [18] gave a result stronger than the one of Simpson, in fact
he proved that if a1 +n1Z, · · · , ak+nkZ are pairwise disjoint and the characteristic

function of the set
⋃k
s=1 as + nsZ is periodic mod n0 (which happen for n0 = 1 if

{as + nsZ}ks=1 forms an exact cover of Z) then for any I ⊆ {1, · · · , k} we have∑
s∈I

1

ns
> d

(⋃
s∈I

(ns, [nt]06t6k
t6∈I

)Z

)
(5)

where d(S) stands for the asymptotic density

lim
N→+∞

1

N
|{0 6 x < N : x ∈ S}|

of S ⊆ Z if the limit exists.
The last conjecture of Erdös was first confirmed independently by H. Davenport,

L. Mirsky, D. Newman and R. Radó, who showed that nk−1 = nk providing (1) is an
exact cover of Z with 1 < n1 6 · · · 6 nk−1 6 nk. Znám ([28]) conjectured in 1968
and M. Newman ([11]) proved in 1971 that nk−1 = nk above can be strengthened
by nk−p+1 = · · · = nk with p = p(nk). Among the various improvements to the
Newman-Znám result, Theorem 1 of Sun [19] indicates that if the covering function

σ(x) = |{1 6 s 6 k : x ∈ as + nsZ}|

is periodic mod n0 with d - n0 and ns is divisible by d for some s = 1, · · · , k then

|{1 6 s 6 k : d | ns}| > min
06s6k
d-ns

d

(d, ns)
> p(d),(6)

in particular if A = {as + nsZ}ks=1 forms an exact m-cover of Z with

n1 6 · · · 6 nk−l < nk−l+1 = · · · = nk(7)

where 0 < l < k then

l > min
16s6k−l

nk
(ns, nk)

> max

{
p(nk),

nk
nk−l

}
.

Due to the efforts of S. K. Stein, Znám, Š. Porubský, M. A. Berger, A. Felzenbaum
and A. S. Fraenkel, the common differences in an arbitrary exact m-cover (1) of Z
with

n1 < · · · < nk−l < nk−l+1 = · · · = nk(8)

have been determined completely in the cases m = 1 and 2 6 l 6 9, m > 1 and
2 6 l 6 5 (cf. [1], [12]).

In contrast with the confirmed conjecture of Erdös, M. Z. Zhang ([25]) discovered
in 1989 that there exists an I ⊆ {1, · · · , k} with Σks=11/ns ∈ Z+ if (1) is a cover
of Z. In 1992 Sun [20] showed that when (1) forms an exact m-cover of Z for each
n = 0, 1, · · · ,m we have∑

s∈I

1

ns
= n for at least

(
m

n

)
subsets I of {1, · · · , k}(9)
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where the bounds
(
m
n

)
(0 6 n 6 m) are best possible and as usual

(
x
n

)
stands for∏n−1

j=0
x−j
n−j . Both Sun and Zhang used the Riemann ζ-function in their proofs.

We have reviewed the main problems and results concerned with the common
differences in an (exact) m-cover of Z. With the background in mind the reader
may realize that it’s very difficult and quite fascinating to provide something new
and general in this aspect.

In [21] we began our systematic investigation of m-covers of Z by a new ap-
proach rooted in [20]. We first employed some knowledge of analysis, algebra and
combinatorics to characterize those m-covers A = {αs + βsZ}ks=1 of Z by gener-
alized arithmetic sequences where α1, · · · , αk are reals and β1, · · · , βk are positive
reals, and then obtained several necessary conditions on the β’s from the char-
acterizations. Of course such results apply to those m-covers (1) of Z by usual
arithmetic sequences. A remarkable one following from Theorem 4 of [21] is that if
∅ ⊂ J ⊂ {1, · · · , k}, then∑

s∈I

1

ns
=
∑
s∈J

1

ns
for some I ⊆ {1, · · · , k} with I 6= J(10)

providing (1) forms an exact m-cover of Z.
In the present paper we continue our investigation on the basis of [21]. Apart

from the last section which contains some unsolved problems arising naturally,
all the remaining sections will be devoted to further properties of the common
differences in an (exact) m-cover of Z which are closely connected with Egyptian
fractions and some known results introduced above. Namely, when (1) forms an (ex-
act) m-cover of Z our theorems tell information about the rationals Σs∈Ims/ns, I ⊆
{1, · · · , k} and their fractional parts where m1, · · · ,mk are suitable positive inte-
gers. For the sake of clarity we give below two collections of our central results in
the simplest case while we actually prove more.

Theorem I. Let (1) be an m-cover of Z with m ∈ Z+. Then
(i) For any m1, · · · ,mk ∈ Z+ there exist at least m positive integers representable

by Σs∈Ims/ns with I ⊆ {1, · · · , k}.
(ii) If m > 1, then for any m1, · · · ,mk ∈ Z+ and t = 1, · · · , k∑

s∈I

ms

ns
∈ Z+ for some I ⊆ {1, · · · , k} with t 6∈ I.(11)

If {as + nsZ}ks=1
ns|n

doesn’t form an m-cover of Z with n ∈ Z+, then

∑
s∈I

(n, ns)

ns
∈ Z+ for some I ⊆ {1 6 s 6 k : ns - n}.

(iii) When at+ntZ is essential (i.e., {as+nsZ}ks=1
s6=t

fails to be an m-cover of Z),

for every r = 0, 1, · · · , nt − 1

r

nt
≡
∑
s∈I1

1

ns
−
∑
s∈I2

1

ns
(mod 1)(12)

for some I1, I2 ⊆ {1, · · · , k} \ {t} with Σs∈I11/ns > m− 1 and Σs∈I21/ns > m− 2,
and the rationals Σs∈I1/ns, I ⊆ {1, · · · , k} \ {t} have at least nt distinct fractional
parts. (For r1, r2 ∈ Q we write r1 ≡ r2 (mod 1) to mean r1 − r2 ∈ Z.)
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(iv) Assume (7) with 0 < l 6 k. If l 6= k then

l > nk
nk−l

or
k−l∑
s=1

1

ns
> m.(13)

If nk 6= 1, then either there are at least m positive integers in the form
Σs∈I1/ns − 1/nk where I ⊆ {1, · · · , k}, or l is the sum of some (not necessar-
ily distinct) denominators greater than 1 of the rationals Σs∈I1/ns − 1/nk, I ⊆
{1, · · · , k} and therefore not less than p([n1, · · · , nk]). (For a rational r = a/b with
a ∈ Z, b ∈ Z+ and (a, b) = 1, b is called its denominator.)

Theorem II. Let (1) be an exact m-cover of Z with m ∈ Z+. Then
(i) Let n be a positive integer and v a rational such that there exists a unique

J ⊆ {1, · · · , k} with Σs∈J(n, ns)/ns = v (e.g. v = 0), then for every t = 1, · · · , k
there is an I ⊆ {1, · · · , k} with t ∈ I such that∑

s∈I

(n, ns)

ns
≡ v (mod 1).

(ii) Provided (8) with 0 < l 6 k, ns | nk for all s = 1, · · · , k and for each r ∈ Z
there exists an I ⊆ {1, · · · , k − 1} with the property∑

s∈I

nk
ns
≡ r (mod nk).(14)

(iii) When m = 1, for all t = 1, · · · , k and r = 0, 1, · · · , nt − 1 we have

r

nt
=
∑
s∈I

1

ns
for some I ⊆ {1, · · · , k} with t 6∈ I.(15)

(iv) Assume (7) with 0 < l < k, then for any positive integer λ < nk/nk−l 6
l,
(
l
λ

)
can be written as the sum of some denominators greater than 1 of the rationals∑

s∈I

1

ns
− λ

nk
, I ⊆ {1, · · · , k}.

2. Connection between Covers of Z and Covers of a+ nZ

From now on we let a1, · · · , ak be integers and m,n, n1, · · · , nk positive ones
unless they are specified.

Clearly if (1) is an (exact) m-cover of Z—the only AS(1), it is also an (exact)
m-cover of any AS(n). As for the converse we have

Lemma 1. Let a be an integer. Then A = {as+nsZ}ks=1 forms an (exact) m-cover
of a+nZ if and only if A′ = {qj+(nj/(n, nj))Z}j∈J forms an (exact) m-cover of Z
where for each j ∈ J = {1 6 s 6 k : (n, ns) | as − a}, qj is such an integer that
a+ qjn ≡ aj (mod nj).

Proof. If 1 6 s 6 k and s 6∈ J , then as + nsZ ∩ a + nZ = ∅. If j ∈ J and x ∈ Z,
then

x ∈ qj +
nj

(n, nj)
Z⇐⇒ nj

(n, nj)

∣∣∣∣ n

(n, nj)
(x− qj)

⇐⇒ a+ nx ≡ a+ nqj ≡ aj (mod nj).

So the desired result follows.
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Corollary 1. Provided (1) is an exact m-cover of Z we have
(i) For every v = 0, 1, · · · ,m− 1∑

s∈I

(n, ns)

ns
= v for at least

(
m

v

)
subsets I of {1, · · · , k}.(16)

(ii) For each t = 1, · · · , k,∑
s∈I

(n, ns)

ns
= m for some I ⊆ {1, · · · , k} with t ∈ I.(17)

(iii) Let ∅ ⊂ J ⊂ {1, · · · , k}. Then either for all j ∈ J and s 6∈ J we have
(n, nj, ns) - aj − as and hence (n, nj , ns) > 1; or∑

s∈I

(n, ns)

ns
=
∑
s∈J

(n, ns)

ns
for some I ⊆ {1, · · · , k} with I 6= J.(18)

Proof. a) Let 1 6 t 6 k. Clearly t ∈ I(t) = {1 6 s 6 k : (n, ns) | as − at}. For
each s ∈ I(t) we define qst to be an integer such that

at + qstn ≡ as (mod n).

By Lemma 1 system At = {qst + (ns/(n, ns))Z}s∈I(t) forms an exact m-cover of Z,
therefore Σs∈I(t)(n, ns)/ns = m which proves part (ii). Applying the theorem of
[20] to At we obtain (i).

b) Let ∅ 6= J ⊂ {1, · · · , k} and assume that (n, nj , nt) | aj − at for some j ∈ J
and t 6∈ J . Put

x ∈ aj + (n, nj)Z ∩ at + (n, nt)Z and I = {1 6 s 6 k : (n, ns) | x− as}.
Obviously j ∈ I ∩ J and t ∈ I \ J . For s ∈ I we let xs be such an integer
that x + nxs ≡ as (mod ns). By Lemma 1 {xs + (ns/(n, ns))Z}s∈I is an exact
m-cover of Z. As ∅ 6= I ∩ J 6= I it follows from Theorem 4 of [21] that there exists
an I ′ ⊆ I with I ′ 6= I ∩J and Σs∈I′(ns/(n, ns))

−1 = Σs∈I∩J(ns/(n, ns))
−1. Clearly

J ′ = I ′ ∪ (J \ I) 6= J and∑
s∈J′

(n, ns)

ns
=
∑
s∈I∩J

(n, ns)

ns
+
∑
s∈J\I

(n, ns)

ns
=
∑
s∈J

(n, ns)

ns
.

We are done.

The following lemma serves as another reason why we sometimes formulate our
results in terms of m-covers of a general arithmetic sequence.

Lemma 2. Let (1) be an (exact) m-cover of Z, and J be a nonempty subset of
{1, · · · , k} such that a + nZ is covered by {as + nsZ}ks=1

s6∈J
exactly v times where

a, v ∈ Z and 0 6 v < m. Then {aj + njZ}j∈J forms an (exact) (m − v)-cover of
a+ (n, [nj ]j∈J , [ns]s6∈J )Z. ([ni]i∈∅ is regarded as 1.)

Proof. The case J = {1, · · · , k} is trivial, so we assume ∅ ⊂ J ⊂ {1, · · · , k}. Since
a+ (n, [ns]s6∈J )Z = a+nZ+ [ns]s6∈JZ is covered by {as +nsZ}ks=1

s6∈J
exactly v times,

a+ (n, [nj ]j∈J , [ns]s6∈J)Z = a+ (n, [ns]s6∈J )Z+ [nj ]j∈JZ

must be covered by {aj + njZ}j∈J at least (resp. exactly) m− v times. The proof
is ended.
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Corollary 2. Provided that (1) is an exact m-cover of Z, for every v = 0, 1, · · · ,m
and t = 1, · · · , k with (n, nt) > 1,∑

s∈I

(n, ns)

ns
= v for at least

(
m

v

)
subsets I of {1, · · · , k} \ {t}.(19)

Proof. Let 0 6 v 6 m, 1 6 t 6 k and (n, nt) > 1. Clearly 1+at+nZ∩at+ntZ = ∅.
By Lemma 2 {as + nsZ}ks=1

s6=t
forms an exact m-cover of 1 + at + (n, [ns]

k
s=1
s6=t

)Z ⊆

1 + at + (n, [ns]
k
s=1
s6=t

, nt)Z. Now the desired (19) follows from Lemma 1 and the

theorem of [20].

Corollary 3. Suppose that (1) is an m-cover of Z but it won’t be if we omit all the
aj + njZ, j ∈ J from (1) where ∅ 6= J ⊆ {1, · · · , k}. Then

|J | > min
j∈J

nj
(nj , [ns]s6∈J )

,(20)

that is, there exists a j ∈ J such that [nj , [ns]s6∈J ] 6 |J |[ns]s6∈J .
Proof. Let a be an integer with

v = |{1 6 s 6 k : s 6∈ J and a ∈ as + nsZ}| < m.

