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ABSTRACT Network covert channels are a part of the information hiding research area that deals with the
secret transfer of information over communication networks. Covert channels can be utilized, for instance,
for data leakage and stealthy malware communications. While data hiding in communication networks has
been studied within the last years for several major communication protocols, currently no work is available
that investigates covert channels for the publish-subscriber model. To fill this gap, we present the first
comprehensive study of covert channels in a protocol utilizing the publish-subscribermodel, i.e., theMessage
Queuing Telemetry Transport (MQTT) protocol which is widely deployed in Internet of Things (IoT)
environments. In particular, we describe seven direct and six indirect covert channels and we evaluate and
categorize them using the network information hiding patterns approach. Finally, in order to prove that
MQTT-based covert channels are practically feasible and effective, we implement the chosen data hiding
scheme and perform its experimental evaluation.

INDEX TERMS MQTT, network steganography, network covert channels, data hiding, information hiding,
IoT.

I. INTRODUCTION

Network information hiding is the discipline that deals
with the hidden data transfer over communication networks
and its detection. To this end, network information hiding
methods using legitimate data flows create so-called covert
channels (CCs) that enable concealed data transmission.
Many covert channels have been studied for communication
protocols within the past three decades [1], [2]. However,
to our best knowledge, there is currently no research avail-
able on possible covert channels in protocols that use a
publish/subscribe model.

Nowadays, many people and organizations are using
IoT-devices that operate on the basis of Message Queuing
Telemetry Transport (MQTT) servers at home or at work.
In such setups, MQTT-capable devices can connect to an
MQTT server andwith its help exchangemessages. Addition-
ally, for the sake of automation, it provides a smart hub, which
orchestrates all these devices, provides logic and usually a
dashboard, through which the user can control all devices,
locally or remotely (e.g., via a mobile phone).

The associate editor coordinating the review of this manuscript and
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A research performed by Avast in 2018 with the help of
the Shodan IoT search engine [3] showed that 49,197 MQTT
servers were publicly visible on the Internet due to a miscon-
figuredMQTT protocol, and 32,888 of them had no password
protection, meaning that attackers can access them effort-
lessly and influencemessages flowing through them. This can
lead to privacy and information leakage in several contexts,
ranging from identity theft and detailed observation of inhab-
itants or office spaces to industrial espionage. The situation is
even worse, as most users do not set up access control in their
broker configuration. In result, the attacker can even publish
on topics available on these servers, thus seizing control
of all connected devices (for example, in the smart home
scenario). Now, as presented in this paper, these unprotected
MQTT servers can be used as innocent accomplices to enable
newly created covert channels. Moreover, such MQTT-based
covert channels could be used to realize stealthy malware
communications as it has been recently reported also for other
types of network traffic and environments [4], [5].

That is why, in this paper, we perform a systematic study
of potential covert channels for MQTT-based Internet of
Things (IoT) environment. In particular, our novel contribu-
tion is as follows:
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• we propose thirteen network covert channels for MQTT
protocol. In more details, we introduce seven direct
(i.e., where the covert sender and covert receiver in order
to transmit secrets must be active simultaneously) and
six indirect covert channels (i.e., where hidden commu-
nication parties may not be active at the same time and
they typically use an innocent intermediary to transfer
secret messages).

• we evaluate and categorize the proposed CCs using
network information hiding patterns approach [6] and
describe them using a common description method [1].
Moreover, we devise one covert channel that represents
previously unknown subpattern (see Section III for moe
information on information hiding patterns concept),
thus, we contribute to the enhancement of this approach.

• in order to prove that MQTT-based covert channels are
feasible and effective in IoT environment we implement
the chosen data hiding scheme and perform its exper-
imental evaluation using three performance metrics:
bandwidth, robustness, and undetectability.

The rest of the paper is structured as follows. First,
in Section II existing works on network data hiding in related
domains are presented. Then, in Section III a brief introduc-
tion to the network information hiding patterns approach is
presented. Next, in Section IV, the most important aspects
of MQTT functioning is enclosed, including the description
of the publish/subscribe model, types of MQTT connections,
different control packets and other MQTT-specific mecha-
nisms. The comprehensive analysis of potential MQTT-based
covert channels is conducted in Section V and it contains the
main findings about new covert channels in IoT environments
which are characterized with the joint pattern-based catego-
rization. In Section VI the properties of the newly defined
data hiding methods are discussed, while in Section VII
experimental evaluation for the chosen covert channel is
included. Finally, Section VIII concludes our work and
outlines potential future research directions.

II. RELATED WORK

The security of smart homes and related types of CPS is
a rather well-studied topic, see, e.g., [7], [8] for surveys.
Several of the smart home/CPS employed communica-
tion protocols have been already subjected to fundamental
network security analyses, see, e.g., [9]–[11].
Hron [3] from Avast presented how smart homes that

deploy MQTT can be hacked. One can connect to an open
and unprotected MQTT broker, subscribe to #, and receive
all the messages of all the topics for that broker. This means
that the attacker can see the status of window sensors, locks,
heating/cooling systems, usage of light switches, etc. Loca-
tion tracking of the mobile devices used for remote control is
also possible. If the access control is broken, one can publish
in different topics, insert fake data and perform ‘‘replay
attacks’’. The more devastating attack is when somebody
gains access to the unprotected smart hub dashboards (usually
when run on the same machine as MQTT server), and can

control all attached devices of the MQTT server. Even if the
servers and dashboards are protected, insecure SMB shares
with passwords in clear form can be discovered and exploited.
Recently, several works have been published that deploy

data hiding techniques in some IoT protocols, like several
storage covert channels in the Extensible Messaging and
Presence Protocol (XMPP) [12], two storage and one
timing covert channels in the Building Automation and
Control Networking Protocol (BACnet) [13], six storage and
two timing covert channels in the Constrained Application
Protocol (CoAP) [14], etc. Wendzel et al. [15] have shown
that one can hide data in a cyber-physical system (e.g., smart
building), by slightly modifying some of its components,
like sensors, controllers, actuators, etc., as well as by storing
secret data in unused registers.
Several papers already exist that propose indirect network

covert channels (i.e., those that do not require a direct
interaction between the covert sender and the covert
receiver), like [16]–[19]. One particularly interesting and
recently proposed indirect network storage covert channel
that can be utilized within the same LAN was introduced
by Schmidbauer et al. [20] where two different network
protocols: Address Resolution Protocol (ARP) and Simple
Network Management Protocol (SNMP) are deployed. The
main idea is that the covert sender exploits the ARP cache of
an innocent third-party site for storing secret messages, while
the covert receiver exploits SNMP protocol for retrieving
them. Other indirect ephemeral storage covert channel uses
cached entries in the Pending Interest Table (PIT), maintained
by a NDN (Named Data Networking) router, together with
PIT misses and PIT hits [21].

III. NETWORK INFORMATION HIDING PATTERNS

Wendzel et al. [6] have introduced so-called hiding patterns,
i.e., abstract descriptions of how data can be hidden in
network transmissions. Each pattern presents one core idea of
how secret data can be represented through network traffic.
These patterns form a taxonomy (Fig. 1). The originally
proposed taxonomy has been extended a couple of times, with
the latest extension being the one of Mazurczyk et al. [22].
As can be seen in Fig. 1, hiding patterns divide into two
main categories, those that modulate the timing behavior
of network traffic and those that modulate storage values
of the network traffic. For instance, timing channels can
modify the timing between network packets to encode secret
data, while storage channels can modify unused header bits
of network packets (among several other methods). Timing
channels can be protocol-agnostic (their behavior does not
take protocol data interpretation into account) or protocol-
aware (their behavior must consider protocol data interpre-
tation). Storage channels can either modify protocol fields
(such as header bits or padding fields) or payload. If protocol
fields aremodified then this can be done in twoways, either in
a structure modifying manner, i.e., by extending the protocol
header with additional fields, or, in a structure preservingway
by simply overwriting already existing values in a protocol
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FIGURE 1. Classification of network covert channel patterns (from [22]).

