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COVID‑19 and cognitive impairment: 
neuroinvasive and blood‒brain barrier 
dysfunction
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Abstract 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
led to a global pandemic. Although COVID-19 was initially described as a respiratory disease, there is growing evi-
dence that SARS-CoV-2 is able to invade the brains of COVID-19 patients and cause cognitive impairment. It has been 
reported that SARS-CoV-2 may have invasive effects on a variety of cranial nerves, including the olfactory, trigeminal, 
optic, and vagus nerves, and may spread to other brain regions via infected nerve endings, retrograde transport, and 
transsynaptic transmission. In addition, the blood–brain barrier (BBB), composed of neurovascular units (NVUs) lining 
the brain microvasculature, acts as a physical barrier between nerve cells and circulating cells of the immune system 
and is able to regulate the transfer of substances between the blood and brain parenchyma. Therefore, the BBB may 
be an important structure for the direct and indirect interaction of SARS-CoV-2 with the brain via the blood circula-
tion. In this review, we assessed the potential involvement of neuroinvasion under the SARS-CoV-2 infection, and the 
potential impact of BBB disorder under SARS-CoV-2 infection on cognitive impairment.
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Introduction
At the end of 2019, a large number of cases of pneumo-
nia were reported, and then the disease spread rapidly 
and was named COVID-19 [1]. As of June 23, 2022, the 
COVID-19 pandemic has infected nearly 541 million 
people worldwide and killed 6.32 million people [2]. Since 
the outbreak of the COVID-19 pandemic, the spread of 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has had a dramatic impact on global healthcare 
systems and socioeconomics [3, 4]. With the application 
of high-efficiency vaccines, the number of COVID-19 

survivors has gradually increased, and people have begun 
to pay attention to the long-term or delayed sequelae that 
are caused by SARS-CoV-2 infection, commonly known 
as “long-COVID” syndrome [5, 6]. Although COVID-
19 was initially described as a respiratory disease, data 
suggest that, depending on the severity of COVID-19 
symptoms, 30% to 80% of patients develop neurological 
complications, and some are sufficiently disabling [7–10]. 
Therefore, understanding the invasion and impact of 
SARS-CoV-2 on the central nervous system (CNS) is cru-
cial for future studies.

The vasculature of the CNS is the main channel for 
blood molecules to enter the brain and tightly regulate 
the movement of ions, molecules and cells between the 
blood and the brain, known as the blood–brain barrier 
(BBB) [11–13]. The BBB is mainly composed of brain 
endothelial cells, vascular basement membrane, peri-
cytes, astrocyte end-foot, microglia and neurons [11, 
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14]. These structures act as a bridge between the brain 
parenchyma and the cerebrovascular system and are col-
lectively referred to as the neurovascular units (NVUs) 
[15, 16]. BBB endothelial cells are sealed by tight junction 
(TJ) proteins (ZO scaffolding proteins, claudin-5, and 
occludin) and junctional adhesion molecules to limit the 
extracellular and transcellular diffusion of molecules in 
the CNS [17–19]. Thus, in addition to neuroinvasion, dis-
ruption of BBB integrity during COVID-19 may expose 
the brain parenchyma to SARS-CoV-2 in infected blood, 
which may affect neuronal activity in the CNS.

Although the cause of neuroinvasion and BBB dam-
age in COVID-19 is still unclear, the extent of neuro-
logical injury and BBB damage appears to be related 
to the degree of cognitive impairment and severity of 
COVID-19 infection. Cranial nerves and the BBB may be 
important structures for direct and indirect interactions 
between SARS-CoV-2 and the brain. In this review, we 
assessed the potential involvement of neuroinvasion and 
BBB dysfunction in SARS-CoV-2 infection, exploring its 
impact on COVID-19-related cognitive dysfunction.

