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Abstract 

SARS-CoV-2 is one of the beta-coronaviruses with the spike protein. It invades host cells by binding to angiotensin convert-
ing enzyme 2 (ACE2). This newly discovered virus can result in excessive inflammation and immune pathological damage, 
as shown by a decreased number of peripheral lymphocytes, increased levels of cytokines, and damages of lung, heart, liver, 
kidney, and other organs. Effective therapeutic modalities such as new antiviral drugs and vaccines against this emerging 
virus need to be thoroughly studied and developed. However, so far the only recognized but mild progress in this area is 
the screening of old drugs for new uses. Therefore, rapid and accurate laboratory SARS-CoV-2 testing approaches are the 
important basis of identification and blockage of COVID-19 transmission. For COVID-19 patients with different clinical 
classifications (mild, common, severe, and critically severe), dynamic monitoring of functional indicators of susceptible 
and vital organs is an important strategy for evaluating therapeutic efficacy and prognosis. In this review, we summarized 
SARS-CoV-2 laboratory diagnostic schemes, pathophysiological indices of tissues and organs of COVID-19 patients, and 
laboratory diagnostic strategies for distinct disease stages. Further, we discussed the importance of hierarchical management 
and dynamic observation in SARS-CoV-2 laboratory diagnostics. We then summed up the advance in SARS-CoV-2 testing 
technology and described the prospect of intelligent medicine in the prevention of infectious disease outbreaks.
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Introduction

Coronaviruses are segment-free, single-stranded, positive-
sense RNA viruses. There are six human coronaviruses 
types, including 229E, nl63, OC43, and hku1 that cause 
common cold symptoms, SARS CoV causing atypical pneu-
monia, and MERS CoV causing the Middle East respira-
tory syndrome [1]. SARS-CoV-2 is a new member of the 
β-genus coronaviruses, with a genome size between 26,000 
and 32,000 bases containing variable open reading frames 
(ORFs). Four major SARS-CoV-2 structural proteins are 
the spike glycoprotein (S), envelope protein (E), membrane 
protein (M), and nucleocapsid protein (N) [2]. According 
to the structural analysis of S protein, SARS-CoV-2 has a 
significant binding affinity to human angiotensin converting 
enzyme 2 (ACE2) [3]. Single-cell sequencing data revealed 
that ACE2 is highly expressed in most cell types like type 
II alveolar epithelial cells, esophageal epithelial cells, and 
stratified epithelial cells, as well as many tissues and organs 
such as the heart, kidney, and gastrointestinal tract [4, 5]. 
Thus, SARS-CoV-2 not only infect the lung but also other 
tissues and organs.

Since SARS-CoV-2 may have an impact on all organs and 
systems throughout the body, management of patients includes 
early diagnosis and continuous monitoring. The former is 
specific, including nucleic acid and antibody detection, while 
the latter is nonspecific. This review discussed the diagnostic 

information provided by each diagnostic tool and some known 
shortcomings, and explores how each diagnostic tool com-
plements each other to provide more comprehensive clinical 
guidance.

In addition, we also report some new technologies that 
have been applied or have application space in COVID-19, 
and summarize the types of detection technologies in exist-
ing commercial products. Finally, the concept of “intelligent 
medicine” for infectious epidemics is constructed to provide 
more possibilities for current or future anti-infectious disease 
management.

In summary, for the diagnosis of COVID-19, it is neces-
sary to timely identify SARS-CoV-2 infection, and then moni-
tor the functions of susceptible organs in confirmed patients. 
To prevent and control the COVID-19 pandemic, besides the 
evolution of high-throughput accurate diagnostic technology 
in big laboratories, the development of rapid diagnostic tech-
niques in outpatient clinics and regional medical facilities is 
also important. Intelligent medicine, as an emerging healthcare 
technology, should also be taken into account for looking for 
the origin of the COVID-19 pandemic.
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Pathophysiological process and molecular 
mechanism of SARS‑CoV‑2 infection

The basic pathophysiological mechanism of COVID-19 
is that SARS-CoV-2 enters target cells via binding to 
ACE2 on the cell membrane, followed by local or sys-
temic inflammation and immune reactions. According to 
the results of an autopsy, in addition to the lung, spleen 
and bone marrow, heart, blood vessels, liver, gallbladder, 
kidneys, brain, and other organs also suffer pathological 
changes [6]. For example, the spleen shrinks, and the car-
diomyocytes present the signs of degeneration and necro-
sis (Fig. 1).