TABLE 1. Network information hiding patterns (extracted from [22]).

header [1], [6], [22]. Tab. 1 provides an overview of the
currently known hiding patterns (the latest version is always
available under http://ih-patterns.blogspot.com/).

IV. MQTT FUNDAMENTALS

MQTT is a lightweight, client-server, publish-subscribe
message transport protocol, suitable for machine-to-machine
(M2M)/IoT connectivity. It is designed for resource-
constrained devices and low-bandwidth, high-latency and/or
unreliable networks, but it is also suitable for mobile appli-
cations. Some previous names of this protocol include:
‘‘SCADA protocol’’, ‘‘MQ Integrator SCADA Device
Protocol (MQIsdp)’’ and ‘‘WebSphere MQTT (WMQTT)’’.

MQTT has been heavily applied since its appearance
in 1999, e.g., in FacebookMessenger,1 Amazon IoT (a part of
the Amazon Web Services),2 OpenStack,3 home automation
platform Home Assistant,4 Microsoft Azure IoT Hub,5 in the
FloodNet project6 for monitoring river levels and environ-
mental information to provide early warnings of flooding,
etc. MQTT libraries are available for many programming

1Lucy Zhang: Building Facebook Messenger, 12 August 2011.
2https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
3https://docs.openstack.org/infra/system-config/firehose.html
4https://www.home-assistant.io/components/mqtt/
5https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
6http://envisense.org/floodnet/overview.htm
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languages and platforms, such as Java, C, C++, C#,
JavaScript,.NET, etc.
The MQTT version 3.1.1 [23] became an OASIS standard

in 2014 and an ISO/IEC 20922:2016 in 2016. Quite recently,
in March 2019, the newest MQTT version 5.0 became an
OASIS standard [24]. However, as this version is still very
new and rather scarcely deployed (when it comes to soft-
ware and hardware products), thus, we decided to analyze
the version 3.1.1 which is currently most popular. Neverthe-
less, it must be noted that the study of the covert channels
presented in this paper would be in vast majority also appli-
cable to the newest MQTT standard.

A. MQTT CONTROL PACKETS

MQTT v3.1.1 uses 14 different control packets (see
Table 2 for their description) and they are numbered from
1 to 14 with maximal size of 256 MB. Every control packet
has a fixed header (with the type of the control packet, flags
specific to it, and remaining length), while some of them have
a variable header and/or payload (Figure 2).

FIGURE 2. The general structure of the MQTT control packet.

TABLE 2. Control packets in MQTT.

The MQTT offers three Quality of Service (QoS) levels
(in the PUBLISH packet) for message delivery from the
publisher to the broker and from the broker to subscribers:
at most once (QoS 0), at least once (QoS 1), and exactly once
(QoS 2).

Below we describe in detail the PUBLISH and
SUBSCRIBE control packets which roles are the most impor-
tant from the perspective of this paper. The PUBLISH packet
beside a fixed header, has a variable header which consists
of a Topic Name, a Packet Identifier (present only for QoS
1 and QoS 2), and zero or more properties, followed by
the Application Message (or update) as a payload. The
SUBSCRIBE packet is composed of a fixed header, a variable
header consists of Packet Identifier field and zero or more
properties, and a payload containing a list of Topic Filters,
each of which is followed by a Subscription Options byte.

Normally, when a client subscribes to a topic after the
last update was sent to all subscribers, it must wait for the
next update, to see, for example, the current status of a given
sensor. However, the publisher can tell the broker to keep the
last message on that topic by setting the RETAIN flag in the
PUBLISHfixed header to 1.With the retainedmessage, every
new subscriber will see the last sent update (only onemessage
can be retained per topic). The subscriber can also control
receiving of retained messages by using two options in the
Subscription Options byte which follows given topic filter.
If the Retain As Published option is set to 1 then updates
from the server keep the RETAIN flag they were published
with. Next, Retain Handling option (2 bits) specifies whether
retained messages will be sent on new subscriptions (0 or
1 to send a retained message with 1 only in a case when
subscription currently does not exist, and 2 not to send it).

B. PUBLISH/SUBSCRIBE MODEL IN MQTT

As already mentioned, MQTT is a publish/subscribe
protocol. Basically, this is a client/server model that allows
the client to communicate with an endpoint. In this protocol
two types of clients have been defined. The clients that send
messages are called publishers. Other clients that receive the
messages are called subscribers. These two types of clients
never communicate directly with each other. In order to
exchange messages, they utilize a central point that plays
the role of a server and is called a broker. The role of the
broker is to receive the messages sent by the publishers and to
forward them to the subscribers. Publishers send messages on
certain topics identified by their topic names. Subscribers use
topic filters to subscribe/unsubscribe to/from specific topics
by sending SUBSCRIBE/UNSUBSCRIBE control packets.
When a broker receives the message, it determines the topic
to which it needs to be sent and then transmits the message
to those clients (subscribers) who have subscribed to that
particular topic (Figure 3). Any message from the publisher
to the broker, and from the broker to the subscribers is carried
by the PUBLISH control packet. Note, that the publisher
does not receive any information on how many subscribers
received the published message.

The topic of a given message can be considered as
a message subject. Basically, the topic name is an arbi-
trary UTF-8 encoded string. It can be also hierarchically
structured using a forward slash (/) as a topic level sepa-
rator. According to this rule, the topics have one or more
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FIGURE 3. MQTT publish/subscribe model.

topic levels. Exemplary three level topic can take form as:
myFirm/office1/temperature.
No prior initialization of the topic is required. It is not

necessary to create a topic before publishing or subscribing
to it. At least one character is needed to create a topic.
The topic names are case-sensitive and can contain empty
spaces. The forward slash alone is also a valid topic
string. The subscribing clients can also use wildcards to
subscribe to multiple topics. One can use one of two
types of wildcards: single-level or multi-level. For creating
a single level wildcard the plus symbol (+) is utilized.
It replaces a single topic level. For example, in the
topic myFirm/+/temperature, the plus symbol can be
replaced by any string. According to above, these exemplary
topics will match:
myFirm/office1/temperature

myFirm/lab1/temperature

The other type of wildcard is multi-level wildcard, created
with the hash (#) character. For example, if one uses the topic
myFirm/office1/# then the following exemplary topics
will match:
myFirm/office1/temperature

myFirm/office1/lights/doorlight

The broker will forward to the client all messages which
topic matches the subscribed one including the wildcard.
In MQTT there are also themes that are intended for special
purpose and they begin with the character $. Publishers
cannot send messages to these topics. The most common
topics of this kind are those that begin with $SYS/, which
are used to display information that is specific to the broker.