Clinical evidence of cognitive impairment 
associated with COVID‑19
The lungs are the most severely affected organ in 
COVID-19, which manifests as diffuse alveolar damage, 
hyaline membrane formation, inflammatory cell infiltra-
tion, and microvascular damage [20]. Although SARS-
CoV-2 infection was initially thought to be limited to the 
respiratory tract, causing severe respiratory syndrome, 
it was later found that the virus can invade other organs, 

including the CNS [10, 21]. After analysing data from 
214 patients from 67 studies, Motalvan et al. [22] found 
that 36.4% of patients with COVID-19 developed neuro-
logical symptoms (Table 1). Multiple retrospective cohort 
studies of COVID-19 survivors found that one-third of 
the patients developed neurological or psychiatric symp-
toms 6  months after SARS-CoV-2 infection [23, 24]. In 
addition, multiple studies have shown a high incidence 
of cognitive impairment in post-COVID-19 patients, 
exceeding 50% in all studies reporting prevalence [25–30] 
(Table  1). Notably, cognitive impairment appears to be 
more common in critically ill patients. In a cohort study 
of 1438 COVID-19 survivors, Liu et  al. found that 10% 
of severe COVID-19 survivors had dementia and 26.54% 
had MCI at 6 months after discharge [31]. At 12 months, 
the number of dementia patients increased to 15%, while 
the number of MCI patients remained at 26.15%, higher 
than nonsevere cases (0.76%) and MCI (5.35%) [31] 
(Table 1). The presence of abnormal brain magnetic reso-
nance imaging (MRI) findings in COVID-19 patients and 
the detection of SARS-CoV-2 RNA in cerebrospinal fluid 
may support the possibility that SARS-CoV-2 has neu-
roinvasive ability [32–35]. Taken together, SARS-CoV-2 
enters the brain parenchyma, which may lead to damage 
and loss of brain neurons and endothelial cells, thereby 
causing COVID-19-related neurological symptoms.

Furthermore, in severe cases of COVID-19, SARS-
CoV-2 infection can trigger systemic inflammation 
and cytokine storms [36]. Significantly elevated lev-
els of interleukin-6 (IL-6) and tumour necrosis factor-α 
(TNF-α) were found in the cerebrospinal fluid of patients 

Table 1  Summary of neurological involvement in COVID-19 patients in existing studies

The table includes some summaries of neurological involvement in COVID-19 patients in existing studies. The incidence of these symptoms varied with sample size 
and duration of observation. However, cognitive impairment and other neurological symptoms in COVID-19 patients cannot be ignored

Number 
of 
patients

Incidence of cognitive impairment Other types of neurological symptoms References

214 – Headache, disturbance of consciousness, neuralgia, ataxia, acute cerebro-
vascular disease, seizures

[22]

29 59–65% (at 4 months) Executive dysfunction (33%) [25]

2103 61.5–80% (at 3 months) – [26]

53 61.5% Hyposmia (26%), headache (21%), ischaemic stroke (11.1%), coordina-
tion deficits (74%), paresis (47%), abnormal reflex status (45%), sensory 
abnormalities (45%)

[27]

26 69.2% Anosmia (34%), hyposmia (52%), hypogeusia (100%) [28]

179 58.7% (at 2 months) Impaired immediate verbal memory and learning (38%), delayed verbal 
memory (11.8%), verbal fluency (34.6%) and working memory (executive 
function) (6.1%)

[29]

226 78% Impaired executive function (50%), impaired psychomotor coordination 
(57%)

[30]

1438 Dementia: 10% (at 6 months)–15% (at 
12 months) MCI: 26.54% (at 6 months)–26.1% (at 
12 months)

– [31]
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affected by COVID-19 [37–39]. In vivo and in vitro stud-
ies have shown that IL-6 and TNF-⍺ can trigger stress 
response mechanisms that disrupt synaptic plasticity, 
memory formation, and hippocampal neurogenesis [40–
42]. Viruses can cause brain dysfunction and neuronal 
damage through direct cytolysis or secondary inflam-
matory responses (indirect effects) [43]. Regardless of 
whether the brain is affected by SARS-CoV-2 through 
primary or secondary pathways, the neurological com-
plications of COVID-19 may be related to the invasive 
effects of SARS-CoV-2 on brain tissue.