After analyzing single-cell RNA sequencing data, 
Sungnak et al. found that the expression of ACE2 and 
TMPRSS2 (protease related to virus entry) in goblet cells 
and ciliary cells of the nasal cavity was high, suggest-
ing that these two cell types in the nasal cavity could be 
the initial infection sites of SARS-CoV-2 [7]. In the lung, 
the ACE2 protein mainly exists on the surface of type II 
alveolar cells and airway club cells. Once SARS-CoV-2 
enters the respiratory tract, it replicates, proliferates, and 
damages the lung regeneration system. According to the 

report by Li Z et al., ACE2 was highly expressed in renal 
tubular cells, testicular stromal cells, and spermatogenic 
cells, indicating that SARS-CoV-2 may damage the kid-
ney and the testicular tissue of patients [8]. Also, SARS-
CoV-2 has been detected in renal tissue samples, indicat-
ing that the virus can directly infect human renal tubules 
and cause acute renal tubule injury [9]. Zhong Nanshan’s 
team isolated SARS-CoV-2 from the urine samples of a 
patient. The Beijing Ditan hospital confirmed the pres-
ence of SARS-CoV-2 in cerebrospinal fluid through gene 
sequencing. Zhang H et al. explored the expression of 
SARS-CoV-2 receptors in different cell types of the diges-
tive tract at the single-cell level, indicating that ACE2 is 
highly expressed in absorptive epithelial cells and intes-
tinal epithelial cells in the ileum and small intestine [4]. 
Single-cell RNA sequencing of healthy liver cells of two 
independent cohorts identified ACE2expression in bile 
duct cells [10]. However, SARS-CoV-2 can hardly sur-
vive in bile, so the liver injury in patients with COVID-19 
might be caused by drug toxicity or the systemic inflam-
matory response. Myocardial injury is more common in 
severe and critical patients [11–13]. Hence, it is significant 
to monitor the heart function of COVID-19 patients and 
treat patients with signs of myocardial injury to prevent 

Fig. 1  Schematic illustration of COVID-19 pathophysiology. SARS-CoV-2 causes damage to other tissues and organs in addition to the lung, 
spleen and bone marrow, heart and blood vessels, liver, gallbladder, kidneys, brain, etc
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heart failure. In addition, some patients’ nervous systems 
are affected [14–16]. 45.4% of patients with severe symp-
toms showed neurological alterations, including associ-
ated acute cerebrovascular disease, cognitive disorders, 
and muscle damage [17].

The human body mounts immune responses to viruses, 
including innate immune response and adaptive humoral/
cellular immune responses. Natural killer cells and mono-
nuclear phagocytes are key players in innate immunity. 
In humoral immunity, B lymphocytes produce a series of 
antibodies including neutralizing antibodies that inacti-
vate free viruses. Neutralizing antibodies to the S pro-
tein can block the binding of SARS-CoV-2 to ACE2, 
thus preventing the entry of the virus into target cells. 
After neutralizing antibodies binding to the viral surface, 
an antigen–antibody complex was formed. This complex 
facilitates the uptake and clearance of viruses by mac-
rophages, and activates the complement system to induce 
virus degradation. Because SARS-CoV-2 is parasitic in 
cells, cellular immunity is considered to play a signifi-
cant role in eliminating SARS-CoV-2. Cellular immunity 
depends on cytotoxic effector cells, including CD4 + and 
CD8 + cytotoxic T lymphocytes. When recognizing virus-
infected cells, cytotoxic effector cells express and release 
cytotoxic mediators to kill virus-infected cells. An appro-
priate immune response is helpful for viral clearance, but 
an over-activated immune system triggers detrimental 
inflammatory and immune disorders. When excessive 
cytokines are produced, the permeability of capillary 
endothelial cells increases, leading to excessive exosmosis 
of inflammatory cells and plasma, accumulation of super-
fluous mucus in the alveoli, and even dyspnea. Other tis-
sues and organs can also be damaged, and even multiple 
organ failure can occur [18–22].

Laboratory diagnostics of COVID‑19

Detection of viral nucleic acids and antiviral 
antibodies

Nucleic acid detection is the direct evidence of a viral infec-
tion, whereas antibody testing is indirect evidence of a viral 
infection. The former is considered the “gold standard” 
for diagnosis. However, its detection efficiency is not high 
enough due to the problems with the sampling sites and 
procedures. The latter is the product of antiviral immune 
response, implicating that the subject has been infected by 
the virus but not directly indicating the persistence of the 
virus in the body. Therefore, antibody detection should be 
used as a supplementary method for nucleic acid detection 
in laboratory detection of COVID-19 (Fig. 2).

Detection of viral nucleic acids

Detection of SARS-CoV-2 nucleic acid is the “gold stand-
ard” for COVID-19 diagnosis. Existing SARS-CoV-2 test-
ing in clinical laboratories mainly relies on the detection 
of SARS-CoV-2 nucleic acids after nucleic acid amplifica-
tion. According to the amplification conditions, the nucleic 
acid testing techniques are categorized into PCR with 
thermal cycles and isothermal amplification at a constant 
temperature.

As a mature technology, PCR is conducted on different 
detection platforms in distinctive application scenarios. For 
example, an automatic nucleic acid analysis system is often 
used in a large medical facility, while a desktop isothermal 
nucleic acid analyzer is suitable for clinics and urgent care 
facilities. Portable PCR test strips are especially applicable 
in point-of-care testing (POCT). Compared to PCR, the iso-
thermal amplification technology can achieve rapid nucleic 
acid amplification at a constant temperature, thus facilitating 
quick and on-site testing. For example, the loop-mediated 
isothermal amplification (LAMP) technology can amplify 
fragments of target genes at a constant temperature using 
pre-designed specific primers and the chain-replacement 
DNA polymerase. However, this technology requires multi-
ple primers, making the primer design principle more strin-
gent than that for RT-PCR.