Then {as + nsZ}ks=1
s6∈J

forms an exact v-cover of a+ [ns]s6∈JZ. By Lemma 2, system

{aj + njZ}j∈J is a cover of a+ ([nj ]j∈J , [ns]s6∈J )Z. In view of Lemma 1∑
j∈J

(nj , [ns]s6∈J)

nj
>

∑
j∈J

(nj ,[ns]s 6∈J )|aj−a

1

nj/(nj, [ns]s6∈J)
> 1

and in fact by Zhang’s result ([25])∑
j∈I

1

nj/(nj , [ns]s6∈J)
∈ Z+ for some I ⊆ {j ∈ J : (nj , [ns]s6∈J) | aj − a}.

Since Σj∈J (nj , [ns]s6∈J)/nj 6< 1 = Σj∈J1/|J |, there exists a j ∈ J such that

nj
(nj , [ns]s6∈J )

=
[nj, [ns]s6∈J ]

[ns]s6∈J
6 |J |.

This concludes the proof.

Note that when J = {1 6 s 6 k : d | ns} with d > n0 = 1 (20) yields (2).

3. Lower Bound for the Cardinality

of {{Σs∈Ims/ns} : I ⊆ {1, · · · , k}}

In 1970 R. B. Crittenden and C. L. Vanden Eynden ([5]) proved a conjecture of
Erdös ([7]) with prizes which states that if (1) doesn’t form a cover of Z then there
exists an integer x with 1 6 x 6 2k which is not covered by (1). In [21] we obtained
the following stronger result.

Lemma 3. Let α1, · · · , αk be reals and β1, · · · , βk positive reals. Then system
{αs + βsZ}ks=1 forms an m-cover of Z if it covers |{{Σs∈I1/βs} : I ⊆ {1, · · · , k}}|
(6 2k) consecutive integers at least m times. (As usual {x} and [x] = x − {x}
denote the fractional and the integral parts of a real x respectively.)

An ingenious application of Lemma 3 gives
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Theorem 1. Let a be an integer and m1, · · · ,mk positive integers with (ms, ns) =
(n, ns) for every s = 1, · · · , k.

(i) If A = as + nsZ covers∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : (n, ns) | as − a} ⊆ {1, · · · , k}

}∣∣∣∣∣
consecutive integers congruent to a modulo n at least m times, then A forms an
m-cover of a+ nZ.

(ii) If for some divisor d of n (1) is an m-cover of a+dZ but At = {as+nsZ}ks=1
s6=t

is not, then∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1, · · · , k} \ {t}

}∣∣∣∣∣
>
∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : s 6= t &(d, ns) | as − a}

}∣∣∣∣∣
> nt

(n, nt)
.

(21)

Proof. i) Let J = {1 6 s 6 k : (n, ns) | as − a} and define qj , j ∈ J as in Lemma
1. For j ∈ J and x ∈ Z we have

a+ nx ∈ aj + njZ⇐⇒ x ∈ qj +
nj

(n, nj)
Z = qj +

nj
(mj , nj)

Z

⇐⇒ x ∈ qj +
nj/(mj , nj)

mj/(mj , nj)
Z = qj +

nj
mj
Z.

As (1) covers |{{Σs∈Ims/ns} : I ⊆ J}| consecutive terms in a+nZ at least m times,
B = {qj+(nj/mj)Z}j∈J forms an m-cover of some AP1(|{{Σs∈Ims/ns} : I ⊆ J}|).
By Lemma 3 B is an m-cover of Z, so A is an m-cover of a+ nZ.

ii) Suppose that d is a divisor of n for which A = {as+nsZ}ks=1 forms an m-cover
of a + dZ with at + ntZ essential. Since a + dZ is the union of a + rd + nZ, r =
0, 1, · · · , n/d− 1, for some r = 0, 1, · · · , n/d− 1, At = {as + nsZ}ks=1

s6=t
doesn’t form

an m-cover of a + rd + nZ but A does. Clearly a + rd + nZ ∩ at + ntZ contains
some integer x. Note that

x+ n, x+ 2n, · · · , x+ ([n, nt]/n− 1)n

are [n, nt]/n− 1 = nt/(n, nt)− 1 consecutive terms in a+ rd+ nZ each of which is
covered by At at least m times because they don’t belong to at + ntZ. By part (i)

∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : s 6= t & (n, ns) | as − (a+ rd)}

}∣∣∣∣∣ 66 nt
(n, nt)

− 1,
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therefore∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : s 6= t & (d, ns) | as − a}

}∣∣∣∣∣
>
∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : s 6= t & (n, ns) | as − (a+ rd)}

}∣∣∣∣∣ > nt
(n, nt)

which completes the proof.

Corollary 4. (i)
⋃k
s=1 as + nsZ contains an APn(l) for each l = 1, 2, 3, · · · if

and only if it contains an APn(n̄) where n̄ is the least cardinality of those sets
{{Σs∈Ims/ns} : I ⊆ {1, · · · , k}} with ms ∈ Z+ and (ms, ns) = (n, ns) for all
s = 1, · · · , k.

(ii) Providing A = {as + nsZ}ks=1 is a minimal m-cover of Z with at least n0

distinct numbers among n1, · · · , nk where n0 is an explicitly computable constant
which can be 1070 under the Riemann hypothesis, we have

max
16t6k

∣∣∣∣∣
{{∑

s∈I
cs

(ns, nt)

ns

}
: I ⊆ {1, · · · , k}

}∣∣∣∣∣ > |{n1, · · · , nk}|(22)

where c1, · · · , ck are any integers prime to n1, · · · , nk respectively.

Proof. i) Part (i) follows immediately from the first part of Theorem 1 in the case
m = 1.

ii) In 1970 R. L. Graham conjectured that for any l distinct positive integers
x1, · · · , xl one has the inequality max16i,j6l xi/(xi, xj) > l. M. Szegedy [24] proved
this for l > n0 where n0 is an explicitly computable constant. According to [4],
under the Riemann hypothesis we can take n0 = 1070.

Set S = {n1, · · · , nk}. As |S| > n0, by Szegedy’s result

max
16i,j6k

ni
(ni, nj)

= max
a,b∈S

a

(a, b)
> |S|

and hence
nj

(nj , nt)
> |{n1, · · · , nk}| for some j, t = 1, · · · , k.

Since A = {as + nsZ}ks=1 is an m-cover of Z = 0 + 1Z but Aj = {as + nsZ}ks=1
s6=j

is

not, it follows from part (ii) of Theorem 1 that∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1, · · · , k} \ {j}

}∣∣∣∣∣ > nj
(nj , nt)

where each ms is a positive integer congruent to cs(ns, nt) modulo ns. Therefore∣∣∣∣∣
{{∑

s∈I
cs

(ns, nt)

ns

}
: I ⊆ {1, · · · , k}

}∣∣∣∣∣ > nj
(nj , nt)

> |{n1, · · · , nk}|.

This proves part (ii).

Corollary 5. Let c1, · · · , ck be integers with (cs, ns/(n, ns)) = 1 for all s = 1, · · · ,
k − 1.
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(i) Suppose that A = {as+nsZ}ks=1 is an m-cover of some AS(d) with ak +nkZ
essential where d | n and ns | [n, nk] for all s = 1, · · · , k − 1. Then{{∑

s∈I
cs

(n, ns)

ns

}
: I ⊆ {1, · · · , k}

}

=

{{∑
s∈I

cs
(n, ns)

ns

}
: I ⊆ {1, · · · , k − 1}

}

=

{
(n, nk)

nk
r : r = 0, 1, · · · , nk

(n, nk)
− 1

}
,

(23)

that is, {Σs∈Ics[n, nk]/[n, ns] : I ⊆ {1, · · · , k − 1}} contains a complete system of
residues modulo [n, nk]/n.

(ii) (23) holds if (1) forms an exact m-cover of Z with (8) where 0 < l 6 k.

Proof. i) For every s = 1, · · · , k, ns | nnk/(n, nk) and hence ns/(n, ns) divides
nk/(n, nk). Since{∑

s∈I
cs

(n, ns)

ns
: I ⊆ {1, · · · , k}

}
⊆
{
x

/[
n1

(n, n1)
, · · · , nk

(n, nk)

]
: x ∈ Z

}
,

we have∣∣∣∣∣
{{∑

s∈I
cs

(n, ns)

ns

}
: I ⊆ {1, · · · , k}

}∣∣∣∣∣ 6
[

n1

(n, n1)
, · · · , nk

(n, nk)

]
=

nk
(n, nk)

.

On the other hand, by Theorem 1∣∣∣∣∣
{{∑

s∈I
cs

(n, ns)

ns

}
: I ⊆ {1, · · · , k − 1}

}∣∣∣∣∣ > nk
(n, nk)

.

So (23) must be true.
ii) Let (1) be an exact m-cover of Z with (8) where 0 < l 6 k. Then

|{1 6 s 6 k : x ∈ as + nsZ}| = m for any x ∈ Z.
We claim that ns | nk for all s = 1, · · · , k.

Apparently ns | nk for s > k − l. Let 1 6 j 6 k − l and assume that ns | nk for
those s > j. When nj > n0 = 1 it follows from Theorem 1 of [19] that (6) holds for
d = nj . So nj | nt for some t > j. Since nt | nk by the assumption, nj does divide
nk. This proves the claim by induction.

Applying part (i) to (1), a minimal m-cover of Z = AS(1), we then obtain the
desired (23).

Remark. Clearly (23) implies that ns/(n, ns) divides nk/(n, nk) (i.e. ns | [n, nk])
for all s = 1, · · · , k. When c1 = · · · = ck = n = 1, part (i) of Corollary 5 in the case
m = 1 is noted by the author’s brother Zhi-Hong Sun who has learned Lemma 3
from [21], and part (ii) of Corollary 5 is equivalent to the second part of Theorem
II.

Let A = {as + nsZ}ks=1 be a minimal m-cover of Z. By Theorem 1 for each
t = 1, · · · , k we have

nt 6
∣∣∣∣∣
{{∑

s∈I

1

ns

}
: I ⊆ {1, · · · , k} \ {t}

}∣∣∣∣∣ 6 min{[ns]ks=1
s6=t

, 2k−1}
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where the upper bound is evident. Putting J = {t} in (20) we get that nt | [ns]ks=1
s6=t

,

thus N = [n1, · · · , nk] equals [ns]
k
s=1
s6=t

. Letting d = 1 in (3) we obtain that k >

1 + f(N), therefore N 6 2f(N) 6 2k−1. So the above upper bound coincides with
N . For the set

S(A) =

{{∑
s∈I

1

ns

}
: I ⊆ {1, · · · , k}

}
(24)

we have

max
16s6k

ns 6 |S(A)| 6 N = [n1, · · · , nk].(25)

Recently Z. H. Sun conjectured that if m = 1 then

|S(A)| = N, i.e. S(A) =

{
0,

1

N
, · · · , N − 1

N

}
.

The following examples refute the conjecture.

Example 1. A1 = {2Z, 3 + 8Z, 7 + 8Z, 1 + 12Z, 5 + 12Z, 9 + 12Z} is an exact cover
of Z with

n1 = 2 < n2 = n3 = 8 < n4 = n5 = n6 = 12 and N = [n1, · · · , n6] = 24.

It is easy to verify that |S(A1)| = 20, in fact

S(A1) =
{ r

24
: r ∈ Z, 0 6 r < 24 and r 6= 1, 11, 13, 23

}
Example 2. A2 = {1 + 4Z, 3 + 4Z, 6Z, 2 + 6Z, 4 + 6Z} forms an exact cover of Z
with n1 = n2 = 4 < n3 = n4 = n5 = 6. For s = 1, 2, 3, 4, 5, {1,−1} contains a
reduced set of residues modulo ns/(n, ns) since ϕ(ns/(n, ns)) 6 2 where ϕ is the
Euler totient function. Set

Mn = max
16s65

ns
(n, ns)

, Nn =

[
n1

(n, n1)
, · · · , n5

(n, n5)

]
and

Sn(ε1, ε2, ε3, ε4, ε5) =

{{∑
s∈I

εs
(n, ns)

ns

}
: I ⊆ {1, · · · , 5}

}
for ε1, · · · , ε5 = ±1.

It is easy to check that when 2 | n or 3 | n we have

Sn(ε1, ε2, ε3, ε4, ε5) =

{
0,

1

Nn
, · · · , Nn − 1

Nn

}
for all ε1, ε2, ε3, ε4, ε5 ∈ {1,−1}.
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If (6, n) = 1, then Mn = 6, Nn = 12, and by trivial computations

Sn(1, 1, 1, 1, 1) = Sn(−1,−1,−1,−1,−1) = {1, 11}−12,

Sn(1,−1, 1, 1, 1) = Sn(−1, 1, 1, 1, 1) = {8, 10}−12,

Sn(1,−1,−1,−1,−1) = Sn(−1, 1,−1,−1,−1) = {2, 4}−12,

Sn(1, 1,−1,−1,−1) = Sn(−1,−1, 1, 1, 1) = {5, 7}−12;

Sn(1, 1,−1, 1, 1) = Sn(1, 1, 1,−1, 1) = Sn(1, 1, 1, 1,−1) = {9, 11}−12,

Sn(−1,−1, 1,−1,−1) = Sn(−1,−1,−1, 1,−1) = Sn(−1,−1,−1,−1, 1) = {1, 3}−12,

Sn(1, 1,−1,−1, 1) = Sn(1, 1,−1, 1,−1) = Sn(1, 1, 1,−1,−1) = {7, 9}−12,

Sn(−1,−1, 1, 1,−1) = Sn(−1,−1, 1,−1, 1) = Sn(−1,−1,−1, 1, 1) = {3, 5}−12;

Sn(1,−1, 1, 1,−1) = Sn(1,−1,−1, 1, 1) = Sn(1,−1, 1,−1, 1)

= Sn(−1, 1, 1, 1,−1) = Sn(−1, 1,−1, 1, 1) = Sn(−1, 1, 1,−1, 1) = {6, 7, 8}−12,

Sn(−1, 1,−1,−1, 1) = Sn(−1, 1, 1,−1,−1) = Sn(−1, 1,−1, 1,−1)

= Sn(1,−1,−1,−1, 1) = Sn(1,−1, 1,−1,−1) = Sn(1,−1,−1, 1,−1) = {4, 5, 6}−12

where for X ⊆ {0, 1, · · · , 11} we use X−12 to denote the set{ r

12
: r ∈ Z, 0 6 r < 12 and r 6∈ X

}
.