Potential pathways of SARS‑CoV‑2 invading 
the CNS
Histopathological studies have shown that SARS-CoV-2 
is present in different types of brain parenchyma cells. 
The underlying neurotropic mechanism of SARS-CoV-2 
is not fully understood [44–46]. However, the neuro-
tropic mechanisms previously found in SARS-CoV and 
other viruses can serve as a reference for evaluating the 
mechanisms of SARS-CoV-2. According to the current 
research, there may be two main routes of virus entry 
into the CNS: neuroinvasive mechanisms and haematog-
enous transmission routes [47–51].

SARS‑CoV‑2 enters the brain along the olfactory nerve
The olfactory nerve is mainly composed of olfactory 
receptor neurons and directly connects the nasal cav-
ity and the CNS [52]. Some pathogens can infect olfac-
tory sensory neurons and their axons that project into 
the olfactory bulb, which allows the viruses to bypass 
the BBB and reach the CNS through the so-called olfac-
tory pathway [53]. In one study, of 38 patients with con-
firmed COVID-19, 73.7% were reported to have positive 

RT-PCR tests on nasopharyngeal swabs [54]. In a Spanish 
COVID-19 cohort, 36% of the patients initially presented 
with anosmia [55]. In a large European multicentre 
cohort of mild-to-moderate COVID-19 patients, 85.6% 
and 88.8%, respectively, had olfactory and taste dysfunc-
tion [56].

Each olfactory receptor neuron projects dendrites 
into the nasal cavity and extends its axons basolaterally 
through the lamina cribrosa into the olfactory bulb of 
the brain [52, 57] (Fig. 1). In this pathway, SARS-CoV-2 
in the nasal endothelium may attach to motor proteins 
along sensory and olfactory nerves to travel to the brain 
[58]. Two days after intranasal administration of SARS-
CoV-2 in hamsters, viral antigens were present in the 
nasal mucosa, bronchial epithelial cells, and areas of lung 
consolidation, and the virus could infect hamster olfac-
tory sensory neurons [59, 60]. Studies have shown that 
olfactory epithelial cells express high levels of angioten-
sin-converting enzyme 2 (ACE2) and transmembrane 
protease serine 2 (TMPRSS2) [61–63], which could 
provide a plausible explanation for COVID-19-related 
anosmia (Fig.  1). Early animal studies have shown that 
SARS-CoV can enter the brains of ACE2-transgenic mice 
via the olfactory bulb and cause rapid, transneuronal 
spread to relevant regions of the brain where infected 
neurons are dysfunctional [64]. Given the highly simi-
lar pathophysiological pathways between SARS-CoV 
and SARS-CoV-2, this may explain the high incidence of 
anosmia in COVID-19 patients [60, 61, 65, 66].

Notably, many research reported that SARS-CoV-2 
RNA was detected not only in the olfactory mucosa 
and olfactory bulb, but also in different branches of the 
trigeminal nerve [45] (Fig.  2). SARS-CoV-2 may also 
enter the trigeminal nerve through ACE2 receptor [67]. 

Fig. 1  Potential routes of SARS-CoV-2 entry into the brain via the olfactory pathway. Once SARS-CoV-2 is inhaled into the nasal cavity, the virus 
spreads to the central nervous system along the retrograde axons of the olfactory nerve via the olfactory epithelial receptors ACE2 and TMPRSS2
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Afferent fibres from the nasal mucosa travel through the 
ethmoid nerve to the anterior cranial fossa and travel in 
the dura to the trigeminal ganglion [68]. Therefore, the 
strong activation of trigeminal afferents damaged by 
SARS-CoV-2 may lead to headache and anosmia. The 
histological changes resulting from intranasal inoculation 
of neurotropic virus include neuronal and glial necro-
sis with neutrophil infiltration [69, 70]. Therefore, once 
SARS-CoV-2 is inhaled into the nasal cavity, the virus 
may propagate into the CNS along the retrograde axons 
of the olfactory nerve through the receptors ACE2 and 
TMPRSS2 on the olfactory mucosa, resulting in neu-
ronal necrosis and dysfunction, thereby causing cognitive 
impairment due to CNS damage (Fig. 1).