It has been reported that some COVID-19 patients had 
false-negative RT-PCR results when CT scans showed sig-
nificant changes in the lungs and other respiratory infections 
have been ruled out [23]. This might be due to the following 
reasons. First, the viral load in various parts of the respira-
tory tract is different. The main target cells, ACE2-express-
ing pulmonary epithelial cells, are located in the lower res-
piratory tract. SARS-CoV-2 is relatively easy to be found 
in specimens taken at the lower respiratory tract rather than 
specimens taken at the upper respiratory tract. It has been 
reported that in the early stage of COVID-19, the positive 
rate of viral nucleic acid test on sputum samples is higher 
than that on nose swabs and throat swabs [24]. Zou et al. 
found that the viral load peaked about 2 days after symptoms 
appeared and then gradually decreased. Besides, the viral 
load of the nasal swab was higher than that of the pharyngeal 
swab [25]. In addition to nasopharynx swabs and bronchoal-
veolar lavage fluid (BALF), saliva is a sample source for 
nucleic acid tests. To KK et al. confirmed the expression 
of ACE2 in the salivary gland, suggesting the possibility of 
SARS-CoV-2 infecting salivary glands [26]. Further studies 
confirmed that a large number of SARS-CoV-2 nucleic acids 
could be detected in saliva [27, 28]. Therefore, the uneven 
virus distribution in samples of different sources reminds us 
that a negative test result of a single sample does not mean 
the virus is absent. The testing needs to be performed on 
other samples of various sources. In addition, some external 
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factors, such as the nucleic acid extraction methods, sample 
transportation and preservation conditions, the quality of 
testing reagents, the laboratory environment, and the stand-
ardization of sampling, also affect the reliability of nucleic 
acid testing. Improper sampling or testing procedures may 
lead to a low positive rate.

Detection of serum IgG and IgM

Immunological testing of serum biomarkers tells the 
immune response to human viruses and indirectly detects 
viral infections. IgG and IgM are primary antibodies 
detected in SARS-CoV-2 infection. Generally, IgG is pro-
duced relatively late but remains for a longer time. Serum 
IgG can be used as a long-term indicator of infection. IgM 

is produced earlier after infection and plays an important 
anti-infection role in the early stage of infection. However, 
it only lasts for a short time and disappears quickly. After 
the onset of COVID-19, the overall positive rate of IgG and 
IgM to SARS-CoV-2 increases gradually. The longer the 
time from the disease onset, the higher the positive rate of 
IgG and IgM in the test. 17 –20 days after the disease onset, 
the IgG positive rate reaches 100%, while the IgM-positive 
rate reaches 94.1% 20 – 22 days after the disease onset. The 
median time of IgG and IgM seroconversion is 13 days after 
the disease onset, but only 70.7% of the patients can be diag-
nosed according to the dynamic change of antibody titer 
[29]. Studies found that the median time of serum trans-
formation of antibody was about 2 weeks [30, 31]. Com-
pared with the total antibody, the sensitivity of IgM alone, 

Fig. 2  Changes in the levels of various biomarkers in COVID-19 patients
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IgG alone, and a simple combination of IgM and IgG in the 
diagnosis of COVID-19 was lower than that of total anti-
body [32]. In the above studies, a small number of confirmed 
cases were always antibody-negative during the observation 
period. Moreover, antibody detection is insufficient to dis-
tinguish existing and previous infections. Hence, serological 
antibody detection should be considered as a supplemen-
tary to viral nucleic acid detection [33]. Common antibody 
detection techniques include the fully automated chemical 
luminescence immunoassay system and immunotomography 
technology. The automatic chemical luminescent immunoas-
say systems can automate high-throughput quantification of 
blood antibodies, making it ideal for large medical centers. 
The colloidal gold immunotomography is simple, practical, 
and adaptable, but it can only generate qualitative results. 
After the outbreak, a variety of new detection technologies 
emerged, such as LAMP, digital PCR, CRISPR, and single 
molecule detection. But what really plays a greater role in 
clinical application is the traditional technology: PCR and 
immunoassay (Figure S1). Therefore, in this review, details 
on new technologies are presented in the section entitled 
“Development of SARS-CoV-2 detection technology”.

Nucleic acid detection and antibody detection comple-
ment each other. A combination of the two approaches is 
expected to facilitate the diagnosis of COVID-19 (Fig. 3).

Dynamic monitoring of COVID‑19 patients

To take care of COVID-19 patients, dynamic monitoring 
of the nonspecific indices should be performed to evaluate 
disease progression especially the functions of vital organs 
and tissues (Table 1).