By part (i) of Theorem 1 or Corollary 4, when

A3 = {a1 + 4Z, a2 + 4Z, a3 + 6Z, a4 + 6Z, a5 + 6Z}
covers 0,1,2,3,4,5,6,7,8 it forms a cover of Z. Actually one can prove that A3 is a
cover of Z if it covers integers from 0 to 7. On the other hand,

A4 = {1 + 4Z, 2 + 4Z, 6Z, 3 + 6Z, 4 + 6Z}
covers 0,1,2,3,4,5,6 but it doesn’t cover all the integers.

In contrast with part (ii) of Corollary 5 we note that when (6, n) = c1 = 1 and
c2 = c3 = c4 = c5 = −1, (n, n5)/n5 is not the fractional part of Σs∈Ics(n, ns)/ns
for any I ⊆ {1, 2, 3, 4, 5} because 1/6 6∈ Sn(1,−1,−1,−1,−1).

4. Existence of Distinct I1, I2 ⊆ {1, · · · , k}
with {

∑
s∈I1

ms
ns
} = {

∑
s∈I2

ms
ns
}

In [21] we established the following result.

Lemma 4. Let α1, · · · , αk be reals and β1, · · · , βk positive reals. Then the following
conditions are equivalent.

(a) {αs + βsZ}ks=1 forms an m-cover of Z.
(b) For any θ ∈ {{Σs∈I1/βs} : I ⊆ {1, · · · , k}} and l = 0, 1, · · · ,m− 1,∑

I⊆{1,··· ,k}
{Σs∈I1/βs}=θ

(−1)|I|
(

[Σs∈I1/βs]

l

)
e2πiΣs∈Iαs/βs = 0.

An easy consequence of this lemma is the following extension of Zhang’s result
([25]): If (1) is an m-cover of Z then for any I1 ⊆ {1, · · · , k} there exists an I2 ⊆
{1, · · · , k} different from I1 such that {Σs∈I11/ns} = {Σs∈I21/ns}. (See Theorem
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2 of [21] and compare this with the one related to (10).) In the present section we
will strengthen this result.

Lemma 5. Let a ∈ Z, J = {1 6 s 6 k : (n, ns) | as − a} and mj ∈ Z+ for each
j ∈ J . Then (i) implies (ii) if (n, nj) | mj for all j ∈ J , and (ii) implies (i) if
(mj , nj) = (n, nj) for every j ∈ J where statements (i) and (ii) are as follows:

(i) A = {as + nsZ}ks=1 covers |S| consecutive terms in a + nZ at least m times
where

S =

{
0 6 θ < 1 :

{∑
s∈I

ms

ns

}
= θ for some I ⊆ J

}
.(26)

(ii) For each θ ∈ S and l = 0, 1, · · · ,m− 1,∑
I⊆J

{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns]

l

)
e2πiΣs∈Iqsms/ns = 0(27)

where qj , j ∈ J are integers such that a+ nqj ≡ aj (mod nj) for all j ∈ J .

Proof. Clearly (i) holds if and only if B = {qj+(nj/(n, nj))Z}j∈J forms an m-cover
of some AP1(|S|) (see the proof of Lemma 1). On the other hand, by Lemmas 3
and 4,

(ii) is valid

⇐⇒{qj + (nj/mj)Z}j∈J is an m-cover of Z

⇐⇒
{
qj +

nj/(mj , nj)

mj/(mj, nj)
Z
}
j∈J

covers |S| consecutive integers at least m times

⇐⇒{qj + (nj/(mj , nj))Z}j∈J forms an m-cover of some AP1(|S|).

We are done because for each j ∈ J, qj + (nj/(n, nj))Z ⊆ qj + (nj/(mj , nj))Z if
(n, nj) | mj , and the equality holds if (mj , nj) = (n, nj).

Theorem 2. Let m∗ be a nonnegative integer less than m, and m1, · · · ,mk be
positive integers divisible by (n, n1), · · · , (n, nk) respectively. Suppose that for some
integer a and divisor d of n there are

n

d

∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ {1 6 s 6 k : (d, ns) | as − a}

}∣∣∣∣∣
consecutive terms in a+dZ covered by A = {as+nsZ}ks=1 and B = {as+nsZ}L\K
at least m and m∗ times respectively and B is not an m-cover of a+ dZ where K
and L are subsets of {1, · · · , k} with K ⊆ L and (ms, ns) | n for all s ∈ L \ K.
Then there exist I1, I2 ⊆ {1, · · · , k} for which we have

(i) {Σs∈I1ms/ns} = {Σs∈I2ms/ns}, K ⊆ I1 ⊆ L holds and K ⊆ I2 ⊆ L fails.
(ii) [Σs∈I1ms/ns] > m∗ + [Σs∈Kms/ns], [Σs∈I2ms/ns] > m∗ and moreover

[∑
s∈I2

ms

ns

]
>
{
m∗ + [

∑
s∈K

ms
ns

], if [
∑
s∈I1

ms
ns

] 6 m− 1;

m− 1, if [
∑
s∈I1

ms
ns

] = m∗ + [
∑
s∈K

ms
ns

] > m− 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COVERING THE INTEGERS BY ARITHMETIC SEQUENCES. II 4293

Proof. Since a+dZ =
⋃
b≡a (mod d) b+nZ, for some b ≡ a (mod d) B doesn’t form

an m-cover of b+nZ but A and B cover |S| consecutive terms in b+nZ at least m
and m∗ times respectively where S is given by (26) with

J = {1 6 s 6 k : (n, ns) | as − b} ⊆ {1 6 s 6 k : (d, ns) | as − a}.

For j ∈ J we let qj be such an integer that b + nqj ≡ aj (mod nj). Clearly
(mj , nj) = (n, nj) for j ∈ J ∩ (L \ K). As B is not an m-cover of b + nZ, by
Theorem 1 and Lemma 5 for some I0 ⊆ J ∩ (L \K) it’s impossible that G(u) = 0
for all u = 0, 1, · · · ,m− 1 where

G(u) =
∑

I⊆J∩(L\K)
{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns]

u

)
e2πiΣs∈Iqsms/ns

and θ = {Σs∈I0ms/ns}. Since B covers |{{Σs∈Ims/ns} : I ⊆ J ∩ (L \ K)}|
consecutive terms in b+nZ at leastm∗ times, it follows from Lemma 5 thatG(u) = 0
for every u = 0, 1, · · · ,m∗ − 1.

Choose u0 and u1 to be the maximal and the minimal elements of the set

{u ∈ Z : 0 6 u < m and G(u) 6= 0}

respectively. Apparently m > u0 > u1 > m∗. Now that G(u0) 6= 0, there exists an
I ′0 ⊆ J ∩ (L \K) such that {Σs∈I′0ms/ns} = θ = {Σs∈I0ms/ns} and that

(
[Σs∈I′0ms/ns]

u0

)
6= 0, i.e.

∑
s∈I′0

ms

ns

 > u0.

Obviously J ∩K ⊆ I ′1 = I ′0 ∪ (J ∩K) ⊆ J ∩ L. Set

c =
∑

s∈J∩K

ms

ns
+ θ and u2 = min{m− 1, u0 + [c]}.

For each l = 0, 1, 2, · · · , if p, q ∈ Z+ then
(
p+q
l

)
=
∑l
j=0

(
p
j

)(
q
l−j
)

by the binomial

theorem and the identity (1 + z)p+q = (1 + z)p(1 + z)q, so polynomials
(
x+y
l

)
and∑l

j=0

(
x
j

)(
y
l−j
)

are identical, which is known as Vandermonde’s identity. Now for
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t = 1, 2 we clearly have

Σt =
∑

I⊆J∩(L\K)
{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns + Σs∈J∩Kms/ns]

ut

)
e2πiΣs∈Iqsms/ns

=
∑

I⊆J∩(L\K)
{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns] + [c]

ut

)
e2πiΣs∈Iqsms/ns

=

ut∑
v=0

∑
I⊆J∩(L\K)

{Σs∈Ims/ns}=θ

(−1)|I|
(

[c]

ut − v

)(
[Σs∈Ims/ns]

v

)
e2πiΣs∈Iqsms/ns

=
∑

u16v6u0

ut−[c]6v6ut

(
[c]

ut − v

) ∑
I⊆J∩(L\K)

{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns]

v

)
e2πiΣs∈Iqsms/ns

=


G(u1) 6= 0 if t = 1,

G(u0) 6= 0 if t = 2 and u0 + [c] 6 m− 1,(
[c]

m−1−u0

)
G(u0) 6= 0 if t = 2, u0 + [c] > m− 1 and u0 = u1.

Observe that each I ⊆ J ∩ L with I ⊇ J ∩K and {Σs∈Ims/ns} = {Σs∈I′1ms/ns}
can be expressed as the union of J ∩ K and a unique I ′ ⊆ J ∩ (L \ K) with
{Σs∈I′ms/ns} = {Σs∈I′0ms/ns}. Therefore, except for the case in which t = 2 and
u0 > max{u1,m− 1− [c]},

∑
J∩K⊆I⊆J∩L

{Σs∈Ims/ns}={Σs∈I′1ms/ns}

(−1)|I|
(

[Σs∈Ims/ns]

ut

)
e2πiΣs∈Iqsms/ns

= (−1)|J∩K|e2πiΣs∈J∩Kqsms/nsΣt 6= 0

and thus

Σ′t =
∑
I⊆J

{Σs∈Ims/ns}={Σs∈I′1ms/ns}
J∩K⊆I⊆J∩L fails

(−1)|I|
(

[Σs∈Ims/ns]

ut

)
e2πiΣs∈Iqsms/ns

=
∑
I⊆J

{Σs∈Ims/ns}={Σs∈I′1ms/ns}

(−1)|I|
(

[Σs∈Ims/ns]

ut

)
e2πiΣs∈Iqsms/ns

−
∑

J∩K⊆I⊆J∩L
{Σs∈Ims/ns}={Σs∈I′1ms/ns}

(−1)|I|
(

[Σs∈Ims/ns]

ut

)
e2πiΣs∈Iqsms/ns

6= 0. (The first sum vanishes by Lemma 5.)
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Let I1 = I ′1 ∪ (K \ J). Then K ⊆ I1 ⊆ (J ∩ L) ∪ (K \ J) ⊆ L and[∑
s∈I1

ms

ns

]
=

∑
s∈I′0

ms

ns
+

∑
s∈J∩K

ms

ns
+
∑

s∈K\J

ms

ns

 =

∑
s∈I′0

ms

ns

+

[
θ +

∑
s∈K

ms

ns

]

>u0 +

[
θ +

∑
s∈K

ms

ns

]
> u1 +

[∑
s∈K

ms

ns

]
> m∗ +

[∑
s∈K

ms

ns

]
.

Note that u0 = u1 = m∗ if [Σs∈I1ms/ns] = m∗ + [Σs∈Kms/ns].
When u0 + [c] 6 m−1 (which is the case if [Σs∈I1ms/ns] 6 m−1), since Σ′2 6= 0

there exists an I ′2 ⊆ J without J ∩K ⊆ I ′2 ⊆ J ∩ L for which∑
s∈I′2

ms

ns

 =

∑
s∈I′1

ms

ns

 = {c} and

∑
s∈I′2

ms

ns

 > u2 = u0 + [c],

and thus ∑
s∈I′2

ms

ns
> {c}+ (u0 + [c]) = u0 + c > m∗ +

∑
s∈J∩K

ms

ns
.

If [Σs∈I1ms/ns] = m∗ + [Σs∈Kms/ns] > m− 1 and u0 + [c] > m, then in a similar
way there is an I ′2 ⊆ J for which∑

s∈I′2

ms

ns

 =

∑
s∈I′1

ms

ns

 and

∑
s∈I′2

ms

ns

 > u2 = m− 1 > m∗

but J ∩K ⊆ I ′2 ⊆ J ∩ L fails. In the remaining cases, as Σ′1 6= 0 there must exist
an I ′2 ⊆ J without J ∩K ⊆ I ′2 ⊆ J ∩ L for which∑

s∈I′2

ms

ns

 =

∑
s∈I′1

ms

ns

 and

∑
s∈I′2

ms

ns

 > u1 > m∗.