C. MQTT CONNECTION

The MQTT protocol is TCP/IP based and the client and the
broker need to have an implemented TCP/IP stack. The port
1883 is reserved for the transport of MQTT over TCP, while
8883 is reserved for the transport of MQTT over SSL/TLS.
The client sends a CONNECT control packet to the

broker, to initiate a connection. The broker responds with a
CONNACK control packet and a status code (Figure 4), and
keeps the connection until the client sends a DISCONNECT
packet or the connection breaks.
The session between the client and the broker can be non-

persistent or persistent. A non-persistent (or clear) session is
created by setting the Clear Session flag of the CONNECT

FIGURE 4. Establishing of the MQTT connection.

control packet to 1. If the connection is lost or interrupted,
all information about the client is lost on the broker side, and
the client must re-subscribe to each topic again. A persistent
session is created by setting the Clear Session flag to 0, and
in this case, the broker needs to save the session state for the
client all the time. When the client reconnects, the session
state is available immediately. Persistent sessions are iden-
tified by the Client Identifier field only. After the client’s
disconnection, the broker must store all client subscriptions,
and further or pending QoS 1 and QoS 2 messages that match
any client subscriptions at the time of disconnection as a part
of the session state.

The CONNACK control packet sent from the broker
contains a SessionPresent flag, and if this flag is set to 1,
it informs the client that there is a previous persistent session,
which will be resumed. Additionally, if SessionPresent = 1,
there is a zero return code in the CONNACK packet.

V. MQTT-BASED COVERT CHANNELS

In this section we present a comprehensive analysis of poten-
tial network covert channels that are applicable for theMQTT
protocol. The covert channels are categorized by their hiding
patterns and described using the unified description method
proposed by Wendzel et al. [25]. Note, that the ‘‘application
scenario’’ that is part of the unified description is always
the same for these channels. Many different scenarios are
possible, like general-purpose covert communication or data
exfiltration from compromised systems, but the fundamental
aspect is that Alice and Bob need to utilizeMQTT to establish
a policy-breaking communication and therefore use a covert
channel.

A. SYSTEM MODEL

The investigated in this paper MQTT-based covert channel
system model involves a covert sender (CS) and one or
more covert receivers (CRs). Obviously, it is also possible
to have multiple covert senders, but in our paper, we assume
only one CS. Even more, as any client can be a publisher,
the communication can be bidirectional, and the group of
users can communicate together. CS and CRs can be on the
same network or on different networks.

Moreover, we differentiate between two distinct submodels,
Direct Covert Channels (DCC) and Indirect Covert Channels
(ICC). In the system submodel DCC, CS directly communi-
cates with CRs and in this case there are two possibilities:
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FIGURE 5. System submodel DCC: a) with the broker as the CS; b) with
the broker as the CR.

FIGURE 6. System submodel ICC (the broker is unaware of the hidden
data exchange).

the broker can serve as the CS (DCCa) or the broker is the
only CR (DCCb) – see Figure 5. In the system submodel
ICC, CS indirectly communicates with the CRs through a
broker as the intermediate node (Figure 6). This means that
there is no direct interaction between CS and CRs and thus
they do not have to be active at the same time (covert sending
and covert receiving processes can be thus decoupled). In this
scenario, the broker is unaware of the hidden data exchange
and therefore it serves as a proxy node that forwards any
messages that it receives.
According to the system submodels introduced above,

the proposed covert channels can be divided into two groups:
a group DCC where the direct well-known CCs slightly
adjusted to the MQTT context are incorporated, and a group
ICC in which indirect CCs that are MQTT specific have been
placed.
Additionally, we assume that CS and CRs have

well-synchronized clocks. Typically, the routers and wired
devices are using Network Time Protocol (NTP) [26] for
synchronization purposes and for the other networked devices
different variants of NTP are usually utilized. For example,
mobile phones utilize Simple Network Time Protocol
(SNTP) [27] or Mobile NTP (MNTP) [28]. In case of IoT
environments, SNTP or even the MQTT itself can be used for
synchronization with some reference clocks. When MQTT
is used, the broker or the cloud server publishes the current
time to the client without taking into account one-way delays

of the packets with the timestamp or any response message.
In result, MQTT does not provide a precise synchronization
that our CCs require. Mani et al. [29] suggest using the new
Synchronization Protocol for IoT (SPoT) which maintains
a clock accuracy of ca. 15ms at various noise levels. Thus,
for the purposes of this work and presented CCs such a
protocol should be utilized to ensure the required level of
synchronization.

Finally, we assume that CRs know when the CS starts
to send a new secret message. With respect to the attacker
capabilities we assume that he can monitor, modify or fabric
the traffic between the clients and the broker.

B. DIRECT COVERT CHANNELS DEPLOYED

IN MQTT (DCC GROUP)

Several direct CCs can be deployed in MQTT for commu-
nication between the clients (publishers/subscribers) and the
broker and they use well-known techniques slightly adjusted
to the MQTT context. In particular, these CCs utilize modifi-
cation of certain fields in the control packets. The text fields
are encoded as UTF-8 strings, with the length not exceeding
65535 bytes and they are as follows:

1) Application Message in the payload of the PUBLISH
packet. MQTT is data-agnostic, which means that it
can carry virtually everything, e.g., images, audio,
encrypted data, text in any encoding, etc. The CC based
on this field can be also used to create an indirect covert
communication between clients.

2) Client Identifier in the payload of the CONNECT
packet (servers must allow lengths up to
23 UTF-8 encoded bytes).

3) User Name and Password fields in the payload of the
CONNECT packet (each up to 65535 bytes).

4) 16-bit Keep Alive field in the CONNECT packet,
which is the maximum time interval in seconds
between two control packets send from the client.

5) 16-bit Packet Identifier (non-zero) in the PUBLISH
packet when QoS > 0 or in the SUBSCRIBE,
UNSUBSCRIBE, SUBACK,UNSUBACK, PUBACK,
PUBREC, PUBREL and PUBCOMP packets. For
each new packet, the client and the server can assign
Packet Identifiers independently of each other and the
assigned value can be reused after processing the corre-
sponding acknowledgement packet. Each acknowl-
edgement packet has the same Packet Identifier as the
packet that is acknowledged.

6) Topic Name in the PUBLISH packet (up to
65535 bytes).

7) Topic Filters in the payload of the SUBSCRIBE and
UNSUBSCRIBE packets (up to 65535 B).

Prerequisites: Because the broker is a mandatory entity
in the direct covert communication, the only prerequisites
for DCC group of channels is other covert participants to be
capable of exchanging messages with the broker.

Secret bits embedding and extraction: For the submodel
DCCa, when broker as a CS wants to send some secret
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message to the CRs, it needs to encode the message into
the Application Message (DCC.1), Packet Identifier (DCC.5)
or Topic Name (DCC.6). For the submodel DCCb, when
some client as a CS wants to send a secret message to the
broker, it needs to encode the message into the specific field,
depending on the chosen CC.
Secret bits can be directly embedded into the fields Client

Identifier, Password, and Packet Identifier, because they can
have random values, and even into the Keep Alive or User
Name fields, for similar reasons. Additionally, the same can
be done into the Application Message field, because its
content can be encrypted.
For the Topic Name and Topic Filters, besides the direct

embedding of the secret bits, which is not so covert, the better
way is to use one of the approaches listed below:

• modulation of the letter capitalization (e.g., lower case
as binary 1, and upper case as binary 0),

• modulating the number of levels in the Topic Name
(e.g., even number of levels denotes binary ‘1’, while
odd binary ‘0’),

• modulating the number of whitespace characters in the
Topic Name (e.g., even number of characters embeds
binary ‘1’, while odd number binary ‘0’),

• utilization of different whitespace characters in the Topic
Name (e.g., space character (U+0020) denotes binary
‘1’, and non-breaking space character (U+00A0) binary
‘0’), etc.