Early warning signs of disease progression

1. Underlying health conditions

Underlying health conditions affects the prognosis of 
COVID-19 patients. The most common underlying health 
conditions are hypertension, diabetes, cardiovascular dis-
eases, and chronic obstructive pulmonary disease. Zhou 
F et al. found that patients who died of COVID-19 (aver-
age age 69) are older than survivors (average age 52) [38]. 
Another study suggested that patients older than 50 are at 
medium and high risk [39]. Having more than one underly-
ing condition also leads to poor prognosis. Guan W-j et al. 
found that about a quarter of Chinese COVID-19 patients 
had comorbidities and were prone to have poor clinical out-
comes [40]. Among them, cancer and chronic obstructive 
pulmonary disease incur the greatest risk of poor prognosis. 
In addition, compared with patients without basic diseases, 
having a single underlying health condition raises the risk of 

poor prognosis by about 79%. Having two or more underly-
ing health conditions increases the risk of poor prognosis by 
1.59 folds. In previous studies, hypertension or diabetes sig-
nificantly slowed down the rate of SARS-CoV-2 clearance, 
increased patients’ susceptibility to multiple organ disor-
ders and secondary infections, and consequently caused poor 
prognosis and higher mortality [41–44]. Cancer patients are 
reported to have a higher risk of SARS-CoV-2 infection and 
a higher rate of severe illness, and they deteriorate faster 
than others [45, 46].

2. Peripheral blood biomarkers

The change in peripheral blood biomarkers is one of the 
important clinical manifestations of patients with COVID-
19. Combined with the immune system indicators, the blood 
biomarkers can illustrate clinical outcomes. Blood indices 
mainly include the parameters of blood components, liver 
and kidney functions, myocardial function, coagulation 
function, etc. In addition, some indices can directly reflect 
SARS-CoV-2 infection. Zhang B et al. found that the higher 
the neutrophil–lymphocyte ratio (NLR), the more severe the 
COVID-19 condition was. Patients who died of COVID-19 
often showed a high NLR ratio [47]. Wan S et al. also found 
that the proportions of CD4 + T cells and CD8 + T cells in 
severe patients were significantly higher, suggesting that 
T cells were more susceptible to functional exhaustion in 
severe patients [48]. Moreover, studies found that IL-6 is the 
key inflammatory factor for the cytokine storm in COVID-19 
patients [13, 48]. Therefore, the IL-6 assessment is supposed 
to be increased to predict the severity of COVID-19.

3. Screening of other respiratory viruses

During isolating and treating confirmed COVID-19 cases, 
it is necessary to screen other respiratory viruses at hospital 
admission to prevent cross-infection. The screening tells the 
presence or absence of other respiratory viruses with high 
incidence in autumn and winter, and subsequently distin-
guishes COVID-19 from other viral infections with similar 
symptoms. Previous data showed that nearly 6% of COVID-
19 close contacts in Wuhan were infected with SARS-CoV-2 
while 18% of them were free of SARS-CoV-2 infection but 
infected with other respiratory pathogens [49]. Therefore, 
it is worth conducting the screening to avoid high cross-
infection risk of COVID-19 in hospitals.

Dynamic monitoring of mild and common cases

The purpose of monitoring mild cases is to shift patients to 
other healthcare facilities when their conditions are aggra-
vated, and to save healthcare resources for patients in severe 
or critical conditions [50, 51]. Viral load and functions of 
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Fig. 3  Specific biomarkers for SARS-CoV-2 detection include patho-
genic markers and serological markers. The former are viral nucleic 
acids and proteins, and the latter are specific antibodies produced by 
the immune system. The nucleic acid detection technology involves 

thermal cycle amplification and isothermal amplification. The main-
stream technologies for antigen and antibody detection are chemilu-
minescent immunoassay and immunochromatography
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vital organs and systems should be closely monitored. Zheng 
Y et al. suggests that organ damage in mild cases might not 
be the result of inflammation but the virus itself [52]. There-
fore, the dynamic monitoring of viral load tells the extent 
of viral clearance and therapeutic efficacy. Because cellular 
immunity is the major mechanism fighting SARS-CoV-2, 
the quantities and activities of lymphocyte populations 
largely reflect the extent of immune mobilization against 
the virus. Other crucial biochemical indices include blood 
components, urine components, liver and kidney functions, 
creatine kinase, myoglobin, coagulation system components, 
C-reactive protein, and others.

Dynamic monitoring of severe and critical cases

For severe patients, the dynamic monitoring of the 
immune system function and inflammatory response is 
also necessary to prevent condition deterioration. Since 

cellular immunity plays a major role in viral clearance, 
and CD4+ and CD8+T cells are the key players in cellular 
immunity, monitoring lymphocyte populations is crucial 
for prognosis evaluation. Immune cells such as CTLs, 
macrophages, and NK cells recognize virus-infected cells 
and then release cytokines to kill target cells. But when 
cytokine production loses control, the increase of perme-
ability of capillary endothelial cells causes excessive exos-
mosis of inflammatory cells and plasma, and then leads 
to mucus accumulation in the alveoli and even dyspnea. 
In particular, a surge of cytokines in a COVID-19 patient 
results in a cytokine storm in which IL-2, IL-7, IL-10, 
GSCF, IP-10, MCP1, MIP1A, and TNF-α are all involved. 
The cytokine storm destroys the function of the heart, kid-
ney, liver, and other organs. The cytokine storm is more 
frequently seen in severe COVID-19 patients rather than 
mild patients, and IL-6 is the key player [36]. In conclu-
sion, lymphocytes and cytokines are related to the severity 