Now let I2 = I ′2 ∪ (K \ J). Then K ⊆ I2 ⊆ L fails, for, otherwise we would
have J ∩K ⊆ J ∩ I2 = I ′2 ⊆ J ∩L which is impossible. Evidently {Σs∈I1ms/ns} =
{Σs∈I2ms/ns}. By the above [Σs∈I2ms/ns] > [Σs∈I′2ms/ns] > m∗, if [Σs∈I1ms/ns]
is less than m then[∑

s∈I2

ms

ns

]
=

∑
s∈I′2

ms

ns
+
∑

s∈K\J

ms

ns


>

m∗ +
∑

s∈J∩K

ms

ns
+
∑

s∈K\J

ms

ns

 > m∗ +

[∑
s∈K

ms

ns

]
;

when [Σs∈I1ms/ns] = m∗ + [Σs∈Kms/ns] > m− 1,[∑
s∈I2

ms

ns

]
> min

{
m∗ +

[∑
s∈K

ms

ns

]
, m− 1

}
= m− 1.

The proof is ended.
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Corollary 6. If A = {as + nsZ}ks=1 covers an APn(|S|) at least m times where
S = {{Σs∈Ims/ns} : I ⊆ {1, · · · , k}} and m1, · · · ,mk are positive multiples of
(n, n1), · · · , (n, nk) respectively, then for any J ⊆ {1, · · · , k} we have∑

s∈I

ms

ns
−min

{∑
s∈J

ms

ns
,m− 1 +

{∑
s∈J

ms

ns

}}
∈ N

for some I ⊆ {1, · · · , k} with I 6= J.

(28)

In particular, when (1) forms an m-cover of Z (28) holds for any m1, · · · ,mk ∈ Z+

and J ⊆ {1, · · · , k}.

Proof. Immediate from Theorem 2 since [Σs∈Lms/ns] = [Σs∈Jms/ns] = m∗ +
[Σs∈Kms/ns] if m∗ = 0 and K = L = J .

Remark. This corollary improves the extension of Zhang’s result mentioned after
Lemma 4.

From Corollary 6 we can deduce

Corollary 7. Let (1) be an m-cover of Z and c1, · · · , ck be positive integers.
(i) If 1 6 t 6 k, J ⊆ {1, · · · , k} \ {t} and (n, nt) > 1, then∑

s∈I
cs

(n, ns)

ns
−min

{∑
s∈J

cs
(n, ns)

ns
, m− 1 +

{∑
s∈J

cs
(n, ns)

ns

}}
∈ N

for some I ⊆ {1, · · · , k} with t 6∈ I 6= J.

(29)

(ii) Assume that {as + nsZ}ks=1
ns|n

fails to be an m-cover of Z. Then for any

J ⊆ {1 6 s 6 k : ns - n} we have∑
s∈I

cs
(n, ns)

ns
−
∑
s∈J

cs
(n, ns)

ns
∈ Z for some J 6= I ⊆ {1 6 s 6 k : ns - n},(30)

in particular ∑
s∈I

cs
(n, ns)

ns
∈ Z+ for some I ⊆ {1 6 s 6 k : ns - n}.(31)

Proof. i) Let 1 6 t 6 k, t 6∈ J ⊆ {1, · · · , k} and (n, nt) > 1. As 1 + at + nZ ∩
at + ntZ = ∅, system {as + nsZ}ks=1

s6=t
forms an m-cover of 1 + at + nZ. Applying

Corollary 6 we obtain (29).
ii) As in the proof of Corollary 3 there exists an integer a such that system B =

{as+nsZ}ks=1
ns|n

covers a+([ns]
k
s=1
ns-n

, [ns]
k
s=1
ns-n

)Z. Since B is a cover of a+(n, [ns]
k
s=1
ns-n

)Z,

it follows from Corollary 6 that (30) holds for any J ⊆ {1 6 s 6 k : ns - n}. When
J = ∅, (30) implies (31). This completes the proof.

Clearly the second part of Corollary 7 yields the latter sentence in part (ii) of
Theorem I.

Let A = {as + nsZ}ks=1 be a minimal m-cover of Z with N = [n1, · · · , nk] not
dividing n. Then B = {as + nsZ}ks=1

ns-n
doesn’t form an m-cover of Z and so part

(ii) of Corollary 6 can be applied. We note that

|{1 6 s 6 k : ns - n}| = |{1 6 s 6 k : ns - (n,N)}| > 1 + f(N/(n,N))
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by the result concerned with (3). Let pα‖N where p is a prime divisor of N , then
for any β = 1, · · · , α we have

|{1 6 s 6 k : ns - pβ−1N/pα}| = |{1 6 s 6 k : pβ | ns}| > 1 + (α− β + 1)(p− 1)

and

(pβ−1N/pα, ns)

ns
=

1

pγ−β+1
if pγ‖ns with γ > β.

Let δ be the unique integer for which pα−δ‖[ns]ks=1
pα-ns

, then l = |{1 6 s 6 k :

pα‖ns}| > pδ if and only if for any c1, · · · , ck ∈ Z+ there is an I ⊆ {1 6 s 6 k :
ns - N/pδ} with Σs∈Ics(N/p

δ, ns)/ns = Σs∈Ics/p
δ ∈ Z+. (Observe that if l > pδ

and {1 6 s 6 k : pα‖ns} = {i1, · · · , il} then the l + 1 numbers

0, ci1 , ci1 + ci2 , · · · , ci1 + · · ·+ cil

cannot have distinct residues modulo pδ.)

Corollary 8. Let A = {as + nsZ}ks=1 and c1, · · · , ct−1, ct+1, · · · , ck ∈ Z+ where
1 6 t 6 k.

(i) Suppose that A covers

2

∣∣∣∣∣
{{∑

s∈I
cs

(n, ns)

ns

}
: I ⊆ {s ∈ J : s 6= t}

}∣∣∣∣∣
consecutive terms in a + nZ at least m times where a ∈ Z and J = {1 6 s 6 k :
(n, ns) | as − a}. When m > 1,∑

s∈I
cs

(n, ns)

ns
∈ Z+ for some I ⊆ J \ {t}.(32)

For m = 1, providing Σs∈Ics(n, ns)/ns 6∈ Z+ for any I ⊆ J \ {t} we have{{∑
s∈I

cs
(n, ns)

ns

}
: I ⊆ J \ {t}

}
⊇
{

(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
.(33)

(ii) Assume that A is an m-cover of Z. If m > 1 and (n, nj) > 1 with 1 6 j 6 k,
then (32) holds for J = {1, · · · , k} \ {j}. When {as + nsZ}ks=1

s6∈J
fails to be an

m-cover of Z where J ⊆ {1, · · · , k} and [ns]s6∈J | n, either (32) or (33) is true.

Proof. i) Fix r ∈ {0, 1, · · · , nt/(n, nt) − 1} and set ct = r + mnt/(n, nt). Let
ms = cs(n, ns) for every s ∈ J . Obviously A′ = {as + nsZ}s∈J covers∣∣∣∣∣

{{∑
s∈I

ms

ns

}
: I ⊆ J

}∣∣∣∣∣
(
6 2

∣∣∣∣∣
{{∑

s∈I

ms

ns

}
: I ⊆ J \ {t}

}∣∣∣∣∣
)

consecutive terms in a + nZ at least m times, since as + nsZ ∩ a + nZ 6= ∅ if and
only if s ∈ J . Applying Corollary 6 to A′ we obtain that∑

s∈I
cs

(n, ns)

ns
=
∑
s∈I

ms

ns
∈ N for some nonempty I ⊆ J,
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so (32) holds if t 6∈ J . From now on we assume t ∈ J . By Corollary 6 for some
I(r) ⊆ J with I(r) 6= {t} we have

∑
s∈I(r)

ms

ns
−min

{
mt

nt
, m− 1 +

{
mt

nt

}}
∈ N,

i.e. ∑
s∈I(r)

cs
(n, ns)

ns
−
(
m− 1 +

(n, nt)

nt
r

)
∈ N.(∗)

Let’s assume that Σs∈Ics(n, ns)/ns 6∈ Z+ for every I ⊆ J \ {t}. Then for each
r = 0, 1, · · · , nt/(n, nt)− 1, t 6∈ I(r) and therefore I(r) ⊆ J \ {t} since otherwise we
would have ∑

s∈I′(r)
cs

(n, ns)

ns
∈ Z where ∅ 6= I ′(r) = I(r) \ {t} ⊆ J \ {t}

which contradicts our assumption. As

∑
s∈I(0)

cs
(n, ns)

ns
6∈ Z+ and

∑
s∈I(0)

cs
(n, ns)

ns
−
(
m− 1 +

(n, nt)

nt
· 0
)
∈ N,

we must have m = 1 and I(0) = ∅. So (∗) can be restated as follows: ∑
s∈I(r)

cs
ns/(n, ns)

 =
r

nt/(n, nt)
.

This proves part (i).
ii) If 1 6 j 6 k and (n, nj) > 1, then j 6∈ {1 6 s 6 k : (n, ns) | 1 + aj − as}

and A forms an m-cover of 1 + aj + nZ. If {as + nsZ}ks=1
s6∈J

isn’t an m-cover of Z

where J ⊆ {1, · · · , k} and [ns]s6∈J | n, then as in the proof of Corollary 3 system
B = {as + nsZ}s∈J covers a + (n, [ns]s∈J)Z ⊆ a + ([ns]s6∈J , [ns]s∈J )Z for some
integer a. Now part (ii) comes true if we apply part (i) to A and B.

Remark. With an m-cover (1) of Z given, the first sentence in part (ii) of Theorem
I follows from part (i) of Corollary 8 in the case n = 1. If A = {as+nsZ}ks=1 covers
all the integers then by part (i) of Corollary 8 for any m1, · · · ,mk ∈ Z+ we have
either (11) or{{∑

s∈I

ms

ns

}
: I ⊆ {1, · · · , k} \ {t}

}
⊇
{

0,
1

nt
, · · · , nt − 1

nt

}
,(34)

As an important complement to part (ii) of Theorem 1 and Corollary 5 we give
here

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COVERING THE INTEGERS BY ARITHMETIC SEQUENCES. II 4299

Corollary 9. If {as + nsZ}ks=1 is an exact cover of a+ dZ with at + ntZ essential
where a ∈ Z, d | n and 1 6 t 6 k, then{∑

s∈I

(n, ns)

ns
: I ⊆ {1 6 s 6 k : ns - d & s 6= t}

}

⊇
{∑
s∈I

(n, ns)

ns
: I ⊆ {1 6 s 6 k : (d, ns) | as − a & s 6= t}

}

⊇
{

(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
.

Thus, when (1) forms an exact cover of Z, for every t = 1, · · · , k we have{∑
s∈I

(n, ns)

ns
: I ⊆ {1 6 s 6 k : ns - n} \ {t}

}

⊇
{∑
s∈I

(n, ns)

ns
: I ⊆ {1 6 s 6 k : (n, ns) | as − at & s 6= t}

}

⊇
{

(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
.

(35)

Proof. If (1) is an exact cover of Z then (1) forms an exact cover of at + nZ with
at + ntZ essential since any as + nsZ with s 6= t doesn’t contain at. So it suffices
to confirm the first sentence in Corollary 9.

Let a ∈ Z, d | n and assume that A = {as +nsZ}ks=1 is an exact cover of a+ dZ
with at + ntZ essential. Since a + dZ can be partitioned into a + rd + nZ, r =
0, 1, · · · , n/d− 1, for some b ≡ a (mod d) system A forms an exact cover of b+ nZ
with at + ntZ essential. Clearly J = {1 6 s 6 k : (n, ns) | as − b} contains t, and
{qj + (nj/(n, nj))Z}j∈J partitions Z by Lemma 1 where each qj is an integer with
b+ nqj ≡ aj (mod nj). Thus∑

j∈J\{t}

(n, nj)

nj
<
∑
j∈J

1

nj/(n, nj)
= 1

and therefore ∑
s∈I

(n, ns)

ns
6∈ Z+ for any I ⊆ J \ {t}.

In view of part (i) of Corollary 8,{∑
s∈I

(n, ns)

ns
: I ⊆ J \ {t}

}
=

{{∑
s∈I

(n, ns)

ns

}
: I ⊆ J \ {t}

}

⊇
{

(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
.

Notice that J ⊆ {1 6 s 6 k : (d, ns) | as − a}. We also have

{1 6 s 6 k : (d, ns) | as − a & s 6= t} ∩ {1 6 s 6 k : ns | d} = ∅,

for, if (d, ns) | as − a and ns | d then a + dZ ⊆ as + nsZ and so s = t since
a+ dZ∩ at + ntZ 6= ∅ and A covers a+ dZ exactly once. This concludes the proof.
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Observe that [n1, · · · , nk]−1Z = n−1
1 Z + · · · + n−1

k Z. In contrast with the false
conjecture of Z. H. Sun mentioned in Section 3, putting n = 1 in Corollary 9 we
obtain part (iii) of Theorem II, which seems beautiful and important. Note that in
the first example 1/8 + 5/12 = 13/24 6∈ S(A1) though 1/8, 5/12 ∈ S(A1).

Now let’s say something similar to Corollary 9 for general (possibly not exact)
m-covers of an arithmetic sequence.

Corollary 10. Let A = {as + nsZ}ks=1 and t ∈ {1, · · · , k}. For each s = 1, · · · , k
with s 6= t we let ms be a positive integer with (ms, ns) = (n, ns).