Information hiding pattern: According to the pattern-
based classification, the usage of User Name and Topic Name
fields for hidden data purposes (DCC.1 and DCC.2) repre-
sents the PS11. Value modulation pattern, while exploitation
of the fields Client Identifier, Password, Keep Alive and
Packet Identifier belongs to the PS10. Random value pattern
(DCC.3, DCC.4, and DCC.5, respectively). Finally, when
the Application Message and Topic Filters from the packet
payload are utilized for data hiding, the resulting covert
techniques can be assigned to the PS31. User-data value

modulation & reserved/unused pattern (DCC.6 and DCC.7).

C. INDIRECT MQTT-SPECIFIC COVERT

CHANNELS (ICC GROUP)

1) COVERT CHANNEL USING TOPIC NAME AND

TOPIC FILTERS FIELDS

The indirect covert channel (ICC.1) between a publisher
(as a CS) and one or more subscribers (as a CRs) can be
realized in the following way.
Prerequisites: At the beginning, all participants of the

covert communication must have agreed upon some known
first level of the Topic Name, for example, Room. Then CRs
subscribe using multi-level wildcard (#) as a second level of
the topic, for example, Room/# (Figure 7, step 1).
Secret bits embedding and extraction: Then, CS sends

the secret message embedded in the rest of the Topic Name,
by publishing updates with irrelevant (but believable) content
for the newly created topic (Figure 7, step 2). This way all
CRs obtain all updates for the topics that begin with Room

FIGURE 7. Indirect Covert Channel using Topic Name and Topic Filters
fields.

(Figure 7, step 3), together with the hidden message that
can be extracted. In such setup, the content of the updates is
irrelevant, while in fact the names of these topics carry hidden
messages.

Secret bits embedding in the Topic Name can be performed
based on one of the potential approaches listed above, in the
DCC embedding in Topic Name and Topic Filters.

Information hiding pattern: It must be noted that the
covert channel described above represents the PS11. Value
modulation pattern.

2) COVERT CHANNEL USING TOPIC ORDERING

AND UPDATES PRESENCE/ABSENCE

Prerequisites: For this data hiding method (ICC.2) the covert
sender and several covert receivers must first agree to use n
topic names T1, . . . , Tn and establish in advance the secret bits
embedding scheme by topic ordering.

Secret bits embedding and extraction: All of the partici-
pants subscribe to previously agreed topics (Figure 8, step 1),
which are enumerated and linked to secret bits. Then, if the
covert sender wants to transmit a secret message, he publishes
updates only to the topics that are mapped to bits which must
be set to 1 in a certain message. For example, to transfer
the 4-bit message 1011, the covert sender will publish status
updates to the topics T1, T3 and T4 (Figure 8, step 2), and
all subscribers, together with the appropriate covert receivers,
will receive these updates (Figure 8, step 3). From the pres-
ence/absence of the particular update on the agreed topic and
previously agreed topic ordering scheme, covert receivers are
then able to extract the hidden message.

FIGURE 8. Indirect Covert Channel using Topic Ordering and Updates
Presence/Absence.

Information hiding pattern: The core idea of this data
hiding technique relies on pre-established topic names while
these topics represent values in the protocol. The modulation
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of their appearance makes this covert channel a form of the
PT11. Value Modulation network information hiding pattern.

3) COVERT CHANNEL USING PERSISTENT SESSIONS

This one-bit unidirectional covert channel (ICC.3) utilizes
the possibility of the client to create a persistent session with
the server, where the server saves the client’s session state
all the time. Persistent sessions are identified by the Client
Identifier field in the CONNECT control packet only.
Prerequisites: First, the covert sender provides its Client

Identifier (for example senderID) to the covert receiver, and
both of them will use it for creating connections with the
server in different prearranged time slots.
Secret bits embedding and extraction: If the covert

sender wants to send secret bit ‘1’ to the covert receiver,
then it will create a persistent session with the server, and for
sending bit ‘0’, it will create a non-persistent session with the
server.
During the next time slot, the CS will disconnect itself,

while the CR will create a persistent session with the server
using the same senderID. The server will acknowledge
obtained CONNECT packet with the CONNACK packet,
in which the Session Present flag will be set to ‘1’ (if there
is a previous persistent session) or ‘0’ (if there is no previous
persistent session). After receiving and extracting the hidden
bit in the Session Present flag, the CR will disconnect itself.
Note, that frequent connecting and disconnecting to the

broker may not necessarily be considered as an anomaly as
this is a typical practice if the client wants to save energy.
Information hiding pattern: Taking into consideration

the hiding approach of this covert channel, it must be cate-
gorized as representing the PS11. Value Modulation pattern
as one specific session (that is the actual value of the Value
Modulation) is either created or not. Moreover, the CR polls
the server that stores the secret data, whichmakes this channel
an indirect one.

4) COVERT CHANNEL USING PRESENCE/ABSENCE

OF THE RETAINED MESSAGE

If there is a stored retained message for the specific topic,
when a new subscription that matches the topic name is estab-
lished, the server will send this message to the subscriber.
If the PUBLISH control packet is received by the server with
RETAIN flag set to 1 and non-zero byte payload, the server
will replace the retained message with the newly obtained
one. When the PUBLISH control packet is received by the
server with RETAIN flag set to 1 and zero byte payload,
the server must remove the existing retained message and
any new subscribers for that topic will not receive a retained
message.
Prerequisites: For one-bit covert channel (ICC.4),

the covert sender and the covert receiver first need to agree on
the length of time slots that will be large enough so the CSwill
be able to transmit the hidden message and simultaneously
CR can have enough time to send a new subscription and to
obtain the retained message, if any.

FIGURE 9. Indirect covert channel using Using Presence/Absence of the
retained message.

Secret bits embedding and extraction:After that, the CS
will send one secret bit per slot, as follows (Figure 9, step 1):

• The presence of a retained message can represent
a binary ‘1’. For this purpose, the CS will send a
PUBLISH control packet with RETAIN flag set to ‘1’
and retained message as a payload.

• The absence of a retained message denotes a binary ‘0’.
For this purpose, the CS will transmit the PUBLISH
control packet with RETAIN flag set to ‘1’ and zero byte
payload.

Note, that the covert receiver needs to create a new
subscription for the specific topic per time slot, by sending
a SUBSCRIBE packet with the appropriate Topic Filter and
subscription options: Retain As Published=1 and Retain
Handling=0 (Figure 9, step 2). Also, it needs to use
non-persistent (clear) sessions, to avoid receiving stored
messages. On the server side, this action completely replaces
the existing subscription with a new one. This way the covert
receiver is able to establish if it is going to receive a retained
message or not (in every time slot), which is identical to
extraction of the secret bit ‘1’ or ‘0’ (Figure 9, step 3).
Information hiding pattern:The covert channel proposed

above is a hybrid channel that combines PS11. Value Modu-
lation and PT2. Message Timing patterns. In fact, it is the
side effect (presence/absence of the retained message) that
is visible to the covert receiver.

5) COVERT CHANNEL USING TOPIC ORDERING AND

PRESENCE/ABSENCE OF THE RETAINED MESSAGES

Prerequisites: First, the covert sender and the covert receiver
must agree to use n topic names T1, . . . ,Tn and their specific
ordering. Then the ICC.5 is created as presented below.

Secret bits embedding and extraction: For sending
n-bit long hidden message, the covert sender modulates the
presence/absence of retained messages (as binary ‘1’ or ‘0’)
in all these topics, by sending PUBLISH control packet
with the RETAIN flag set to 1 and retained message as a
payload / zero byte payload (as in the case of the previous
covert channel).
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FIGURE 10. Indirect covert channel using topic ordering and
Presence/Absence of the retained messages.