SARS‑CoV‑2 transmission through the ocular route
It has been speculated that this may have something to 
do with the lack of goggle protection [71]. On January 
22, 2020, a member of the National Pneumonia Panel 
was diagnosed with COVID-19 just days after an epi-
sode of red eye [71]. The possibility of eye transmission 
of SARS-CoV-2 is gradually attracting global attention. 
If a virus can get into our eyes, the most common tar-
get may be our conjunctiva [72]. With the development 
of the epidemic, many COVID-19 patients have devel-
oped conjunctivitis as the first symptom or accompany-
ing symptoms [72, 73]. A clinical study of 172 COVID-19 
patients showed that the most common ocular symp-
tom in COVID-19 patients was conjunctivitis (23.3%), 

Fig. 2  Possible pathways by which SARS-CoV-2 enters the brain through other neural invasions. In addition to infection through the olfactory 
route, SARS-CoV-2 can also be transmitted through direct or indirect contact with the eyes and oral mucosa. SARS-CoV-2 may enter cells through 
receptors such as ACE2 on the nasal cavity, eyes, respiratory epithelium, lung parenchyma, and gut and in turn affect multiple cranial nerves 
(including trigeminal, optic, and vagus nerves). SARS-CoV-2 may infect nerve endings, be transported retrogradely, and spread to other brain 
regions via synapses
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manifested as conjunctival hyperaemia, foreign body sen-
sation, and itching [74].

However, whether SARS-CoV-2 can be transmitted 
through the eyes remains controversial [75, 76]. Mein-
hardt et  al. [45] assessed viral load by RT-qPCR on 
regionally defined tissue samples and found low levels of 
viral RNA in the corneal, conjunctival and oral mucosa in 
addition to SARS-CoV-2 in the olfactory mucosa directly 
below the sieve plate. In addition, immunohistochemical 
analysis showed that ACE2 was expressed in the conjunc-
tiva, limbus and cornea [77, 78] (Fig. 2). This provides the 
molecular basis for the susceptibility of the eye to SARS-
CoV-2. Recent studies have shown that SARS-CoV-2 
can infect the eyes through droplets with viral particles, 
and the virus can then spread through the nasolacrimal 
duct to reach the lungs [79]. Inoculation with TCID50 of 
SARS-CoV-2 in the conjunctiva and intratracheal and 
intragastric inoculation of five rhesus monkeys revealed 
SARS-CoV-2 [80]. Therefore, the eye has the potential to 
be a potential infection portal for SARS-CoV-2, support-
ing the possibility of ocular transmission using the con-
junctival mucosa as an entry point for SARS-CoV-2 in 
the setting of insufficient ocular protection (Fig. 2).

In addition to conjunctivitis, SARS-CoV-2 infection 
has been associated with lesions leading to visual impair-
ment due to retinal vascular obstruction, ischaemic optic 
neuropathy, chorioretinitis, and optic nerve inflamma-
tion [81, 82]. De Figueiredo et  al. [83] described viral 
arrival at the blood‒retinal barrier, expressing ACE2 and 
CD147 in retinal pigment epithelial cells and vascular 
endothelial cells. Because CD147 mediates the disrup-
tion of the neurovascular barrier, the virus can cross 
the bloodstream. CD147 mediates the disruption of the 
neurovascular barrier, and viruses can cross the blood‒
retinal barrier and enter the bloodstream [84]. Therefore, 
in addition to droplet transmission and direct contact 
transmission of common respiratory viruses, SARS-
CoV-2 may be transmitted to the ocular surface through 
hand–eye contact and aerosol transmission and then to 
other systems through the nasolacrimal tract and blood-
stream transmission. The potential for ocular transmis-
sion of SARS-CoV-2 should not be overlooked. Although 
haematogenous transfer of SARS-CoV-2 through the eye 
is theoretically possible, more clinical or experimental 
evidence is needed to confirm this hypothesis. In the cur-
rent severe outbreak, more evidence is urgently needed 
to better assess the potential for ocular transmission and 
the need for protective measures.