(i) If for some integer a and divisor d of n system A forms an m-cover of a+dZ
with at + ntZ essential, then

{{∑
s∈I1

ms

ns
−
∑
s∈I2

ms

ns

}
: I1, I2 ⊆ J \ {t},

∑
s∈I1

ms

ns
> m− 1 &

∑
s∈I2

ms

ns
> m− 2

}
contains {

(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
where J = {1 6 s 6 k : (d, ns) | as − a}.

(ii) Assume that A is an m-cover of Z but At = {as +nsZ}ks=1
s6=t

is not. Then for

every integer r there exist I1, I2 ⊆ {1, · · · , k} \ {t} for which

|Ii ∩ {1 6 s 6 k : ns | n}| < m &
∑
s∈Ii

ms

ns
> m− i for i = 1, 2(36)

and

(n, nt)

nt
r ≡

∑
s∈I1

ms

ns
−
∑
s∈I2

ms

ns
(mod 1).(37)

Proof. i) Fix an integer r with 0 < r 6 nt/(n, nt). Set mt = r(n, nt), m∗ =
m−1, K = ∅ and L = J\{t}. Then simply apply Theorem 2 to A′ = {as+nsZ}s∈J .

ii) For some a = 0, 1, · · · , n−1 system A forms an m-cover of a+nZ with at+ntZ
essential. By part (i) it suffices to show that

T = {1 6 s 6 k : (n, ns) | as − a & s 6= t} ∩ {1 6 s 6 k : ns | n}
has cardinality less than m. In fact, a+ nZ ⊆ as + nsZ for each s ∈ T , if |T | > m
then At would also be an m-cover of a+ nZ, a contradiction! We are done.

Remark. Part (iii) of Theorem I follows from the second parts of Corollary 10
and Theorem 1. If (1) is an exact m-cover of Z then for any t = 1, · · · , k and
r = 0, 1, · · · , nt − 1 by part (ii) of Corollary 10

r

nt
≡
∑
s∈I1

1

ns
+
∑
s∈I2

1

ns
(mod 1) for some I1, I2 ⊆ {1, · · · , k} \ {t}(38)

since for I ⊆ {1, · · · , k} \ {t} and I ′ = ({1, · · · , k} \ {t}) \ I we obviously have

−
∑
s∈I

1

ns
= −

k∑
s=1
s6=t

1

ns
+
∑
s∈I′

1

ns
=

1

nt
−m+

∑
s∈I′

1

ns
.

In the case m = 1 we can fix I2 = ∅ (by part (iii) of Theorem II).
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Let A = {as+nsZ}ks=1 be a cover of Z with at +ntZ essential. Clearly A covers
some AS(n) with at + ntZ essential. Let

Sn,t =

{∑
s∈I

cs
ns/(n, ns)

: I ⊆ {1 6 s 6 k : s 6= t & ns - n}
}

(39)

where each cs is a positive integer prime to ns/(n, ns). Part (ii) of Theorem 1 gives
that |{{x} : x ∈ Sn,t}| > nt/(n, nt), and the second part of Corollary 10 tells that

{{x− y} : x, y ∈ Sn,t} ⊇
{

r

nt/(n, nt)
: r = 0, 1, · · · , nt

(n, nt)
− 1

}
(40)

which is connected with difference sets.
Corollaries 9 and 10 lead us to calculate the cardinality of

Dn(A) =
k⋃
t=1

{
(n, nt)

nt
r : r = 0, 1, · · · , nt

(n, nt)
− 1

}
which sometimes serves as a lower bound. Let N = [n1, · · · , nk]. Obviously

Dn(A) =
⋃

d|ns/(n,ns)
for some s=1,··· ,k

{ c
d

: c ∈ Z, 0 6 c < d and (c, d) = 1
}

consists of those x(n,N)/N with x ∈ Z and x(n,N)/N = r(n, ns)/ns for some
s = 1, · · · , k and r = 0, 1, · · · , ns/(n, ns)− 1. Thus

Dn(A) =

{
x

N/(n,N)
: 0 6 x < N

(n,N)
, x ∈ N/(n,N)

ns/(n, ns)
Z for some s = 1, · · · , k

}
=

{
x

[n,N ]/n
: 0 6 x < [n,N ]

n
and x ∈

k⋃
s=1

[n,N ]

[n, ns]
Z

}
and so

|Dn(A)| =
∑

d|ns/(n,ns)
for some s=1,··· ,k

ϕ(d)

=

∣∣∣∣∣
{

0 6 x < [n,N ]

n
: x ∈

k⋃
s=1

[n,N ]

[n, ns]
Z

}∣∣∣∣∣ =
[n,N ]

n
d

(
k⋃
s=1

[n,N ]

[n, ns]
Z

)
where as in (5) d(·) represents the asympotic density of a set.

5. Number of I ⊆ {1, · · · , k} such that

∑
s∈I

ms
ns

= v

Let A = {as + nsZ}ks=1 be an m-cover of Z. Let m1, · · · ,mk ∈ Z+ and v ∈
{Σs∈Ims/ns : I ⊆ {1, · · · , k}}. By Corollary 6,∣∣∣∣∣

{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
− v ∈ Z

}∣∣∣∣∣ > 1.

When v = 0 or Σks=1ms/ns, this gives that Σs∈Ims/ns ∈ Z+ for some I ⊆
{1, · · · , k}. When m1 = · · · = mk = 1 and A forms an exact m-cover of Z, if
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0 < v < Σks=1ms/ns = m then by Theorem 4 of [21]∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
= v

}∣∣∣∣∣ > 1,

and moreover by the main result of [20]∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
= v

}∣∣∣∣∣ >
(
m

v

)
if v ∈ {0, 1, · · · ,m}.

In this section we’ll say something further on |{I ⊆ {1, · · · , k} : Σs∈Ims/ns = v}|.

Lemma 6. For any numbers a1, · · · , an and x1, · · · , xn,
n∑
t=1

(
at
l

)
xt = 0 for every l = 0, 1, · · · ,m− 1

if and only if
n∑
t=1

altxt = 0 for all l = 0, 1, · · · ,m− 1.

Proof. For each l = 0, 1, · · · ,m− 1,(
x

l

)
=

l∑
j=0

(−1)l−j
s(l, j)

l!
xj and xl =

l∑
j=0

j!S(l, j)

(
x

j

)
where s(l, j) and S(l, j) (0 6 j 6 l) are Stirling numbers of the first kind and the
second kind respectively. From these we can easily deduce Lemma 6.

Lemma 7. Let a1, · · · , amax{m,n} be distinct numbers. Then

n∑
t=1

as−1
t xt = 0 for every s = 1, · · · ,m

if and only if
n∑
t=1

astxt = 0 for all s = 1, · · · ,m

where

ast =
m∏
i=1
i6=s

ai − at
ai − as

for s = 1, · · · ,m and t = 1, · · · , n.

Proof. When n > m, this is just Lemma 4 of [21]. In the case n < m,
n∑
t=1

as−1
t xt = 0 for every s = 1, · · · ,m

=⇒
n∑
t=1

as−1
t xt = 0 for every s = 1, · · · , n

=⇒x1 = · · · = xn = 0 (Vandermonde)

=⇒
n∑
t=1

as−1
t xt = 0 for every s = 1, 2, 3, · · ·
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and

n∑
t=1

astxt = 0 for all s = 1, · · · ,m

⇐⇒
n∑
t=1

δstxt = 0 for all s = 1, · · · ,m

⇐⇒xt = 0 for all t = 1, · · · , n

where δst is the Kronecker delta. Thus the desired result follows.

Remark. The original ideas for Lemmas 6 and 7 can be found in [21].

As a consequence of Lemmas 4, 6 and 7 we have

Lemma 8. Let a ∈ Z+, J = {1 6 s 6 k : (n, ns) | as − a} and mj ∈ Z+ for all
j ∈ J . Let S be as in (26) and qj , j ∈ J be as in Lemma 5. For each θ ∈ S we let
U(θ) be a set of m distinct numbers comparable with

V (θ) =

{∑
s∈I

ms

ns
: I ⊆ J and

{∑
s∈I

ms

ns

}
= θ

}

(i.e. |U(θ)| = m, and either U(θ) ⊆ V (θ) or U(θ) ⊇ V (θ)), and T (θ) a nonempty
set of reals in [0, 1) comparable with

W (θ) =

{{∑
s∈I

ms

ns
qs

}
: I ⊆ J and

{∑
s∈I

ms

ns

}
= θ

}

for which |T (θ)| < d(σ − θ) for all σ ∈ S \ {θ} where we use d(r) to denote the
denominator d of a rational r = c/d with c ∈ Z, d ∈ Z+ and (c, d) = 1. Then part
(ii) of Lemma 5 holds if and only if for any θ ∈ S one has∑

v∈V (θ)
w∈W (θ)

auvbvwcwt = 0 for all u ∈ U(θ) and t ∈ T (θ)(41)

where

auv =
∏

x∈U(θ)
x 6=u

x− v
x− u, bvw =

∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w

(−1)|I|

and

cwt = e2πiw
∏

x∈T (θ)
x 6=t

e2πix − e2πiw

e2πix − e2πit
.
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Proof. Let θ ∈ S and l ∈ {1, · · · , |T (θ)|}. For each j = 0, 1, · · · ,m− 1, by the fact
that d(σ − θ) - l for σ ∈ S \ {θ}, we have

∑
I⊆J

l(Σs∈Ims/ns−θ)∈Z

(−1)|I|

(
l
∑
s∈I

ms

ns

)j
e2πilΣs∈Iqsms/ns = 0

⇐⇒
∑

v∈V (θ)

vj
∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|e2πilΣs∈Iqsms/ns

=
∑
I⊆J

{Σs∈Ims/ns}=θ

(−1)|I|

(∑
s∈I

ms

ns

)j
e2πilΣs∈Iqsms/ns = 0.

As

(
Σs∈I lms/ns

j

)
=

j∑
i=0

(
[Σs∈I lms/ns]

i

)(
{Σs∈I lms/ns}

j − i

)

and

(
[Σs∈I lms/ns]

j

)
=

j∑
i=0

(
Σs∈I lms/ns

i

)(
−{Σs∈I lms/ns}

j − i

)

for all I ⊆ J , by Lemmas 6, 7 and the above

∑
I⊆J

{Σs∈I lms/ns}={lθ}

(−1)|I|
(

[Σs∈I
lms
ns

]

j

)
eΣs∈Iqslms/ns = 0 for j = 0, · · · ,m− 1(?)

holds if and only if

∑
v∈V (θ)
w∈W (θ)

auvbvwe
2πilw =

∑
v∈V (θ)

( ∏
x∈U(θ)
x 6=u

x− v
x− u

) ∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|e2πilΣs∈Iqsms/ns

vanishes for every u ∈ U(θ).
Under part (ii) of Lemma 5, system {qs + (ns/ms)Z}s∈J forms an m-cover of Z

by Lemma 4 and hence {qs + (lms/ns)
−1Z}s∈J forms an m-cover of Z for ev-

ery positive integer l, therefore by Lemma 4 (?) is valid for any θ ∈ S and
l = 1, · · · , |T (θ)|, |T (θ)| + 1, · · · . On the other hand, that (?) holds for l = 1
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and θ ∈ S gives part (ii) of Lemma 5. So, by the above and Lemma 7,

part (ii) of Lemma 5 holds

⇐⇒(?) is true for each θ ∈ S and l = 1, · · · , |T (θ)|

⇐⇒
∑

w∈W (θ)

(e2πiw)l−1
∑

v∈V (θ)

auvbvwe
2πiw =

∑
v∈V (θ)
w∈W (θ)

auvbvwe
2πilw = 0

for any θ ∈ S, u ∈ U(θ) and l = 1, · · · , |T (θ)|

⇐⇒
∑

w∈W (θ)

( ∏
x∈T (θ)
x 6=t

e2πix − e2πiw

e2πix − e2πit

) ∑
v∈V (θ)

auvbvwe
2πiw = 0

for all θ ∈ S, u ∈ U(θ) and t ∈ T (θ)

⇐⇒(41) holds for every θ ∈ S.
This ends our proof.

One more technical lemma is needed.

Lemma 9. Let c1, · · · , ck ∈ N and d1, · · · , dl ∈ Z+. Suppose that there exist
nonzero numbers x1, · · · , xk such that Σks=1csx

t
s = 0 for those t ∈ Z+ divisible

by none of d1, · · · , dl. Then

c1 + · · ·+ ck ∈ dlN+ · · ·+ dlN,

in particular (d1, · · · , dl) | c1 + · · ·+ ck.

Proof. Since each cs is the sum of finitely many 1’s, without loss of generality we
may assume that c1 = · · · = ck = 1. Let

D = d1N+ · · ·+ dlN = {d1z1 + · · ·+ dlzl : z1, · · · , zl ∈ N}
and

P (x) =
k∏
s=1

(x− xs) =
k∑
i=0

(−1)iσix
k−i.

We claim that for every j = 0, 1, · · · , k either j ∈ D or σj = 0.
Clearly 0 ∈ D. Let 1 6 j 6 k and assume that for any i = 0, 1, · · · , j − 1 either

i ∈ D or σi = 0. By Newton’s symmetric functions identity (cf. [9])

j−1∑
i=0

(−1)iσi(x
j−i
1 + · · ·+ xj−ik ) + (−1)jσjj = 0

and hence

(−1)jjσj =−
j−1∑
i=0

(−1)iσi(x
j−i
1 + · · ·+ xj−ik )

=−
j−1∑
i=0
i∈D

(−1)iσi(x
j−i
1 + · · ·+ xj−ik ) (since σi = 0 if i 6∈ D)

=−
j−1∑
i=0

i∈D, j−i∈D

(−1)iσi(x
j−i
1 + · · ·+ xj−ik )

(
k∑
s=1

xj−is = 0 if j − i 6∈ D
)
.
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So if j 6∈ D then we must have σj = 0. This proves the claim by induction.
As (−1)kσk = P (0) 6= 0, it follows from the claim that

k =
k∑
s=1

1 ∈ D ⊆ d1Z+ · · ·+ dlZ = (d1, · · · , dl)Z.