For example, for sending the 4-bit message 1011,
the attacker will manipulate the presence/absence of retained
messages in all the chosen topics, by setting and sending
retained messages in the topics T1, T3 and T4, and setting no
retained message only for the topic T2 (Figure 10, step 1).
After that, he will disconnect.
The covert receiver makes new subscriptions to the topics

T1,T2,T3,T4 (Figure 10, step 2), and receives the retained
messages only for topics T1, T3 and T4 (Figure 10, step 3).
So, based on the prearranged scheme of topics ordering for
data hiding purposes the CR is able to extract the secret
message transmitted from the CS.
Information hiding pattern: This hybrid covert channel

is a combination of thePT11.Message Ordering,PS11. Value
Modulation and PT2. Message Timing patterns.

6) COVERT CHANNEL USING INFORMATION

SPECIFIC TO THE BROKER

Topics that begin with $SYS/ are used to display information
that is specific to the broker and publishers cannot send
updates on them. At the moment, there is no official stan-
dardization of such topics. However, they can be exploited
for covert communication purposes, too.

If a covert sender has a possibility to control connecting
and disconnecting of certain clients to the server, this can
be used as a covert communication channel (ICC.6) with
some covert receivers connected to the same server. This can
represent an exemplary scenario where CS is able to control
several sensors in a building.

Prerequisites: The covert sender and the covert
receiver need first to investigate the dynamics of connec-
tions/disconnections of different clients. The dynamics of
the clients’ connections can be investigated by reading
the number of currently connected (NC) clients on the
broker over the chosen time period, which can be done by
subscribing the topic:
$SYS/broker/clients/connected

On the other hand, the dynamics of disconnections can
be investigated by reading the number of persistent (with
clean session disabled) clients (ND) that are registered at
the broker but are currently disconnected, over the chosen

time period, which can be done by subscribing to the topic:
$SYS/broker/clients/disconnected

We will explain the proposed covert channel inner work-
ings by using NC values (however analogously ND values
can be used). Both clandestine communication sides need
a pre-phase where they will collect information over some
period of time about historical NC values and after that they
will start the hidden data transfer. Even more, during their
secret communication they will continue to query NC values.

Secret bits embedding and extraction: CS and CR need
to agree on small triples of time slots (ti1, ti2, ti3), i =

1, 2, . . . , in which the following steps will be undertaken:
1. In the time slot ti1, CS and CR will obtain the

current NC value and will calculate an Average Number
of Connected (ANC) clients and Standard Deviation of
Connected (SDC) clients for the server, and the following
value:

DT =

{

SDC − (NC − ANC), if NC > ANC

SDC − (ANC − NC), otherwise

2. Sending secret bit in the time slot ti2:
• For sending binary 1, if NC > ANC the covert sender
will connectDT clients, otherwise it will disconnectDT
clients;

• For sending binary 0, if NC > ANC the covert sender
will disconnect SDC − DT clients, otherwise it will
connect SDC − DT clients.

Note, that DT can be also equal to zero which means that
in this case, when sending secret bit ‘1’ the CS should not do
anything, and still the secret bit will be transmitted.
3. Receiving secret bit in the time slot ti3. The CR will

obtain the NC value for the time slot ti3, and if this value is
around the average number of connected clients, ANC , it will
interpret it as binary 0. Otherwise, if it is around minimal
value, ANC − SDC or maximal value, ANC + SDC , it will
extract binary 1.
As already mentioned, similar channel can be established

using Average Number of Disconnected (AND) persistent
clients, Standard Deviation of Disconnected (SDD) persistent
clients, and Number of Disconnected (ND) persistent clients.
In this case the procedure is as follows:
1. During the time slot ti1, CS and CR will obtain the

current ND value and will calculate the Average Number of
Disconnected (AND) persistent clients and Standard Devia-
tion of Disconnected (SDD) persistent clients for the server,
and the following value

DT =

{

SDD − (ND − AND), if ND > AND

SDD − (AND − ND), otherwise

2. Sending secret bit within the time slot ti2:
• For sending binary 1, if ND > AND the covert sender
will disconnectDT clients, otherwise it will connectDT
clients;

• For sending binary 0, if ND > AND the covert sender
will connect SDD−DT clients, otherwise it will discon-
nect SDD− DT clients.
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3. Receiving secret bit in the time slot ti3. The receiver will
obtain the ND value for the time slot ti3, and if this value is
around the average number of disconnected persistent clients,
AND, it will interpret it as binary 0. Otherwise, if it is around
minimal value, AND− SDD or maximal value, AND+ SDD,
it will extract binary 1.
One can control the clients’ connecting and discon-

necting using several means that deploy some kind of
clients’ resources management. For example, possible solu-
tions include turning ON/OFF the access to the internet or the
clients’ energy supply.
Information hiding pattern: The necessity of synchro-

nized timing between CS and CR does not make this channel
a timing channel (all indirect channels require a somehow
synchronized timing, also, e.g., the channel proposed in [20]).
Instead, the value of the (disconnected) clients NC (ND)
and the related values are manipulated, making this channel
a special variant of the PS11. Value Modulation pattern.
However, due to its novel nature, one can see this channel as a
new child pattern of PS11, which we refer to as PS11c. Value
Influencing Pattern. Moreover, as CS can be distributed here,
this channel can be considered a distributed covert channel
(see [22] for details on this).

VI. PROPOSED COVERT CHANNELS’ PROPERTIES

When MQTT is used in practice, there are two types of
publishers. The first type publishes messages in predeter-
mined intervals, which can vary in milliseconds and seconds.
For example, the sensor monitoring pressure or brightness
that are constantly changing, need to scan and report quite
frequently (e.g., every second). The second type publishes
messages only on the state changes, as when you have a
sensor monitoring a given window or a door (e.g., is it open or
closed?). The window or the door can remain closed all day,
but if it is open, this status is needed to be reported in seconds.
Thus, this sensor needs to scan continuously, but reports only
on status changes.
We are going to investigate more properties of the network

covert channels presented in this paper, and particularly, for
those that belong to the ICC group (indirect covert channels)
as they are MQTT-specific and their detection/elimination
is more challenging that those from group DCC (which are
typical network storage covert channels). Frequency of the
state change in the second type of publishers is different
for different sort of clients (e.g., for temperature sensor or
actuator responsible for door) and usually depends on the
environment where they are used (e.g., the state ‘‘open
door’’ occurs with different frequency at the airport, super-
market or at the office), so we decided not to work with
this type of publishers. For that purpose, we will make the
following assumption: we will use only publishers of the
first type, i.e., those that publish in the predetermined time
intervals.
In the remaining of this section we will discuss the three

most important performance metrics for each covert channel,
i.e, bandwidth, undetectability, and robustness.

A. COVERT CHANNEL BANDWIDTHS

The bandwidth as a covert channel property determines
how much secret bits are transferred per second. Below we
present the detailed analysis of the potential bandwidths of
the proposed covert channels.

For DCC.1 (DCC.3), because Application Message (User
Name and/or Password) can be used directly as a hidden
message, one can hide maximum up to P = 65535B =

524280 (P = 2 × 65535B = 1048560) bits per control
packet. If the time interval between twomessage updates (two
CONNECT packets) is t seconds, the resulting bandwidth
will be P/t bps.

Similarly, for DCC.2 (DCC.4), the maximal size of Client
Identifier (Keep Alive), and by this, the maximal size of
hidden bits per CONNECT packet is P = 23B = 184
(P = 16) bits. If the time interval between two CONNECT
packets is t seconds then the resulting bandwidth will
be P/t bps.
The maximal number of hidden bits per control packet for

the DCC.5 is P = 16 bits, so if the time interval between
two control packets with Packet Identifier field in them is
t seconds then the bandwidth will be P/t bps.