Table 1  Biomarkers for monitoring tissues and organs in patients with COVID-19

Organ or system Monitoring indicators Clinical manifestations References

Heart • Myocardial zymogram
• Myoglobin
• Troponin

• Increased lactate dehydrogenase, myozyme 
and myoglobin in some patients, and 
increased troponin in some critically ill 
patients

[13]

Liver • Alanine aminotransferase
• Aspartate aminotransferase
• Total protein
• Albumin/
• Globulin
• Albumin/globulin
• Total bilirubin

• Some patients may have increased liver 
enzymes

[34]

Kidney • Blood creatinine
• Blood urea
• Blood uric acid

• Blood urea and blood creatinine levels in 
critically ill patients are rapidly increasing

[9, 35]

Lung ventilation function • Blood gas analysis • Pao2 decreased significantly in critically ill 
patients with hypoxemia

• One of the clinical classification indexes of 
severe patients

[35]

Coagulation • Platelets
• D-dimer(D-D)
• Fibrin degradation products (FDP)
• Prothrombin time (PT)
• Activated partial thromboplastin time (APTT)

• Abnormal blood coagulation, especially 
D-dimer and FDP is significantly increased, is 
very common in non-survivors of COVID-19

[34, 35]

Immune function • C-reactive protein (CRP)
• Serum amyloid A(SAA)
• Procalcitonin (PCT)
• Neutrophil/lymphocyte ratio (NLR)
• Cytokines

• Most patients have elevated c-reactive protein
• SAA results increased significantly early in 

the infection
• Most patients have normal procalcitonin 

(assist the identification of bacterial and viral 
infections)

• Neutrophil/lymphocyte ratio (NLR) helps 
predict disease progression

• The number of CD4 + and CD8 + T cells in 
peripheral blood is greatly reduced, while the 
state is over-activated

• Severe and critically ill patients often have 
elevated cytokines

[6, 13, 34, 36, 37]
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of the disease. Monitoring of lymphocytes and cytokines 
helps establish a model of COVID-19 severity prediction.

For critical cases, dynamic monitoring of lactate, 
electrolyte, myocardial indices (such as troponin, B-type 
natriuretic peptide, or B-type natriuretic peptide pro-n-ter-
minal peptide), coagulation function, and other parameters 
should be performed. These biochemical indicators reflect 
the functions and damage of non-pulmonary organs, and 
predict the risk of death for critical cases. Besides, Extra-
corporeal Membrane Oxygenation (ECMO) is one of the 
core support systems for severe respiratory failure. Com-
mon complications of ECMO include limb ischemia and 

necrosis, hemorrhage, infections, thrombosis, and hemoly-
sis at the intubation side. Monitor of coagulation function 
should be carried out on patients undergoing ECMO.

The hierarchical control should be addressed to con-
fine the COVID-19 epidemic. The principle of hierarchical 
control is that subjects are grouped, tested, and diagnosed 
by selected detection techniques and methods according 
to different testing scenarios. In this manner, a scalable 
and cost-efficient system for optimizing testing and patient 
distribution can be established to save medical resources 
(Fig. 4).

Fig. 4  Laboratory diagnostic path of COVID-19. The laboratory 
diagnostic path of COVID-19 includes the confirmation of suspected 
cases, the stratification of confirmed patients, dynamic monitoring 
of admitted patients, and discharge diagnosis of cured patients. The 

“gold standard” for the diagnosis of suspected cases is nucleic acid 
detection, and the results of antigen and antibody tests are used as an 
aid
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Dynamic monitoring of discharged patients 
and virus variation

The discharge criteria in The New Coronavirus Pneumo-

nia Diagnosis and Treatment Program (Trial Version 7) 
are: (1) the body temperature returns to the normal level 
for more than 3 days; (2) significant improvement in res-
piratory symptoms; (3) pulmonary imaging shows signifi-
cant improvement in acute osteopathy; (4) two consecutive 
nucleic acid tests on the respiratory specimen (at least 1 day 
apart) are negative. However, it is reported that nucleic acid 
tests turned positive in many discharged patients. SARS-
CoV-2 has also been isolated from fecal and urine sam-
ples. A retrospective cohort study found that the duration 
of SARS-CoV-2 in fecal samples was significantly longer 
than that in respiratory and serum samples, highlighting the 
possibility of fecal transmission of the virus. It is, therefore, 
necessary to strengthen the management of fecal samples 
to prevent and control the spread of COVID-19 [53]. These 
findings suggest that it is necessary to adjust the laboratory 
tests in the discharge diagnosis, such as increasing sample 
types, increasing the sampling frequency, and prolonging the 
observation period before discharge or the isolation period 
after discharge.