Neuroinvasion via the vagus nerve
The vagus nerve is the longest nerve in the body and con-
nects vital organs, including the brain, heart, lungs and 
intestines. In a study of 200 COVID-19 patients, Aranyó 

et al. [85] found that symptoms such as dizziness, cough, 
increased heart rate and gastrointestinal problems were 
associated with damage to the vagus nerve. Although 
human data are lacking, the vagus nerve complex is 
known to express ACE2 in rodents [86]. The nucleus 
solitarius receives sensory information from mechanore-
ceptors and chemoreceptors in the lung and respiratory 
tract, so the vagal nucleus solitarius from the lung may be 
one of the important pathways for virus transport to the 
brain [87, 88]. Rangon et al. [89] pointed out that SARS-
CoV-2 easily invades from the lung along the vagus nerve 
to the autonomic nerve centre in the brainstem and is 
involved in the coupling of cardiovascular and respira-
tory rhythms (Fig.  2). Netland et  al. [64] infected brain 
slices from ACE2 mice with SARS-CoV and found that 
the dorsal vagal complex, which is critical for cardiores-
piratory function, was infected. As reported by Li et  al. 
[90], SARS-CoV-2 migrates from the lungs to the brain 
and may cause dysfunction of the pulmonary respiratory 
centre in the brainstem of patients with COVID-19.

In addition, the possibility of enteral infection of SARS-
CoV-2 in patients with COVID-19 has also raised con-
cerns [91]. This may be due to the existence of a large 
number of ACE2 receptors in intestinal epithelial gland 
cells in addition to the existence of ACE2 in human res-
piratory epithelium and lung parenchyma [92, 93], which 
provide the molecular basis for susceptibility to SARS-
CoV-2 (Fig. 2).

Therefore, the dorsal vagus nerve complex of the brain-
stem can be a target of SARS-CoV-2, and the virus may 
invade brain tissue along the vagus nerve, which may be 
the neuroanatomical basis for COVID-19 to affect respi-
ration and related reflexes.

SARS‑CoV‑2 enters the brain via the BBB
In addition to possibly causing brain infection via the 
neuroinvasive route, SARS-CoV-2 may also enter the 
brain via the haematogenous route [49, 94]. Studies have 
pointed out that SARS-CoV-2 is present in the blood of 
up to 40% of COVID-19 patients [95, 96]. An autopsy 
analysis of patients who died from COVID-19 showed 
that SARS-CoV-2 can infect endothelial cells [97]. Nor-
mally, viruses such as SARS-CoV-2 cannot easily enter 
the brain parenchyma through the endothelial cells that 
surround the capillaries of the systemic circulatory sys-
tem due to the unique physiology of the BBB. However, 
the BBB is not impenetrable. BBB disruption and leakage 
were reported in 58% of COVID-19 patients in 31 case 
studies of patients with neurological manifestations [98], 
and these studies provided the first evidence of SARS-
CoV-2-induced BBB dysfunction in humans. Disruption 
of the BBB allows circulating SARS-CoV-2 to invade 
the brain parenchyma [93, 99, 100]. A recent study in a 
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BBB-on-a-chip in vitro system suggested that the SARS-
CoV-2 spike protein may contribute to BBB dysfunction 
and loss of integrity [101]. The entry of SARS-CoV-2 into 
the CNS through the BBB may take many forms, some 
through direct infection and others through secondary 
mechanisms, such as systemic inflammatory responses 
and ischaemic and hypoxic changes associated with 
intravascular coagulation disorders (Fig. 3).