For the DCC.6, DCC.7 and ICC.1 the resulting bandwidth
depends on the variation that will be used. The topic name
or topic filters themselves can be hidden messages, with
a maximal size of up to P = 65535B = 524280 bits
per message, but this is not recommended because anybody
sniffing the network could then read the message. Also,
if topic name or topic filters are encrypted hidden messages,
this can be also be detected, because in normal applications,
topic names and filters are some known words, as tempera-
ture, light, door, sensor, etc. or a group of words as sensor
one, kitchen door, etc. A better way is to encode the message
into two different whitespace characters or alternatively in
the even\odd number of whitespace characters or in the
even\odd number of levels in the Topic Name or Topic
Filters, and in this way, P = 1 bit per message will be
send. In all of these cases, created CCs will be challenging
to detect, because only two predefined topics can be used in
each case, and sending hidden bits will be equal to publishing
consecutive messages in one or in the other topic (DCC.6,
ICC.1), or consecutive subscribing to one or to the other
topic (DCC.7). If the time interval is t seconds, the resulting
bandwidth will be P/t bps.
For ICC.2, if there are n prearranged topics between the

CS and CRs, and if the CS publishes or not randomly in
each topic every t seconds, then the potential bandwidth will
be n/t bps. This is possible because the broker immediately
after receiving the update for a given topic sends it to all
subscribers of that topic.
For ICC.3, let the prearranged alternating time interval

be t seconds. This means in two consecutive intervals,
each of t seconds, first, the CS will send 1 bit by
connecting to the broker with the predefined senderID, and
then disconnecting, and second, the CR will receive one
bit by connecting to the broker with the same senderID,
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and then disconnecting. So, the resulting bandwidth will
be 1/(2t) bps.
For ICC.4 and ICC.5, we can use two consecutive intervals,

each of t seconds, first, for CS to publish the message updates
and the server to replace or remove the retain messages per
topic, and second, for CR to subscribe to the given topics.
If we have n prearranged topics between the CS and CR,
the resulting bandwidth for ICC.5 will be n/(2t) bps. The
ICC.4 is only a special case of the ICC.5 for n = 1, so, its
resulting bandwidth will be 1/(2t) bps. The CCs that use
retain messages, are especially suitable for use when the
publishers are configured to publish on state changes. In this
way, each new subscriber will receive the last reading of the
device.
The most difficult to estimate is the potential bandwidth

of the ICC.6. As already presented in previous section three
consecutive intervals (t1, t2, t3) are used for data hiding
purposes. The t2 interval should be long enough to connect
or disconnect DT clients. In order to empirically establish
these intervals we have performed more than 20 consecu-
tive connections and disconnections to the test.mosquitto.org
broker, and the average time between sending a CONNECT
control packet to the broker and receiving the CONNACK
packet from the broker was 0.25ms with a standard devi-
ation of 0.14ms. If the IoT device is turned off, then this
time will be extended with the time needed for the device
to turn on. The time elapsed from the moment when the
client sends DISCONNECT notification (or the connection
is terminated abnormally) and the moment when the broker
updates its database with new information, is more diffi-
cult to estimate. Because the transport protocol is TCP, this
time will depend on the time needed to ‘‘gracefully’’ finish
(or abnormally finish) the TCP session. When these three
values are estimated, the resulting bandwidth will be 1/(t1 +

t2 + t3) bps. For this channel, we queried the values NC
and ND from the test.mosquitto.org broker every minute for
24 hours, starting from 22:30 at 02.09.2019 till 22:30 at
03.09.2019. The obtained results ANC, SDC,AND and SDD
are provided in Table 3. Based on the results from this table it
can be seen that the variation in SDD values is much smaller
than SDC values, and they are in range [5.23, 16.39]. In fact,
SDD values are between 5 and 10 (except 2 peaks), which
correspond to smaller number of devices that needs to be
manipulated for ICC.6 CC. Also, this means that the second
variation of ICC.6 CC with ND values is better to use in
practical scenarios.

B. UNDETECTABILITY

Another important covert channel property is undetectability,
which is inability of some third party (an attacker, a warden)
to detect a hidden message in a given carrier or in another
words, the inability to distinguish clandestine traffic from a
legitimate one. Usually, third parties can use the analysis of
some statistical properties of the captured traffic’s data and
compare obtained results with the one from legitimate traffic
recordings. Different data mining techniques can be used for

TABLE 3. Real-life data from test.mosquitto.org from 22:30 at
02.09.2019 till 22:30 at 03.09.2019.

this purpose. However, below we decided to review potential
countermeasures that can be used to thwart the proposed CCs.

Often, the Application Message has some structure which
depends on the type of the IoT device that publishes it.
For example, a temperature sensor sends only temperature
readings, and a humidity sensor transmits humidity readings.
So, one possible countermeasure against the DCC.1 CC is to
look for content in the Application Message which is unusual
for the specific IoT device (e.g., some unusual text for the
temperature sensor).

One possible detection method for DCC.2 and DCC.3 is
to monitor Client Identifier, User Name and Password fields
in the CONNECT control packets and to look for many
different values from the same IP addresses or the sameMAC
addresses.

DCC.4 can be possibly detected by monitoring the Keep
Alive field in the consecutive CONNECT control packets
from the same IP addresses or the same MAC address while
tracking keep alive values. The occurrence of several different
values could indicate the presence of a covert channel.

The DCC.5 would be the most difficult to detect because it
is expected that each new packet has a new random value in
the Packet Identifier field. One possibility to discover covert
communication is to look at the acknowledgment packets that
need to have the same value of the Packet Identifier field as
in the packet that is acknowledged (e.g., PUBACK: Packet
Identifier should be the same as in the PUBLISH packet that
acknowledges it).

One possible countermeasure for detection of the DCC.6,
DCC.7 and ICC.1 CCs, is to inspect topic names in
published messages (or topic filters in SUBSCRIBE and
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UNSUBSCRIBE packets for DCC.7), and to look for unusual
behavior, like publishing in (or subscribing to/unsubscribing
from) many different topics, in topics with long names or
names with random characters, in topics with strange names
where different letter capitalization or different whitespace
characters are used, etc.
The topic ordering exploited by ICC.2 and ICC.5 could

potentially be detected by comparing the topic order of a
given flow with legitimate topic ordering, e.g., by inspecting
the entropy.
A possible countermeasure for detection of the ICC.3, is to

keep a record of (Client Identifier,MAC address) pairs, and to
look for at least two pairs with the same Client Identifier field
and different MAC addresses. Alternatively, one needs to
inspect the log file, and search for several CONNECT control
packets with the same Client Identifier field and different IP
or MAC addresses, in relatively short time intervals.
ICC.4 and ICC.5 can be detected by counting the number

of SUBSCRIBE control packets per client, and the number
of PUBLISH control packets without payload per client.
If the broker administrator has some kind of statistics of
these numbers in the legitimate traffic, these CCs will be
detected if there is a large difference when compared to
legitimate values, especially in the case where discrepancies
occur together.
Finally, the countermeasure for detection of the ICC.6 can

be based on counting the numbers of CONNECT and
DISCONNECT control packets per client on the broker side.
If there are large differences in comparison to legitimate ones,
especially on the same subset this could be a hint of potential
existence of covert communication.