The proof is now complete.

Remark. A slightly weaker version of Lemma 9 was proved by Y. G. Chen and
Porubský [3].

Now we are able to establish

Theorem 3. Assume that (1) covers |S| consecutive terms in a + nZ at least m
times where a is an integer, S is the set of those {Σs∈Ims/ns} with

I ⊆ J = {1 6 s 6 k : (n, ns) | as − a} ⊆ {1, · · · , k}

and m1, · · · ,mk are positive integers divisible by (n, n1), · · · , (n, nk) respectively.
(I) Let θ ∈ S and P (θ) = {I ⊆ J : {Σs∈Ims/ns} = θ}. Set

V (θ) =

{∑
s∈I

ms

ns
: I ∈ P (θ)

}
and W (θ) =

{{∑
s∈I

ms

ns
qs

}
: I ∈ P (θ)

}
(42)

where for each s ∈ J we define qs to be such an integer that as+nqs ≡ as (mod ns).
Ia. For v ∈ V (θ) and w ∈W (θ) with p0(v, w) 6= p1(v, w) where

p0(v, w) =

∣∣∣∣∣
{
I ⊆ J : 2 | |I|,

∑
s∈I

ms

ns
= v &

{∑
s∈I

ms

ns
qs

}
= w

}∣∣∣∣∣
and

p1(v, w) =

∣∣∣∣∣
{
I ⊆ J : 2 - |I|,

∑
s∈I

ms

ns
= v &

{∑
s∈I

ms

ns
qs

}
= w

}∣∣∣∣∣ ,
at least one of the following (i)–(iii) holds.

(i) |Vw(θ)| > m where

Vw(θ) =

{∑
s∈I

ms

ns
: I ∈ P (θ) and

{∑
s∈I

ms

ns
qs

}
= w

}
;(43)

(ii) |Wv(θ)| > d(σ − θ) for some σ ∈ S \ {θ} where

Wv(θ) =

{{∑
s∈I

ms

ns
qs

}
: I ∈ P (θ) and

∑
s∈I

ms

ns
= v

}
;(44)

(iii) |V (θ)| > m, and |W (θ)| > d(σ − θ) for some σ ∈ S with σ 6= θ.
Ib. If for some v ∈ V (θ) all the numbers p0(v, w) − p1(v, w), w ∈ Wv(θ) have

the same sign and∣∣∣∣∣∣∣∣
∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|

∣∣∣∣∣∣∣∣ 6∈ S(θ) =


∑
σ∈S
σ 6=θ

d(σ − θ)xσ : xσ ∈ N for σ ∈ S \ {θ}

 ,
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we then have |P (θ)| > |V (θ)| > m. Providing

∑
I⊆J

{Σs∈Ims/ns}=θ

(−1)|I|

[∑
s∈I

ms

ns

]l
6= 0 for some l = 0, 1, · · · ,m− 1,(45)

|P (θ)| > |W (θ)| > d(σ − θ) for some σ ∈ S \ {θ}.
(II) For any number v we let

K(v) =

{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
− v ∈ Z

}
,

L(v) =

{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
= v

}
.

(46)

IIa. When |{1 6 s 6 k : ns | ms}| < m, for some v ∈ Q we have

|K(v)| > d
(∑
s∈I

ms

ns
− v
)

for some I ⊆ {1, · · · , k} with
∑
s∈I

ms

ns
− v 6∈ Z.(47)

IIb. Let v be such a number that∣∣∣∣∣
{∑
s∈I

ms

ns
: I ∈ K(v)

}∣∣∣∣∣ 6 m,
or every element of K(v) contains t for which (1) forms an exact m-cover of a+nZ
with at + ntZ essential and ms = (n, ns) for every s = 1, · · · , k. If 2 - |L(v)| then

|L(v)| > d
(∑
s∈I

ms

ns
− v
)

for some I ⊆ {1, · · · , k} with
∑
s∈I

ms

ns
− v 6∈ Z.(48)

When all the |I| with I ∈ L(v) are odd, or all of them are even,

|L(v)| = d1 + · · ·+ dl for some (not necessarily distinct) d1, · · · , dl (l > 0)

in the form d

(∑
s∈I

ms

ns
− v
)

where I ⊆ {1, · · · , k} and
∑
s∈I

ms

ns
− v 6∈ Z.(49)

Proof. Let’s first prove part (I).
Ia) Clearly v ∈ Vw(θ) and w ∈Wv(θ) since

bvw =
∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w

(−1)|I| = p0(v, w) − p1(v, w) 6= 0.

When |Vw(θ)| 6 m, we can choose a set U(θ) of m distinct numbers such that
either Vw(θ) ⊆ U(θ) ⊆ V (θ) or Vw(θ) ⊆ V (θ) ⊆ U(θ); similarly when |Wv(θ)| <
d(σ − θ) for all σ ∈ S with σ 6= θ, we may choose a set T (θ) ⊆ [0, 1) with |T (θ)| =
minσ∈S\{θ} d(σ − θ) − 1 if S 6= {θ}, such that either Wv(θ) ⊆ T (θ) ⊆ W (θ) or
Wv(θ) ⊆W (θ) ⊆ T (θ).

If |V (θ)| 6 m and |Wv(θ)| < d(σ − θ) for all σ ∈ S \ {θ}, then v ∈ V (θ) ⊆ U(θ),
w ∈Wv(θ) ⊆ T (θ) (where U(θ) and T (θ) are chosen as in the above) and hence by
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Lemmas 5 and 8

0 =
∑

v′∈V (θ)

( ∏
x∈U(θ)
x 6=v

x− v′
x− v

) ∑
w′∈W (θ)

∑
I⊆J

Σs∈Ims/ns=v
′

{Σs∈Iqsms/ns}=w′

(−1)|I|e2πiw′
∏

x∈T (θ)
x 6=w

Fw,w′(x)

=
∑

w′∈W (θ)

∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w′

(−1)|I|e2πiw′
∏

x∈T (θ)
x 6=w

Fw,w′(x)

=
∑

w′∈Wv(θ)

∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w′

(−1)|I|e2πiw′
∏

x∈T (θ)
x 6=w

Fw,w′(x) = e2πiwbvw 6= 0

where Fw,w′(x) stands for (e2πix−e2πiw′)/(e2πix−e2πiw). This contradiction shows
that either |V (θ)| > m or |Wv(θ)| > d(σ− θ) for some σ ∈ S with σ 6= θ. Similarly,
if |Vw(θ)| 6 m and |W (θ)| < d(σ − θ) for all σ ∈ S \ {θ}, then v ∈ Vw(θ) ⊆ U(θ),
w ∈W (θ) ⊆ T (θ) and by Lemmas 5 and 8

∑
w′∈W (θ)

e2πiw′
( ∏
x∈T (θ)
x 6=w

Fw,w′(x)

) ∑
v′∈V (θ)

( ∏
x∈U(θ)
x 6=v

x− v′
x− v

) ∑
I⊆J

Σs∈Ims/ns=v
′

{Σs∈Iqsms/ns}=w′

(−1)|I|

is zero and equal to

e2πiw
∑

v′∈Vw(θ)

( ∏
x∈U(θ)
x 6=v

x− v′
x− v

) ∑
I⊆J

Σs∈Ims/ns=v
′

{Σs∈Iqsms/ns}=w

(−1)|I| = e2πiwbvw

which is nonzero, also a contradiction. Thus either |Vw(θ)| > m or |W (θ)| > d(σ−θ)
for some σ ∈ S with σ 6= θ. This together with the above proves Ia.

Ib) Assume that |V (θ)| 6 m and that V (θ) has an element v for which either
p0(v, w)−p1(v, w) > 0 for all w ∈Wv(θ) or p0(v, w)−p1(v, w) 6 0 for all w ∈Wv(θ).
Choose U(θ) to be a set of m distinct numbers which contains V (θ). For those
l ∈ Z+ not divisible by any d(σ − θ) with σ ∈ S \ {θ}, when I ⊆ J the number
l(Σs∈Ims/ns− θ) lies in Z if and only if {Σs∈Ims/ns} = θ, so by Lemma 5 and the
proof of Lemma 8 we have

0 =
∑

v′∈V (θ)
w∈W (θ)

( ∏
x∈U(θ)
x 6=v

x− v′
x− v

) ∑
I⊆J

Σs∈Ims/ns=v
′

{Σs∈Iqsms/ns}=w

(−1)|I|e2πilw

=
∑

w∈W (θ)

∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w

(−1)|I|e2πilw =
∑

w∈Wv(θ)

bvwe
2πilw

and hence ∑
w∈Wv(θ)

|bvw|e2πilw = 0(†)
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since all the bvw = p0(v, w) − p1(v, w), w ∈ Wv(θ) have the same sign. When
S = {θ}, as (†) holds for each l = 1, 2, · · · , |Wv(θ)| by Cramer’s rule |bvw| = 0 for
all w ∈Wv(θ) and therefore∑

I⊆J
Σs∈Ims/ns=v

(−1)|I| =
∑

w∈Wv(θ)

bvw = 0 ∈ S(θ) = {0}.

If S 6= {θ}, then by Lemma 9∣∣∣∣∣∣∣∣
∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

w∈Wv(θ)

bvw

∣∣∣∣∣∣ =
∑

w∈Wv(θ)

|bvw| ∈ S(θ).

This completes the proof of the first assertion in Ib.
Now suppose that |W (θ)| < d(σ − θ) for all σ ∈ S \ {θ}. Clearly we can choose

a set T (θ) for which W (θ) ⊆ T (θ) ⊆ [0, 1), and |T (θ)| = minσ∈S\{θ} d(σ − θ) − 1
if S 6= {θ}. Let U(θ) be a set of m numbers comparable with V (θ). For each
u ∈ U(θ), by Lemmas 5 and 8 for all w ∈W (θ),

∑
w′∈W (θ)

e2πiw′
( ∏
x∈T (θ)
x 6=w

Fw,w′(x)

) ∑
v∈V (θ)

( ∏
x∈U(θ)
x 6=u

x− v
x− u

) ∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w′

(−1)|I|

is identical with zero and so is

e2πiw
∑

v∈V (θ)

( ∏
x∈U(θ)
x 6=u

x− v
x− u

) ∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w

(−1)|I|,

thus

∑
v∈V (θ)

( ∏
x∈U(θ)
x 6=u

x− v
x− u

) ∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|

=
∑

w∈W (θ)

∑
v∈V (θ)

( ∏
x∈U(θ)
x 6=u

x− v
x− u

) ∑
I⊆J

Σs∈Ims/ns=v
{Σs∈Iqsms/ns}=w

(−1)|I| = 0.

With the help of Lemma 7,∑
v∈V (θ)

vj
∑
I⊆J

Σs∈Ims/ns=v

(−1)|I| = 0 for every j = 0, 1, · · · ,m− 1.
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For each l = 0, 1, · · · ,m− 1 it follows that

∑
I⊆J

{Σs∈Ims/ns}=θ

(−1)|I|

[∑
s∈I

ms

ns

]l
=

∑
v∈V (θ)

∑
I⊆J

Σs∈Ims/ns=v

(−1)|I|(v − θ)l

=
l∑

j=0

(
l

j

)
(−θ)l−j

∑
v∈V (θ)

vj
∑
I⊆J

Σs∈Ims/ns=v

(−1)|I| = 0.

This proves the second assertion in Ib.
Let’s now proceed to part (II).
IIa) Suppose that m > |{1 6 s 6 k : ns | ms}| > |{s ∈ J : ns | ms}|, then

{(ns/ms)Z}s∈J doesn’t cover 1 at least m times. By Lemma 4, for some θ ∈ S,

∑
I⊆J

{Σs∈Ims/ns}=θ

(−1)|I|
(

[Σs∈Ims/ns]

l

)
eΣs∈I0·ms/ns 6= 0 for some l = 0, 1, · · · ,m− 1

and therefore (45) follows from Lemma 6. By part Ib, |P (θ)| > |W (θ)| > d(σ − θ)
for some σ ∈ S \ {θ}. For v = θ + Σs∈{1,··· ,k}\Jms/ns,

|K(v)| >

∣∣∣∣∣∣
I ∪ ({1, · · · , k} \ J) : I ⊆ J &

∑
s∈I

ms

ns
+

∑
s∈{1,··· ,k}\J

ms

ns
− v ∈ Z


∣∣∣∣∣∣

=

∣∣∣∣∣
{
I ⊆ J :

∑
s∈I

ms

ns
− θ ∈ Z

}∣∣∣∣∣ = |P (θ)|

and so for some I0 ⊆ J with {Σs∈I0ms/ns} 6= θ we have

|K(v)| > d
({∑

s∈I0

ms

ns

}
− θ
)

= d

(∑
s∈I0

ms

ns
− v +

k∑
s=1
s6∈J

ms

ns

)
= d

(∑
s∈I1

ms

ns
− v
)

where I1 = I0 ∪ ({1, · · · , k} \ J) ⊆ {1, · · · , k} and Σs∈I1ms/ns − v 6∈ Z.
IIb) Let J ′ ⊆ {1, · · · , k} \ J and v′ = v − Σs∈J′ms/ns. If I ⊆ J then{∑

s∈I

ms

ns

}
− {v′} ≡

∑
s∈I

ms

ns
− v +

∑
s∈J′

ms

ns
≡

∑
s∈I∪J′

ms

ns
− v (mod 1).