In addition to setting strict control of discharge, health-
care agencies should also be alert to critical SARS-CoV-2 
mutations. To understand the dynamic change of the SARS-
CoV-2 genome, it is necessary to collect and sequence 
SARS-CoV-2 at different time points and different geologi-
cal locations. Gene sequencing is currently the only method 
to dynamically track viral mutations. Nano-hole targeted 
sequencing (NTS) covers all important virulence-associated 
genes in the viral genome, and therefore detects mutations in 
virulence-associated genes to assist in COVID-19 prevention 
and control [54].

Development of SARS‑CoV‑2 detection 
technology

New SARS-CoV-2 testing techniques mainly derive from 
existing molecular diagnostics technologies, including 
LAMP, digital PCR, CRISPR, and single molecule detec-
tion. Compared with RT-PCR, digital PCR is more sensitive 
and able to measure the absolute number of molecules of 
interest. It eliminates the bias caused by differential ampli-
fication efficiency which is the problem with fluorescence-
based quantitative PCR. However, although various micro-
fluidic chip-based digital PCR techniques have substantially 
facilitated virus testing, they still rely on thermal cycling. 
The need for precise temperature cycling makes digital PCR 
only applicable in central laboratories. A novel quick and 
safe POCT technique for coronavirus nucleic acid detection 

is in urgent demand. Zhang Feng et al. developed a CRISPR-
based SHERLOCK (Specific High Sensitivity Enzymatic 
Reporter UnLOCKing) technique for SARS-CoV-2 detec-
tion. The principle of this technique is that the endonuclease 
cas13 forms a detection complex with the complementary 
leading RNA sequence of the viral nucleic acid. When viral 
RNA is recognized by cas13, cas13 is activated and sub-
sequently cut off viral RNA to activate fluorescein. The 
whole testing process is easy and quick, and the result is 
shown directly on provided test strips. Besides the direct 
detection of viral nucleic acids, viral antigens can also be 
tested. Generally, specimen collected at infection sites such 
as throat swabs are used in viral antigen testing. However, 
we require new antigen testing techniques with higher sen-
sitivity, because the virus quantity in ordinary specimens is 
usually too low to be detected in early diagnosis. SMC™ 
is a single molecule counting technology with ultra-high 
sensitivity. It can detect low-abundance biomarkers at fg/
mL levels in complex biological matrices. SMC™ tech-
nology is based on the traditional double-antibody sand-
wich ELISA. After elution, the fluorescein-labeled detec-
tion antibody is dissociated from the immune complex and 
the fluorescein is sensed by the single molecule detection 
system. The fluorescent signals are recorded one by one and 
calculated synchronously. Additionally, Quanterex technol-
ogy developed a digital ELISA which is similar to digital 
PCR. The main difference between the digital ELISA and 
traditional immunoassay is that the former can capture sin-
gle immunocomplexes on paramagnetic beads in arrays of 
femtoliter-sized wells. These highly sensitive and specific 
POCT techniques are very important in the early diagnosis 
of COVID-19. They can not only relieve the pressure of 
large hospitals in the early stage of the pandemic but also 
assist in the identification of asymptomatic COVID-19 cases 
after reopening economy. Therefore, the microfluidic chip 
acts as a "micro version" laboratory and plays an impor-
tant role in SARS-CoV-2 detection [55]. In the diagnosis of 
Ebola, some research institutions developed a simple bioas-
say protocol using microfluidic devices featuring integrated 
photoelectric signal transduction. In this protocol, a silica 
bead-based microfluidic device captures and detects the 
products of rolling circle amplification (RCA) at femtomolar 
levels. To detect multiple pathogens, a multiple LAMP assay 
can identify a wide range of pathogens after the optimiza-
tion of reaction conditions. Some researchers also developed 
nanopore targeted sequencing (NTS) to detect SARS-CoV-2 
as well as 10 families and 40 types of respiratory viruses. 
The detection threshold of NTS is 100 times higher than that 
of qPCR [54]. In addition, LAMP has also been upgraded by 
digital technology. Digital LAMP (dLAMP) can be used to 
determine the nucleic acid concentration in a single test. It 
reduces labor intensity and instrument complexity in virus 
testing. Rodriguez-Manzano J et al. developed the on-chip 
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loop-mediated DNA amplification, which allows smart-
phones to record and analyze the results [56]. Therefore, the 
simultaneous detection of viral nucleic acids and antibodies 
via the combination of smartphones and digital isothermal 
microfluidic detection becomes the trend in SARS-CoV-2 
detection techniques [31].