C. ROBUSTNESS

The robustness of each of the suggested indirect CCs that use
PUBLISH control packets on the CS side (i.e., ICC.1, ICC.2,
ICC.4, ICC.5) can be negatively affected if someone else,
besides the publisher, publishes in the same topic(s), where
the specific CC is deployed. This is possible, because the
broker sends a specific topic update to all subscribers, without
the information of the publisher in the control packet. One
way to retain the robustness of these CCs, is to use the autho-
rization policies for clients in the MQTT broker in order to
limit their ability to publish messages in a specific topic. This
can be done by implementing topic permissions on the broker
side, that specifies which client can publish in a specific topic.
The MQTT 3.1.1 specification allows clients’ disconnections
only in the case when an unauthorized publish occurs. Still,
because the identification of the client is done only by its
Client Identifier (ClientId), and thus everyone who knows
it, can publish in this topic. It is interesting that if someone
attempts to connect to the broker with the same ClientId as an
existing connected client, then the existing client connection
is dropped and the legitimate client is disconnected. So, this
way, one can perform a Denial of Service (DoS) attack to a
specific client, together with an identity theft, while using it
for the needs of the CC.

The other two indirect CCs (ICC.3, ICC.6) heavily depends
on the number of connecting and disconnecting clients. So,
in the environments, where clients need to save their energy,
and because of that, normally they often connect and discon-
nect from the broker, these two CCs cannot remain robust. So,
when disconnections occur only on request of the client for
purpose of the given CC, robustness of the CC is increased.
Here also, one can influence CC robustness, if by some
means, he can force the broker to disconnect the client.
As previously mentioned, it can be achieved by sending
CONNECT control packet with the same ClientId as the
connected client.

Direct CCs are more robust, especially if the CS and CRs
are on the same network. On different networks, an attacker
performing Man-in-the-Middle (MitM) attack can modify or
fabricate covert control packets. One can also impersonate
itself as a broker and send modified or fabricated messages
to the other covert parties.

VII. EXPERIMENTAL EVALUATION OF THE

CHOSEN COVERT CHANNEL

In order to prove that the proposed covert channels are
feasible and effective we have created an ICC.2 prototype and
we performed its experimental evaluation.

For our experiments we used realistic but self-generated
MQTT traffic because we were not able to find any useful,
publicly available datasets. We created one EC2 instance
on AWS7 for the Mosquitto8 broker v.1.4.8. As a publisher
(or a covert sender) we implemented an MQTT client using
the Java Paho Client library9 v.0.4.0. As the subscriber (or
a covert receiver) we used the MQTT.fx10 v.1.7.1 client
program (Figure 11). To record the traffic, we used
Wireshark11 v.2.6.8.

FIGURE 11. Experimental test-bed.

We investigated three different variants of the ICC.2,
i.e., where:

• Variant 1: 2 topics (T1 and T2),
• Variant 2: 3 topics (T1, T2, and T3),
• Variant 3: 4 topics (T1, T2, T3, and T4).

are utilized for data hiding purposes.
First, we recorded 100 traffic samples for each version of

the legitimate traffic (i.e., without covert channel). For the
legitimate traffic we have a situation where the publisher
publishes message updates in 2, 3 or 4 topics, depending on

7https://aws.amazon.com/
8https://mosquitto.org/
9https://www.eclipse.org/paho/clients/java/
10https://mqttfx.jensd.de/
11https://www.wireshark.org/
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TABLE 4. Summary of the introduced covert channels.

the ICC.2 variant, by randomly choosing in every second to
publish/not to publish for each topic separately. Also, the time
between each publishing event is random (in milliseconds).
Each traffic sample lasted 10 minutes.
After that, we created the covert channel for each of

above-mentioned variants of the ICC.2 and we sent secret
messages in an encrypted form (ciphered with the AES),
again with traffic samples that lasted 10 minutes. The covert
channels were implemented using the Java programming
language.
For the ICC.2 using 4 topics (Variant 3) we have performed

another experiment. We sent secret messages in clear ASCII,
just to see how this influences the detectability comparedwith
the encrypted traffic. Similarly like in previous cases we used
100 traffic samples that lasted 10 minutes.

A. BANDWIDTH

In order to establish the achievable bandwidth of the ICC.2,
we experimented using all its three variants, i.e., where 2,
3 or 4 topics were utilized for data hiding purposes. Because
we use a time interval of one second for publishing/not
publishing in the 2, 3 or 4 topics then, obviously, the resulting
experimental bandwidth is 2 bps for 2 topics, 3 bps for
3 topics, and 4 bps for 4 topics. In each case, every second
sending the binary 1 corresponds to publishing in the
specific topic, while, sending the binary 0 corresponds to not
publishing in the specific topic.
Figure 12 represents the first 100 seconds of one of the

100 performed experiments for ICC.2 with 4 topics. More
precisely, this figure represents transmission of 400 secret
bits in 100 seconds from the 7th till the 107th second, also
showing the points in time when publishing in T1-T4 occurs.
The first 7 seconds are for connecting and synchronizing.
It must be also noted that for other ICC.2 variants the obtained
results were analogous.

B. UNDETECTABILITY

To exemplify a detectability approach, we investigate the
undetectability of ICC.2 CC. In a first experimental attempt,

FIGURE 12. ICC.2 with 4 topics, sending 400 secret bits in 100 seconds.

we tried to detect the ICC.2 based on data-mining by moni-
toring the order of topics in network traffic. We generated
100 CC flows for the ICC.2 and compared its appearance
of topics with 100 legitimate flows. First, we recorded all
topics in the order of their appearance in a string S. For
instance, if a flow would contain ‘‘Publish Message [T1]’’,
followed by ‘‘Publish Message [T3]’’, ‘‘Publish Message
[T4]’’ and ‘‘Publish Message [T1]’’, then our resulting string
S would be ‘‘1341’’. Next, we compressed the string using
a compressor ℑ, i.e., C = ℑ(S) and compared its original
length to the compressed length, i.e., S/C , resulting in a
compressibility score κ . We determined the optimal string
length for S by testing a set of parameters between 500 and
2,000 topics. In result, over all the scenarios that we test in
the remainder of this section, the string length of 1,100 was a
good choice.

The detection approach based on the string compressibility
is based on a covert timing channel detection method by
Cabuk et al. [30] but could not be applied directly to our
covert channel as we took topic order (instead of inter-arrival
times) as an input, generated a different string and needed
to find other window sizes and thresholds for κ . This adjust-
ment of a covert channel countermeasure is known as coun-
termeasure variation [31]. Finally, we tried to define an
optimal combination of string size and κ-threshold to classify
between legitimate and CC traffic.
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FIGURE 13. Detectability of a ICC.2 variant 3 (using 4 topics) with ASCII
vs. AES-encrpted content.