We claim that

|V ({v′})| =
∣∣∣∣∣
{∑
s∈I

ms

ns
: I ⊆ J &

∑
s∈I

ms

ns
+
∑
s∈J′

ms

ns
− v ∈ Z

}∣∣∣∣∣
=

∣∣∣∣∣
{ ∑
s∈I∪J′

ms

ns
: I ⊆ J &

∑
s∈I∪J′

ms

ns
− v ∈ Z

}∣∣∣∣∣ 6 m.
For, if not, then |{Σs∈Ims/ns : I ∈ K(v)}| 66 m, Σs∈Ims/ns > m + {v′} for
some I ⊆ J , ms = (n, ns) for each s = 1, · · · , k, Σs∈I′(n, ns)/ns − v 6∈ Z for
all I ′ ⊆ {1, · · · , k} \ {t} and A covers a + nZ exactly m times with at + ntZ
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essential, hence t ∈ J, v′ /∈ Z, system A′ = {qs + (ns/(n, ns))Z}s∈J forms an exact
m-cover of Z (by Lemma 1) and therefore

m =
∑
s∈J

1

ns/(n, ns)
>
∑
s∈I

(n, ns)

ns
> m+ {v′} > m,

a contradiction!
As

|L(v)| =

∣∣∣∣∣∣
⋃

J′⊆{1,··· ,k}\J

{
I ∪ J ′ : I ⊆ J &

∑
s∈I∪J′

ms

ns
= v

}∣∣∣∣∣∣
=

∑
J′⊆{1,··· ,k}\J

∣∣∣∣∣
{
I ⊆ J :

∑
s∈I

ms

ns
= v −

∑
s∈J′

ms

ns

}∣∣∣∣∣ ,
provided that 2 - |L(v)|, for some J ′ ⊆ {1, · · · , k} \ J , |{I ⊆ J : Σs∈Ims/ns = v′}|
is odd where v′ = v − Σs∈J′ms/ns, and hence for some w ∈W ({v′}) we have∣∣∣∣∣

{
I ⊆ J : 2 | |I|,

∑
s∈I

ms

ns
= v′ &

{∑
s∈I

ms

ns
qs

}
= w

}∣∣∣∣∣
6=
∣∣∣∣∣
{
I ⊆ J : 2 - |I|,

∑
s∈I

ms

ns
= v′ &

{∑
s∈I

ms

ns
qs

}
= w

}∣∣∣∣∣ .
Since |V ({v′})| 6 m, by part Ia there exists an I ′ ⊆ J with {Σs∈I′ms/ns} 6= {v′}
such that

|L(v)| >
∣∣∣∣∣
{
I ⊆ J :

∑
s∈I

ms

ns
= v′

}∣∣∣∣∣ > |Wv′({v′})|

>d
({∑

s∈I′

ms

ns

}
− {v′}

)
= d

(∑
s∈I′′

ms

ns
− v
)

where I ′′ = I ′ ∪ J ′ ⊆ {1, · · · , k} and Σs∈I′′ms/ns − v 6∈ Z.
On the condition that there is an ε ∈ {1,−1} for which (−1)|I| = ε for every

I ∈ L(v), for each J ′ ⊆ {1, · · · , k} \ J all the (−1)|I| with I ⊆ J and Σs∈Ims/ns =
v − Σs∈J′ms/ns have the same value. Clearly it suffices to show that

|L(v)| =
∑

J′⊆{1,··· ,k}\J

∣∣∣∣∣
{
I ⊆ J :

∑
s∈I

ms

ns
= v −

∑
s∈J′

ms

ns

}∣∣∣∣∣
∈
{ ∑

I⊆{1,··· ,k}
Σs∈Ims/ns−v 6∈Z

xId

(∑
s∈I

ms

ns
− v
)

: xI ∈ N for each I

}
.

Fix J ′ ⊆ {1, · · · , k} \ J . As |V ({v′})| 6 m where v′ = v − Σs∈J′ms/ns, by part Ib

∣∣∣∣∣
{
I ⊆ J :

∑
s∈I

ms

ns
= v′

}∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
I⊆J

Σs∈Ims/ns=v
′

(−1)|I|

∣∣∣∣∣∣∣∣
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can be written in the form

∑
I⊆J

{Σs∈Ims/ns}6={v′}

cId

({∑
s∈I

ms

ns

}
− {v′}

)
=

∑
I⊆J

Σs∈I∪J′ms/ns−v 6∈Z

cId

( ∑
s∈I∪J′

ms

ns
− v
)

where all the cI are nonnegative integers. We are done.

In contrast with Corollaries 1 and 2 we give here

Corollary 11. . Let A = {as + nsZ}ks=1 be an exact m-cover of some AS(n) and
J a subset of {1, · · · , k} with v = Σs∈J (n, ns)/ns 6∈ Z. If A is minimal, or there
is a t ∈ {1, · · · , k} with at + ntZ essential such that Σs∈I(n, ns)/ns − v 6∈ Z for all
I ⊆ {1, · · · , k} \ {t}, then either∣∣∣∣∣

{
I ⊆ {1, · · · , k} :

∑
s∈I

(n, ns)

ns
= v

}∣∣∣∣∣
> min

I⊆{1,··· ,k}
Σs∈I (n,ns)/ns−v 6∈Z

d

(∑
s∈I

(n, ns)

ns
− v
)
> p

(
[n, n1, · · · , nk]

n

)
,

(50)

or ∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

(n, ns)

ns
= v

}∣∣∣∣∣ ≡ 0 (mod 2)(51)

and ∑
s∈I

(n, ns)

ns
= v for some I ⊆ {1, · · · , k} with |I| 6≡ |J | (mod 2).(52)

Proof. It follows from part IIb of Theorem 3 and the following observations.
(a) When A is minimal, by Lemma 1 for some suitable integers q1, · · · , qk system

{qs + (ns/(n, ns))Z}ks=1 forms an exact m-cover of Z, and therefore∣∣∣∣∣
{∑
s∈I

(n, ns)

ns
: I ⊆ {1, · · · , k} &

∑
s∈I

(n, ns)

ns
− v ∈ Z

}∣∣∣∣∣ 6 m
since Σks=1(n, ns)/ns = m and v 6∈ Z.

(b) Σs∈I(n, ns)/ns−v 6∈ Z for some I ⊆ {1, · · · , k}, e.g. Σs∈∅(n, ns)/ns−v 6∈ Z.
And not all of n1, · · · , nk divide n because Σs∈J (n, ns)/ns 6∈ Z.

(c) If I ⊆ {1, · · · , k} and Σs∈I(n, ns)/ns − v 6∈ Z, then

d

(∑
s∈I

(n, ns)

ns
− v
)

= d

(∑
s∈I

(
[n, ns]

n

)−1

−
∑
s∈J

(
[n, ns]

n

)−1
)

>p
([

[n, n1]

n
, · · · , [n, nk]

n

])
= p

(
[n, n1, · · · , nk]

n

)
.

Remark. Let (1) be an exact m-cover of Z. Then for each t = 1, · · · , k system
A forms an exact m-cover of at + nZ with at + ntZ essential. If there exists a
unique J ⊆ {1, · · · , k} with Σs∈J (n, ns)/ns = v, then J̄ = {1, · · · , k} \ J is the
unique I ⊆ {1, · · · , k} such that Σs∈I(n, ns)/ns = v̄ where v̄ = Σks=1(n, ns)/ns− v,
by Corollary 11 for any t = 1, · · · , k there exists an I ⊆ {1, · · · , k} \ {t} with
Σs∈I(n, ns)/ns− v̄ ∈ Z (which is obvious if v̄ ∈ Z) and hence Σs∈Ī(n, ns)/ns−v ∈ Z
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where t ∈ Ī = {1, · · · , k} \ I. This proves part (i) of Theorem II. (Please compare
it with part (iii) of Corollary 1.) Since A forms a minimal exact m-cover of Z, also
by Corollary 11, if v = Σs∈J1/ns 6∈ Z where J ⊆ {1, · · · , k} then (50), or (51) and
(52) hold for n = 1.

Corollary 12. Suppose that system A = {as+nsZ}ks=1 covers an APn(|{{Σs∈Irs} :
I ⊆ {1, · · · , k}}|) at least m times where the rs are rationals with rsns/(n, ns) ∈ Z+

and

r1 > · · · > rk−l > rk−l+1 = · · · = rk (0 6 l 6 k).(53)

Let λ ∈ Z, 0 6 λ 6 l, and λ < rk−l/rk if l < k. Then either∣∣∣∣∣
{∑
s∈I

rs : I ⊆ {1, · · · , k} &
∑
s∈I

rs − λrk ∈ Z
}∣∣∣∣∣ > m(54)

and hence
k−λ∑
s=1

rs =
k∑
s=1

rs − λrk > m− [λrk],(55)

or
(
l
λ

)
can be written as the sum of some denominators greater than 1 of the ratio-

nals Σs∈Irs − λrk, I ⊆ {1, · · · , k}.

Proof. Set m1 = n1r1, · · · , mk = nkrk and

Vλ =

{∑
s∈I

rs : I ⊆ {1, · · · , k} &
∑
s∈I

rs ≡ λrk (mod 1)

}
.

Clearly ms ∈ Z+ and (n, ns) | ms for s = 1, · · · , k. If |Vλ| > m then

k∑
s=1

rs > max
r∈Vλ

r > m+ {λrk}

and (55) follows.
Now assume that |Vλ| 6 m. If I ⊆ {1, · · · , k} and λrk = Σs∈Ims/ns = Σs∈Irs,

then we must have I ⊆ {s ∈ Z : k − l < s 6 k} (since r1 > · · · > rk−l > λrk if
l < k) and therefore |I| = λ. By part IIb of Theorem 3,(

l

λ

)
=

∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

ms

ns
= λrk

}∣∣∣∣∣ = d1 + · · ·+ dt

where d1, · · · , dt are suitable numbers in the set{
d

(∑
s∈I

ms

ns
− λrk

)
: I ⊆ {1, · · · , k} &

∑
s∈I

ms

ns
− λrk 6∈ Z

}

=

{
d

(∑
s∈I

rs − λrk

)
: I ⊆ {1, · · · , k} &

∑
s∈I

rs − λrk 6∈ Z
}
.

This completes the proof.

Let (1) be an m-cover of Z. Putting λ = 0 and n = 1 in Corollary 12 we obtain
part (i) of Theorem I. In the case λ = n = 1 and rs = 1/ns for s = 1, · · · , k,
Corollary 12 yields the latter assertion in part (iv) of Theorem I. If (1) forms an
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exact m-cover of Z, then part (iv) of Theorem II follows from Corollary 12 since
Σks=11/ns = m.

As for the former assertion in part (iv) of Theorem I, here we present

Corollary 13. Let A = {as+nsZ}ks=1 be an m-cover of Z with (7) where 0 < l < k
and lnk−l < nk. Then for every positive integer r < nk/(lnk−l) we have∣∣∣∣{∑

s∈I

1

ns
: I ⊆ {1, · · · , k − l},

∑
s∈I

1

ns
− jr

nk
∈ Z for some j = 0, · · · , l

}∣∣∣∣
>
∣∣∣∣{x =

∑
s∈I

1

ns
+
jr

nk
: I ⊆ {1, · · · , k − l}, j ∈ {0, 1, · · · , l}, {x} =

lr

nk

}∣∣∣∣
>m,

(56)

thus Σk−ls=11/ns > m, and either there are at least m positive integers in the form
Σs∈I1/ns with I ⊆ {1, · · · , k − l} or{{∑

s∈I

1

ns

}
: I ⊆ {1, · · · , k − l}

}
⊇
{
rr′

nk
: r ∈ N & r <

nk
lnk−l

}
(57)

where each r′ is a suitable integer among 1, · · · , l.

Proof. Let r be any positive integer less than nk/(lnk−l). Applying Corollary 12
with λ = l, n = 1, r1 = 1/n1, · · · , rk−l = 1/nk−l and rk−l+1 = · · · = rk = r/nk, we
get the second inequality of (56) which implies that

k−l∑
s=1

1

ns
+
lr

nk
> m+

lr

nk
, i.e

k−l∑
s=1

1

ns
> m.

The first inequality of (56) is apparent. In fact, if Σs∈I11/ns + ir/nk and
Σs∈I21/ns + jr/nk are distinct rationals with fractional part lr/nk where I1, I2 ⊆
{1, · · · , k − l} and i, j ∈ {0, 1, · · · , l}, then Σs∈I11/ns 6= Σs∈I21/ns since otherwise
we would have

ir

nk
=

{
ir

nk

}
6=
{
jr

nk

}
=
jr

nk

which is impossible.
Note that Σs∈∅1/ns = 0 ∈ N. When∣∣∣∣∣

{∑
s∈I

1

ns
: ∅ 6= I ⊆ {1, · · · , k − l} and

∑
s∈I

1

ns
∈ Z

}∣∣∣∣∣ < m,

by (56) {Σs∈I1/ns} = jr/nk for some I ⊆ {1, · · · , k − l} and j = 1, · · · , l. The
proof is ended.