Measurements of cell subsets or cytokines are primar-
ily performed by flow cytometry and fluorescent labeling. 
Spillover cross-interference of various fluorescent signals 
in the detection of multiple molecules is always a concern. 
To solve this problem, diverse coding methods have been 
applied to optimize the simultaneous identification of mul-
tiple biomarkers in different diseases. This would lead to the 
establishment of the COVID-19 cytokine spectrum shortly. 
Liu B et al. have used surface-enhanced Raman scattering 
(SERS) nanotags to assess distinct protein markers on a 
single anti-opal photonic crystal microsphere. According to 
their report, this approach features high sensitivity, a wide 
linear dynamic range, and easy information collection for 
multiple biomarkers by a single Raman spectrum acquisition 
[57]. In addition, Applied Biocode company has developed 
a new generation of digital liquid-phase chip which uses 
digitally barcoded magnetic beads to specifically identify 
biomarkers. Merck launched the MILLIPLEX® Multiplex 
Assay system powered by Luminex® xMAP® technology. 
The MILLIPLEX system is based on color-coded polysty-
rene beads. Bead coloration is achieved by utilizing different 
concentrations of red and infrared fluorophore dyes to create 
dozens of uniquely colored bead sets. These bead sets are 
then combined within the same assay well. Each analyte 
is distinguished from the other because they are bound to 
differently colored/fluorescent beads. The high-throughput 
detection techniques can facilitate the simultaneous detec-
tion of a wide spectrum of cytokines.

In short, the development of SARS-CoV-2 detection 
technology may fulfill the easier, faster, and more accurate 
diagnosis of COVID-19 (Fig. 5). However, whether the new 
technology can truly replace the traditional pathogen diag-
nosis technology still needs a long period of practice. As can 
be seen in Table 1 and Figure S1, nucleic acids and antibod-
ies are the mainstays in the detection of COVID-19 today. 
Nucleic acid detection mainly relies on qPCR, and antibody 
detection mainly relies on labeled immunoassays (such as 
enzyme-linked immunoassay, radiation Immunoassays, fluo-
rescent immunoassays, luminescence immunoassays, etc.), 
while emerging technologies utilized in clinical diagnostics 
account for a very small share. Emerging diagnostic technol-
ogies often face the following problems in clinical diagno-
sis: (1) Some products are miniaturized for convenience and 
speed, but this often results in lower throughput; (2) Some 
technologies have not yet been completed Large samples 
are tested, so the test results are often unstable; (3) Some 
technologies have not yet developed a mature supporting 

equipment market, or require very sophisticated or expensive 
instruments. For example, Abbott ID NOW received wide-
spread attention in the early days of its release, but many 
recent documents question its accuracy [22, 58].

• https ://www.nmpa.gov.cn/(click this website for 
information about detection technology from NMPA in 
Table 2).
• https ://www.fda.gov/medic al-devic es/coron aviru s-disea 
se-2019-covid -19-emerg ency-use-autho rizat ions-medic 
al-devic es/vitro -diagn ostic s-euas(click this website for 
information about detection technology from FDA in 
Table 2).
• https ://covid -19-diagn ostic s.jrc.ec.europ a.eu/devic 
es(click this website for information about detection tech-
nology from EU in Table 2).

Conclusions

COVID-19 has different clinical characteristics at differ-
ent stages, requiring specific diagnostics to determine the 
disease progression. Before hospital admission, a hierarchi-
cal diagnosis strategy should be carried out and a sensitive 
diagnostic technology must be applied to implement early 
diagnosis. After admission, the disease progression and 
host immune response should be dynamically monitored to 
evaluate the severity of the disease. Before discharge, the 
therapeutic efficacy needs to be determined. The detection 
parameters must be carefully set. Viral nucleic acids, viral 
antigens, antiviral antibodies, lymphocyte populations, and 
cytokines serve different monitoring purposes. With the 
development of detection techniques, COVID-19 tests can 
now be carried out in central laboratories, clinics, pharmacy 
stores, and roadside” testing booths [59–68] (Table 3). 

It has been suggested that asymptomatic COVID-19 
patients and patients with mild symptoms can transmit 
SARS-CoV-2. If they are not isolated on time, the risk of 
community transmission of COVID-19 will rise, and the 
public will be in danger. The development and application 
of RT-PCR-based viral nucleic acid testing reagents have 
played a significant role in the screening and diagnosis 
of COVID-19 patients. However, RT-PCR testing is con-
ducted in centralized facilities in a time-and-labor consum-
ing manner, and the detection rate of viral nucleic acids by 
RT-PCR is somehow disappointing. Therefore, it is neces-
sary to upgrade the diagnostics for asymptomatic patients. 
Given the lack of therapies such as the COVID-19 vac-
cine, the current focus remains on monitoring the source 
of infection. Artificial intelligence and deep learning can 
improve the detection and diagnosis ability of COVID-19 
[69–71]. Big data analysis are a modeling study of viral 
activity that can predict the size, dynamics of outbreaks 

https://www.nmpa.gov.cn/
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas
https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas
https://covid-19-diagnostics.jrc.ec.europa.eu/devices
https://covid-19-diagnostics.jrc.ec.europa.eu/devices
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and the preventive measures that should be taken, thus 
providing more comprehensive recommendations for 
decision-makers [72–74]. The Internet of Things (LoT) 
provides a platform for public health agencies to access 
data to monitor the COVID-19 pandemic, such as daily 
reports issued by the World Health Organization [75]. The 
role of mobile health applications is mainly to collect data 
and distribute information [73]. The former includes the 
upload of diagnostic results, the recording of health data 
of wearing devices, the recording of moving tracks, etc., 

while the latter includes health pass codes, the location of 
confirmed or suspected cases in nearby areas, and relevant 
news on social media. But there are obstacles in practical 
application, including doubts about the reliability of non-
clinical laboratory data, inadequate privacy protection of 
users, and the audience limitations of smartphones and 
false information in numerous social software. With the 
rapid advance of molecular testing technology and intel-
ligent technology, it is feasible to establish a smartphone-
friendly Cloud-based rapid diagnosis platform to empower 

