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Abstract

The product of two subsets C, D of a group is defined as

CD = {ajS | a 6 C, jS e D}.

The power C is defined inductively by C° = {1}, C = CC'-1 = C'-1 C.
It is known that in the alternating group s/n, n > 4, there is a conjugacy class
C such that CC covers -s/n. On the other hand, there is a conjugacy class D
such that not only DD^ sfn, but even Lf^ $4n for e<[n/2]. It may be
conjectured that as n-»-oo, almost all classes C satisfy C3 = ^ n . In this
article, it is shown that as n -> oo, almost all classes C satisfy C4 = ^n.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 D 05, 20 B 99.

1. Introduction
Let G be a FINASIG (finite nonabelian simple group), and let C be a conjugacy
class in G. The power C is defined inductively by

& = C, C2 = CC, C = CC-1 = C"-1 C,

where CD = {aj3|aeC,j8eZ)}. The questions considered in this note revolve
around the set of values that can be assumed by AC), the lowest exponent for which
C = G. In particular, what is the expected value of v ? A modest start is made on
this question by establishing that, if G runs through the collection of finite alter-
nating groups, the expected value of this exponent (for covering) is ^ 4. I believe
the expected value to be 3; the methods that will be needed to establish that fact
are considerably more elaborate than the methods of this article. To paraphrase
the main result, if /cn is the relative frequency of classes C in s/n with the property
Ci = s/n, then »cn-»l as n->oo. It might be possible to reduce "4" to "3" by
applying the present methods, but elaborating the technique.

Next, let Cn, Dn, En, Fn be any four conjugacy classes in stfn. The statistical
probability that CnDnEnFn covers stfn\\ seems again to be 1 — sn, where em^-0
as n^-oo. For the product CnDn of two randomly chosen conjugacy classes, this
is no longer true. The truth of the corresponding assertion for the product Cn DnEn

of three conjugacy classes remains open.
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Certain results concerning J^ , , the alternating (finite support) permutation
group on the positive integers, follow from the results of this article.

2. Some lemmata

First, a description of the conjugacy classes in the symmetric and alternating
groups, Sfn and s/n.

2.01 LEMMA. TWO permutations are conjugate in S?n if and only if they have the
same (canonical) cycle structure. This condition is tantamount to the requirement
that the permutations have orbits that match in number and respective lengths.

2.02 LEMMA. A permutation PeS^n (and hence its class) lies in s/n if and only
if it has an even number (or 0) orbits of even degree.

2.03 LEMMA (Scott (1964), p. 299). With certain exceptions, a class in S?n is also
a class in s/n (if the class intersects $/n). The exceptional classes are those in which
all orbits have different odd degrees: these classes bifurcate into two conjugacy
classes in s/n.

They are relatively rare, that is, the asymptotic density is 0 for this collection
of classes. This is intuitively clear; the formal proof is omitted. A "trivial orbit"
has degree 1.

2.04 LEMMA. (Hardy and Ramanujan (1918)). The number p(n) of nonexceptional
classes in s/n increases like c exp (a ^/n)/n, where c, a, are constants.

Indeed somewhat more than half the partitions of n correspond to a non-
exceptional class in s/n.

2.05. LEMMA. Let n>5 be odd; let Cn be a class ofn-cycles in s/n. Then CnCn

covers An\\.

2.06 LEMMA (Brenner and Riddell (1976), p. 102, Theorems 7.07, 7.08). Let
n>6 be even; n = 2m. Let Cn be the class of type m2 in s/n. Then C | covers s/n.

3. The main theorem

The principal tool is Lemma 3.01.

3.01 LEMMA. Let n>5, n = 1(1) + 1(2) + ... + l(r), r> 1, 1 </( / )<n, be a decompo-

sition of n into r summands, all exceeding 1. Let T be the corresponding type
(conjugacy class in S^).