Example 3. Let n > 2 be odd and k = 2n − 1. Let as = 2s−1 and ns = 2s for
s = 1, · · · , n− 1, as = 2n−1(s− n+ 1) and ns = 2s−nn for s = n, · · · , k. Since

{20 + 2Z, 2 + 22Z, · · · , 2n−2 + 2n−1Z, 2n−1Z}

disjointly covers Z and {2n−1t+ 2t−1nZ}nt=1 covers
⋃n
t=1 2n−1t+ 2n−1nZ = 2n−1Z

with all the 2n−1t+ 2t−1nZ essential, A = {as +nsZ}ks=1 forms a minimal cover of
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Z with n1, . . . , nk distinct. By a trivial computation

k∑
s=1

1

ns
=

(2n−1 − 1)n+ 2n − 1

2n−1n
= 1 +

2n − n− 1

2n−1n
< 1 +

2

n
< 2,

and Σks=11/ns > 1 as is claimed by a conjecture of Erdös. In view of Corollary 13

we should have Σk−1
s=11/ns > 1, which can be easily verified.

Because every natural number can be uniquely expressed as a sum of distinct
powers of two,{∑

s∈I

1

ns
: I ⊆ {1, · · · , n− 1}

}
=

{
0,

1

2n−1
, · · · , 2n−1 − 1

2n−1

}
,

{∑
s∈I

1

ns
: I ⊆ {n, · · · , k − 1}

}
=

{
0,

1

2n−2n
, · · · , 2n−1 − 1

2n−2n

}
,

and {∑
s∈I

1

ns
: I ⊆ {n, · · · , k}

}
=

{
0,

1

2n−1n
, · · · , 2n − 1

2n−1n

}
.

Observe that{{∑
s∈I

1

ns

}
: I ⊆ {1, · · · , k − 1}

}

=

{{∑
s∈I1

1

ns
+
∑
s∈I2

1

ns

}
: I1 ⊆ {1, · · · , n− 1}, I2 ⊆ {n, · · · , k − 1}

}

=

{{
i

2n−1
+

j

2n−2n

}
: i, j = 0, 1, · · · , 2n−1 − 1

}
=

{{
in+ 2j

2n−1n

}
: i, j = 0, 1, · · · , 2n−1 − 1

}
.

If we write a natural number r less than 2n−1n in the form cn+ d where c, d ∈ N,
c < 2n−1 and d < n, then

in+ 2j ≡ cn+ d = r (mod 2n−1n) for some i, j = 0, 1, · · · , 2n−1 − 1,

in fact we may let i = c, j = d/2 if 2 | d; i = c− 1, j = (d+n)/2 if c > 0 and 2 - d;
i = 2n−1 − 1 and j = (d+ n)/2 if c = 0 and 2 - d. Thus{{∑

s∈I

1

ns

}
: I ⊆ {1, · · · , k − 1}

}
=

{
0,

1

2n−1n
, · · · , 2n−1n− 1

2n−1n

}
,

and hence{{∑
s∈I

1

ns

}
: I ⊆ {1, · · · , k}

}
=

{{∑
s∈I

1

ns

}
: I ⊆ {1, · · · , k − 1}

}

=

{
r

nk
: r = 0, 1, · · · , nk − 1

}
as is implied by Corollary 5.

Write 2n − 1 in the form nq + a where a, q ∈ Z and 0 6 a < n. Then 2 6
q 6 (2n − 1)/n 6 2n−1 − 1, and a ≥ 1 since n - 2n − 1 (cf. F10 of [8]). For
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r = 0, 1, · · · , (2n−1 − 1)n+ 2n − 1 with {r/n} > a/n, 0 6 [r/n] < 2n−1 − 1 + q and
therefore

∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
=

r

2n−1n

}∣∣∣∣∣
=

∣∣∣∣∣
{
I1 ∪ I2 : I1 ⊆ {1, · · · , n− 1}, I2 ⊆ {n, · · · , k},

∑
s∈I1

1

ns
+
∑
s∈I2

1

ns
=

r

2n−1n

}∣∣∣∣∣
=

∣∣∣∣{〈i, j〉 ∈ N× N : i 6 2n−1 − 1, j 6 2n − 1 &
i

2n−1
+

j

2n−1n
=

r

2n−1n

}∣∣∣∣
=

∣∣∣∣{〈i, j〉 ∈ Z× Z : 0 6 i < 2n−1, n | j − r, 0 6
[
j

n

]
=
[ r
n

]
− i < q

}∣∣∣∣
=
∣∣∣{i ∈ Z : max

{
0,
[ r
n

]
− q + 1

}
6 i 6 min

{
2n−1 − 1,

[ r
n

]}}∣∣∣
= min

{
2n−1 − 1,

[ r
n

]}
−max

{
0,
[ r
n

]
− q + 1

}
+ 1

= min
{[ r
n

]
+ 1, q, 2n−1 − 1 + q −

[ r
n

]}
=


[r/n] + 1, if 0 6 [r/n] < q;

q, if q 6 [r/n] < 2n−1;

q − 1− ([r/n]− 2n−1), if 2n−1 6 [r/n] < 2n−1 − 1 + q

>0.

In a similar way, for any r = 0, 1, · · · , (2n−1 − 1)n+ 2n − 1 with {r/n} 6 a/n one
can deduce that

∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
=

r

2n−1n

}∣∣∣∣∣
=
∣∣{〈i, j〉 ∈ N× N : i 6 2n−1 − 1, j 6 2n − 1 & in+ j = r

}∣∣
=

∣∣∣∣{〈i, j〉 ∈ Z× Z : 0 6 i < 2n−1, n | j − r & 0 6
[ r
n

]
− i =

[
j

n

]
6 q
}∣∣∣∣

=
∣∣∣{i ∈ Z : max

{
0,
[ r
n

]
− q
}
6 i 6 min

{
2n−1 − 1,

[ r
n

]}}∣∣∣
= min

{
2n−1 − 1,

[ r
n

]}
−max

{
0,
[ r
n

]
− q
}

+ 1

= min
{[ r
n

]
, q, 2n−1 − 1 + q −

[ r
n

]}
+ 1

=


[r/n] + 1, if 0 6 [r/n] < q;

q + 1, if q 6 [r/n] < 2n−1;

q − ([r/n]− 2n−1), if 2n−1 6 [r/n] 6 2n−1 − 1 + q

>0,
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in particular ∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
= 1

}∣∣∣∣∣
=

∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
= 1 +

1

2n−1n

}∣∣∣∣∣
=q =

[
2n − 1

n

]
.

Thus{∑
s∈I

1

ns
: I ⊆ {1, · · · , k}

}
=
{ r

2n−1n
: r = 0, 1, · · · , (2n−1 − 1)n+ 2n − 1

}
,

∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
=

r

2n−1n

}∣∣∣∣∣ = 1

for r ∈ {0, 1, · · · , n− 1} ∪ {(2n−1 − 2)n+ 2n, · · · , (2n−1 − 1)n+ 2n − 1},∣∣∣∣∣
{
I ⊆ {1, · · · , k} :

∑
s∈I

1

ns
∈ Z+

}∣∣∣∣∣ > 0

as is told by Zhang’s result or part (i) of Theorem I, and∣∣∣∣∣
{∑
s∈I

1

ns
: I ⊆ {1, · · · , k} &

{∑
s∈I

1

ns

}
=

1

nk

}∣∣∣∣∣ =

∣∣∣∣{ 1

nk
, 1 +

1

nk

}∣∣∣∣ > 1

as is asserted by Corollary 13 since nk−1 < nk = 2nk−1.

Remark. J. D. Swift ([23]) noted in 1954 that if g ≡ 2 (mod 4) is a primitive root
modulo an odd prime p then

{g0 + 2Z, g + 22Z, · · · , gp−2 + 2p−1Z, g0 + 20pZ, g + 2pZ, · · · , gp−2

+ 2p−2pZ, 2p−1pZ}
forms a cover of Z. This can be easily obtained from Example 3 with n = p.

Putting n = 3 in Example 3 we get the following cover of Z:

{1 + 2Z, 1 + 3Z, 2 + 4Z, 2 + 6Z, 12Z}.
It can be shown that if {as +nsZ}ks=1 is a cover of Z with k > 1 and n1 < · · · < nk
then k > 5 and nk > 12 (cf. [10]).

Let x ≥ 12 and set

D(x) = inf
k∑
s=1

1

ns
(58)

where the infimum is taken over all those covers (1) of Z with k > 1 and n1 < · · · <
nk 6 x. An unsolved problem is to determine D(x) (see [13]). Let n be the odd
integer with

1 <
logx

2.5 log 2
6 n < 2 +

logx

2.5 log 2
,
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by Example 3

D(x) < 1 +
2

n
6 1 +

5 log 2

logx

since 23−1 · 3 = 12 6 x, and 2n−1n 6 2n−1 · 21.5n−4 = 22.5(n−2) < x if n > 4. Note
that when {as + nsZ}ks=1 forms a cover of Z with k > 1 and n1 < · · · < nk, by
Corollary 13

k∑
s=1

1

ns
=
k−1∑
s=1

1

ns
+

1

nk
> 1 +

1

nk
.

So we have

1

x
6 D(x) − 1 <

5 log 2

logx
for x > 12(59)

and therefore

D(x) = 1 +O

(
1

logx

)
, lim

x→+∞
D(x) = 1.(60)

6. Open Problems and New Conjectures

The contents of the previous sections suggest some further questions and new
conjectures.

Problem 1. Find combinatorial proofs of the theorems and corollaries which have
no direct connections with the roots of unity. Extend some of our results to infinite
(exact) m-covers of Z. Provide something analogous to Theorems I and II for
(exact) m-covers of the squares with the help of quadratic Gauss sums.

The observation that an arithmetic sequence a+ nZ can be viewed as a coset of
an ideal in the ring of rational integers yields

Problem 2. Let OK be the ring of algebraic integers in an algebraic number field
K. Let a1, · · · , ak ∈ OK and A1, · · · , Ak be integral ideals ofOK whose norms (with
respect to the field extension K/Q) are n1, · · · , nk respectively. On the condition
that {as+As}ks=1 forms an (exact) m-cover of OK , will parts (i)−(iv) of Theorem I
(resp., Theorem II) still hold? We conjecture the positive answer for those K with
class number 1.

Note that Z is an infinite cyclic group (under the usual addition) for which nZ
is its subgroup of index n. In general one may study (finite) m-covers of a group
by left cosets of its subgroups. As a matter of fact, some known results introduced
in Section 1 have already been generalized in this direction. However there is no
obvious way to attack

Problem 3. Let G be a group and G1, · · · , Gk its subgroups of indices n1, · · · , nk
respectively. Provided that {asGs}ks=1 is an (exact) m-cover of G for some elements
a1, · · · , ak of G, whether parts (i)−(iv) of Theorem I (resp., Theorem II) remain
true? We conjecture that this is the case if G1, · · · , Gk are subnormal in G.

Now we present a problem as a supplement to Theorem 1.

Problem 4. If we replace ‘at least’ and ‘m-cover’ in the first part of Theorem 1
by ‘exactly’ and ‘exact m-cover’ respectively, will the new version of part (i) of
Theorem 1 be valid? In particular, when {as+nsZ}ks=1 covers |{{Σs∈I1/ns} : I ⊆
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{1, · · · , k}}| consecutive integers exactly m times, does it necessarily form an exact
m-cover of Z? We believe so.

Crittenden and Vanden Eynden conjectured in 1972 that if n1, · · · , nk are not
less than a positive integer l not exceeding k, then {as + nsZ}ks=1 forms a cover of
Z whenever it covers 1, · · · , 2k−l+1l. (See E23 of [8].) This together with part (i)
of Theorem 1 suggests

Problem 5. Are there any integers m1, · · · ,mk prime to n1, · · · , nk respectively
such that ∣∣∣∣∣

{{∑
s∈I

ms

ns

}
: I ⊆ {1, · · · , k}

}∣∣∣∣∣ 6 2k−l+1l

where l = min{k, n1, · · · , nk}? If so, the Crittenden–Vanden Eynden conjecture
will follow from Theorem 1.

In contrast with Lemma 9, which is a useful tool, we propose

Problem 6. If c1, · · · , ck and d are integers for which there exist nonzero numbers
x1, · · · , xk such that Σks=1csx

t
s = 0 for all those t ∈ Z+ not divisible by d, does d

divide c1 + · · ·+ ck? We conjecture that the answer is affirmative.

The following problem is challenging and fascinating.

Problem 7. Characterize those tuples {ns}ks=1 such that for each t = 1, · · · , k
and r = 0, 1, · · · , nt − 1 there exists an I ⊆ {1, · · · , k} \ {t} with Σs∈I1/ns ≡
r/nt (mod 1). For what kind of covers of Z do the common differences form such
a tuple? We conjecture that if {as + nsZ}ks=1 forms an m-cover of Z and an exact
m-cover of at + ntZ with 1 6 t 6 k then for any r = 0, 1, · · · , nt − 1 there is an
I ⊆ {1, · · · , k} \ {t} such that Σs∈I1/ns ≡ r/nt (mod 1).

Let’s conclude the paper with

Problem 8. Is it true thatD(x) > 1+c1/ logx for x > 12? Can we haveD(x)−1 ∼
c2/ logx as x → +∞? Here D(x) is as in (58) and c1, c2 are suitable positive
constants.
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Dipartimento di Matematica, Università degli Studi di Trento, I-38050 Povo (Trento),

Italy

E-mail address: zhiwei@science.unitn.it

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