Fig. 5  The emerging COVID-19 diagnostic technology. Droplet-
based microfluidics accelerates the speed and promotes the accuracy 
of SARS-CoV-2 nucleic acid detection and antibody detection. The 

new trend in cytokine measurement is to evaluate a wide spectrum 
of cytokines, using SERS, immune microspheres, and digital liquid 
chips alone or together
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the government to efficiently implement COVID-19 con-
trol. Taken together, we hereby propose the concept of 
a Cloud-based epidemic control system, which realizes 
smartphone-based POCT testing using microfluidic chips 

and updated tracking of confirmed cases. The COVID-19 
management strategy composed of flexible detection meth-
ods, convenient information collection platforms and intel-
ligent cloud management networks. We believe that this 

Table 2  Emerging detection technology of COVID-19 in NMPA/FDA/EU

Emerging detection technology in NMPA/FDA/EU Examples

NMPA

Quantum dot fluorescence immunochromatography Novel coronavirus (2019-nCoV) IgM/IgG antibody detection kit 
(Shanghai Kexin Biotechnology Co., Ltd.)

Upon version luminescence immunochromatography Novel coronavirus (2019-nCoV) antibody detection kit (Beijing Hotgen 
Biotech Co., Ltd.)

Isothermal amplification nucleic acid detection CapitalBio respiratory virus nucleic acid detection Ki (CapitalBio 
Technology Inc.)

Combined probe-anchored polymerization sequencing Novel coronavirus 2019-ECoV nucleic acid detection kit (Beijing 
Genomics institution)

RNA capture probe method Novel coronavirus 2019-nCoV nucleic acid detection kit (Shanghai 
Rendu Biotechnology Co., Ltd.)

Hybrid capture immunofluorescence Novel coronavirus 2019-ECoV nucleic acid detection kit (Anbio (Xia-
men) Biotechnology Co., Ltd.)

FDA

droplet digital PCR Bio-Rad SARS-CoV-2 ddPCR Test (Bo-Rad Laboratories, lnc.)
Isothermal amplification nucleic acid detection ID now covID-19 (Abbott Diagnostics Scarborough, Inc.)
In vitro diagnostic (IVD) workflow for gene sequencing Illumina COVIDSeq test (Illumina, Inc.)
Saliva nucleic acid detection Rutgers clinical genomics laboratory TaqPath SARS-CoV-2-assay 

(Illumina, Inc.)
CRISPR SARS-CoV-2 RNA DETECTR assay (UCSF Heath Clinical Laborato-

ries, UCSF clinical Labs at China Basin)
EU- CE

Pathogen Metagenomics (mNGS) SARS-Cov-2 Clinical sequencing assay (Vision Medicals)
Proteome microarray PEPperPRINT GmbH PEPperCHIPE@SARS-CoV-2 proteome micro-

array (PEPperPRINT GmbH)
EU- no CE

Tongue swab diagnosis of SARS-Cov-2 Tongue swab diagnosis of SARS-CoV-2(University of Washington)
Electrical detection of SARS-CoV-2 nucleocapsid protein using nano 

sensors and aptamer
Pinpoint Coid-19 screening assay (Pinpoint Science Inc.)

Microarray based high-throughput elisa-like coVID-19 IgG/IgM/IgA 
assay

pGOLD™ COVID-19 high accuracy IgG/lgM assay kits (Nirmidas 
Biotech Inc.)

Exhaled volatile organic compounds (VOC) as virus biomarkers Airostotlecv1s (Canary Health Technologies)

Detection of innate immune response cell activation in the blood Ativa enhanced screen (Ativa Medical)

Table 3  Comparison of diagnostic methods for the detection of SARS-CoV-2

Method Target Sample type Clinical sensi-
tivity (%)

Specificity (%) Test time (min) References

RT-PCR Virus mRNA Respiratory swabs, saliva, sputum, BLF 30–67.1% 100 120–140 [59, 60]
CRISPR Virus mRNA Respiratory swabs, saliva 95–100 100 45–70 [61–63]
ELISA Antibody Blood 86–100 89–100 60–180 [64, 65]
GICA Antibody Blood 50–100 90–100 15–30
ddPCR Virus mRNA Respiratory swabs, saliva, sputum, BLF 83–100 48–100 120–140 [66, 67]

POC tests Virus mRNA or 
Antibody

Respiratory swabs, saliva, sputum, BLF  > 95 100 13–60 [68]
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advanced intelligent system will remarkably benefit the 
regional and global COVID-19 pandemic control (Fig. 6).
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