When our channel encodes secret data in trivial ASCII
traffic format using 4 topics (i.e., the presence of 4 topics
represents 4 bits of the ASCII characters),12 the detection was
providing excellent results (100% F-Score).
While such a channel might be the most suitable and

most easy to implement by an attacker, one could also
imagine that an attacker could encrypt the traffic in advance
using AES. In the case of AES-encrypted traffic that is
also encoded in 4 topics, the detectability decreases clearly
(66.9% F-Score). For comparison, the ROC curves of both
variants of the ICC.2 CC are shown in Fig. 13. The ASCII
channel’s AUC (Area Under Curve) was 0.995 while the AES
channel’s was 0.5996. Note, that we generated 100 legitimate
and 100 covert flows for every scenario.
Next, we wanted to examine whether an attacker could

render the ICC.2 CC harder to detect if a different number
of topics is used together with the AES-encrypted content.
For this reason, we generated 100 legitimate and 100 covert
channel-based flows for scenarios where 2, 3 and 4 topics are
utilized. It turned out that in this case the detectability slightly
decreases when fewer topics are used. The maximum F-Score
for 2 topics was 66.66%while it was 66.89% for 3 topics, and
66.89% for 4 topics. The differences are also visible in the
ROC curves (Fig. 14). Overall, the channel using only 2 topics
could not be detected better than guessing; the accuracy was
50.5%, the precision 0.51% and the AUC was 0.4933. For
the channel with 3 topics, accuracy increased to 54.5% and
precision to 53.78%, which is still hardly detectable, while
resulting in an AUC of 0.5472. Depending on the used κ

12Our channel operates in 1-second intervals. This means that within
one second, the appearance of the particular topics in publishing messages
encodes that the related bits are set to ‘‘1’’, otherwise they are considered
as ‘‘0’’. For example, if during the first interval, the topics T3, T4 but not
T1 and T2, would appear, then the first four hidden bits would be ‘‘0011’’.
If, during the next interval, the topics T2 and T3 would appear, the next four
hidden bits would be ‘‘0110’’. Thus, two seconds form one ASCII byte (in
this example case, it would be the byte ‘‘00110110’’, i.e., ‘‘6’’ in ASCII).

FIGURE 14. Detectability of ICC.2 that uses AES-encryption in
combination with 2, 3 and 4 topics.

threshold, the channel with 4 topics could be detected either
with 52.5% accuracy (but 85.71% precision) or with 59.5%
accuracy (61.73% precision).

FIGURE 15. Optimization problem for determination of the optimal
threshold – 4.3 performs best, overall, but higher thresholds benefit
specific other channels.

Afterwards we analyzed the optimal detection thresh-
olds for κ (Fig. 15) under consideration of maximizing the
F-Score. The optimal thresholds were similar in case of the
AES-encoded channels. For 2 topics, the best performing
values were between κ = 3.0 and κ = 6.5 (all providing the
same F-Score of 66.66%). For 3 topics, the best performing
values were between κ = 3.0 and κ = 5.15 (optimal:
κ = 4.95 and κ = 5.0) and for 4 topics, best values were
between κ = 3.0 and κ = 4.4 (optimal: 4.3). Overall,
the threshold κ = 4.3 provided the best average F-Scores
to detect all three AES channels (all F-Scores between
66.66% and 66.89%). However, the ASCII channels’ best

161912 VOLUME 7, 2019



A. Velinov et al.: Covert Channels in the MQTT-Based IoT

detectability was given for thresholds between 4.8 and 5.25
(all close to or exactly 100% F-Score), while κ = 4.3 would
only provide an F-Score of 66.89%, making it necessary to
apply two separate thresholds for κ if both, the ASCII channel
and the AES channels must be detected.
Finally, when realistic conditions are expected, then only

a fraction of the flows might contain an ICC.2 covert
channel. For this reason, thresholds should be selected in
a way that would keep the false-positive-rate (FPR) at a
minimum. As shown in Fig. 16, the FPR for the ASCII
and the AES channel with 4 topics drops close to zero
at κ = 4.75, rendering this threshold suitable for realistic
conditions where the number of false-alarms must be mini-
mized. The F-Score for the ASCII channel with 4 topics and
κ = 4.75 is 99.5% while the FPR is 1%, the F-Score even
increases to 100% with an FPR of 0% for κ = 4.8.

FIGURE 16. False-positive-rate of ICC.2, depending on encoding and
number of utilized topics.

However, for the AES channel with 4 topics, the F-Score
for the same threshold of 4.75 is only 12.84%. There is
no threshold available to detect the AES 4-topic channel
with an F-Score of at least 50% while maintaining FPR
below 30%, rendering this channel not detectable under
conditions where the fraction of covert channel traffic is low.
The same applies to the AES channel with 3 and 2 topics
(but with worse results). We can thus conclude that only the
ASCII channel can be detected under condition where the
fraction of covert channel traffic is either high or low while
the AES-based channels are not detectable under realistic
conditions.
We expect malware authors to implement simple versions

of a covert channel first (as can be seen in the cases of
currently known stegomalware that apply usually trivial
methods) but it would be enough to encrypt the hidden
content to render ICC.2 CC undetectable when solely the
compressibility of topic appearances is analyzed. Thus,
we conclude that this countermeasure variation solely works
for the ASCII version of ICC.2 CC.

C. ROBUSTNESS

In order to establish how robust the ICC.2 covert channel
is we investigated how it behaves under the influence of
increased delays and packet losses, separately. This intended
to simulate real-life networks conditions.

TABLE 5. The number of flipped bits in 120 transferred secret bits due to
network delays.

Table 5 shows the number of flipped bits (the number of
bits received with errors) on the receiver side. The measure-
ment is done on the bit stream of length 120 secret bits, with
three different introduced network delays (of 10ms, 50ms and
100ms), and with three experiments. Separately, the numbers
of flipped zeros and the number of flipped ones are provided.
Transmission errors in this case happen because some of the
delayed message updates are published in the next second,
instead in the current second. This way, 1 or 2 bits can be
flipped. For example, if the message update in T4 which
corresponds to binary 1 in the current second, is delayed
for the next second, then in the current second 0 bit will
be received (first flipping). If in the next second, the bit
corresponding to publishing/not publishing in T4 is 0, then
delayed T4 message update will flip it to 1 (second flipping),
but if it is 1, the bit will remain the same.

TABLE 6. The number of flipped bits in 120 transferred secret bits due to
packet losses.

On average, our results indicate that for 10ms of introduced
delay, 2.5% of the bits are receivedwith errors, for 50ms 3.9%
are received with errors, and for 100ms 8.6% of the bits are
received with errors. Therefore, one can observe that with
increasing delays the number of errors increases.

MQTTwithin the transport layer is using TCP. If the clients
are always connected even with QoS 0, there will be no
packet losses, because TCP is a reliable protocol. If the client
is not always connected, with QoS 0, packets will be lost
during the time when client is offline or not connected to the
broker. For the ICC.2 this means that only a subset of ones
will be flipped to zeros, while original zero bits will remain
unchanged. So, in a case of 120 transferred secret bits, for
Experiment 1 with 65 ones, for 1% of the packets lost, we will
have 0.65 bits interpreted as zeros, for 5% 3.25 bits will be
with errors, for 10% 6.50 bits and for 15% 9.75 bits will be
with errors (Figure 6). Therefore, one can observe that with
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increasing packet losses the number of flipped bits elevates,
too.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have shown that MQTT-based covert chan-
nels are feasible. We introduced seven direct and six indirect
covert channels and discussed for them possible countermea-
sures. Performed experimental evaluation for one of the chan-
nels revealed that the detection of such channels could be a
challenging task. We plan to further analyze the detectability
of all presented covert channels in the future work.
To the authors’ best knowledge, these are the first covert

channels proposed for the publish−subscribe model. Covert
channels ICC.1 and ICC.2 are quite generic and should be
implementable for other protocols representing the same
paradigm. Some examples of protocols that are using the
publish−subscribe model include XEP−0060,13 which is an
XMPP extension that provides public/subscribe functional-
ities, and Google Cloud Pub/Sub,14 which uses HTTPS for
the message transport. Other ICCs are more MQTT-specific
and to be implementable in other protocols, similar features
like retain messages or clear/persistent sessions must exist in
them.
Our future work in this area will be devoted to developing

countermeasures that will be capable of efficiently detecting
and removing theMQTT-based covert channels introduced in
this paper.
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