(i) Ifnis odd, T2 contains all n-cycles.
(ii) If n = 2m is even, T2 contains the class m2 in sfn.
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PROOF. Direct construction. Let k(i) = Si^O), P — olaz...ar

^ = (1,2,.•.,

Define <2 from P by swapping the end-letters of each cycle, thus

2 = T1T2...rr,
where

T4 = (k(i-

Q = jS-ip/3, jS = (fc(l), A<1) +1) (*(2), *(2) +1)... (*(r-1), k(r-1) +1).

Then PQ has the form asserted.

For example:

(123) (45) (678)-(124) (36) (578) = (1475) (2683),

(123) (45) (67)-(124) (36) (57) = (1473265).

So far, the lemma is proved when n is even; when n is odd, it is clear that Tz

contains n-cycles. But an outer automorphism of s#n produces all n-cycles from
any one of them.

3.02 DEFINITION. Let P be a permutation in s/n, P = C1...ChD1...Ds, where
Ci are all nontrivial cycles (orbits), D^ are all 1-cycles (trivial orbits). The orbital
excess of P is £i( | Q | - 2) - s .

3.03 LEMMA. Let Pes/n have nonnegative orbital excess, n>5.
(i) Ifn is odd, every n-cycle is a product of two conjugates of P.
(ii) Ifn is even, every permutation of type (£n)2 is a product of two conjugates of P.

PROOF. Let P be given; form Q from P as in the proof of 3.01. Then replace the
excess letters in some or all of the rt by the letters k(r) + l,...,«. The excess letters
are by definition the letters that are not explicitly displayed in P. The permutation
Q1 formed from Q in this way:

is such that PQX is an n-cycle if n is odd, and is the product of two disjoint
cycles if n is even.
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REMARK. If r is odd, and if Pes/n, then P, Q belong to the same class in stfn.
If r is even, the same assertion is true, unless P belongs to an exceptional class in
s/n. Furthermore, Q, Qx belong to the same class in s/n if this is not an exceptional
class.

3.04 LEMMA. If C is a nonexceptional class in s4n, then CC=> 1. If C is any class
in stfn, then CC^> C.

The second assertion is proved in Brenner (1973).

3.05 THEOREM. Let C be a nonexceptional class in stfn with orbital excess ^ — 1.
Then C* = sfn.

PROOF. This follows from the lemmata.
Now let p( ) be the unrestricted partition function. The arguments needed to

complete the proof of the asymptotic result stated in the introduction are as
follows. The orbital excess of any class (or permutation) is n—2r, where r is the
number of orbits. Only if n — 2r < — 1 does the relation C4 = stfn fail to hold. But
then, r> \(n+1): the number of orbits must be large. The corresponding partition
of n has a "conjugate partition" in which the largest part exceeds | (n+l) . Now
the number of partitions of n in which the largest part is exactly d is p(n—d).
Thus the number of classes C that do not satisfy C4 = s#n is less than Si^jn+iKO-
D. H. Lehmer pointed out to me that this sum is asymptotic to

^8 c exp {a. ̂ /n/̂ 2}/(a Jn).

Thus, as asserted, the ratio of this sum to p(n), and hence to the number of classes
in stfn, approaches 0 as M-^OO. This is what was asserted.

3.06 LEMMA. Let T be the type 22m in jfin. The type 1^-331 is not inciuded in
anyofT,T\T3.

PROOF. Anything in T2 has double type I2x22v32z.... Thus T3 can include the
permutation P = (123) of type I4m~3 31 only if there is a permutation Q in T such
that PQ has double type. There is obviously no such permutation Q.

Lemma 3.06 shows that any improvement of the main theorem (replacing 4 by 3)
will require some modifications. In particular not only the class 22m, but also (for
large m) all classes T®22m must probably be excluded. It is an open question
whether other classes must be excluded.

Material correlative to the subject matter of this article appears in Herzog and
Reid (1976, 1977). The exponent 4 appears in RabinoviC and Felnberg (1974) in
connection with the transformations of a totally ordered set.

A weak covering theorem for stfa follows from the present results. The group
s/u is the (simple) group of permutations of finite support on the postive integers.
The group s/^ is the group of all permutations on the same set.

3.07. THEOREM. Let C be a class in s/^ with infinite support. Then C* covers s4a.
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