SARS‑CoV‑2 directly interacts with components of the BBB
Examination of brain tissue from postmortem SARS-
CoV-2-infected patients revealed the presence of viral 
particles in brain capillaries, endothelial cells, pericytes, 
and neurons [97, 102, 103]. Studies have shown that 
SARS-CoV-2 enters cells through the activities of the 
spike protein, which binds to the ACE2 receptor, and the 
spike protein is a protein that allows viral RNA to enter 
healthy cells, allowing the virus to replicate through a 
complex series of steps [101, 104–106]. The neural trans-
mission of SARS-CoV-2 through the BBB occurs via the 
infection of vascular endothelial cells due to the presence 
of ACE2 receptors in endothelial cells [102, 107, 108] 
(Fig. 3). Once the neurotrophic virus passes through vas-
cular endothelial cells, SARS-CoV-2 invades brain cells 
through the binding of the S1 subunit of its S protein to 
ACE2 receptors, which triggers a conformational change 
in the S2 subunit to achieve membrane fusion with the 
host cell [109]. The function and overactivity of the ACE2 
receptor may affect these target cells and organs, increas-
ing the patient’s susceptibility to infection [110]. The pos-
sibility of entry into the cerebrovascular system via other 
SARS-CoV-2 receptors, such as neuropilin-1 (NRP1) 
[111] and TMPRSS2 [106], cannot be ruled out. Notably, 
ACE2 and TMPRSS2 are also expressed in human cho-
roid plexus cells [112]. The choroid plexus has a more 
permeable blood–cerebrospinal fluid barrier than the 
tightly regulated BBB and may be a potential site for viral 
entry into the CNS. Taken together, these data suggest 
that binding of SARS-CoV-2 with ACE2 receptors on the 
cerebral vascular endothelium may lead to SARS-CoV-2 
crossing the BBB into the brain parenchyma.

Furthermore, viral invasion of the BBB may be asso-
ciated with disruption of endothelial TJs, leading to 
BBB dysfunction and enhanced permeability [113, 114]. 
Using a 3D tissue model of the BBB, the SARS-CoV-2 
spike protein was shown to damage endothelial cells and 
increase the permeability of the BBB [101]. The SARS-
CoV-2 spike protein triggers a proinflammatory response 
in brain endothelial cells, which may lead to alterations 
in the BBB functional status. Subsequent studies found 
that the SARS-CoV-2 spike protein led to disruption 
of the BBB by downregulating TJ proteins in human 

brain microvascular endothelial cells, resulting in viral 
entry into the CNS via a paracellular pathway [115, 116] 
(Fig. 3).

SARS‑CoV‑2 infection triggers systemic inflammation 
and promotes BBB leakage
In severe cases of COVID-19, SARS-CoV-2 infection can 
trigger systemic inflammation and cytokine storms [36]. 
Krasemann et al. [117] used an in vitro BCEC model to 
show intrinsic inflammatory signatures following expo-
sure to SARS-CoV-2. Indirect effects of a hyperinflam-
matory state may be the mechanism involved in the BBB 
disruption associated with COVID-19 [118]. Elevated 
levels of proinflammatory factors are closely related to 
changes in TJ function and BBB disruption. For exam-
ple, elevated levels of IL-1 can lead to impaired BBB 
integrity [119]. IL-1β also activates extracellular signal-
regulated kinases, upregulates matrix metalloproteinase 
(MMP)-9 and disrupts TJ proteins [120, 121]. In addition, 
cytokines such as TNF-α, IL-6, and IL-12 can lead to the 
degradation of TJ proteins (occludin, claudin-5, ZO pro-
teins), resulting in impaired BBB permeability [122, 123]. 
Concomitant with inflammatory damage to the BBB, the 
extravasation of immune cells through the BBB increases, 
resulting in increased SARS-CoV-2 viral particles, as well 
as proinflammatory cytokines, in the brain parenchyma. 
Exposure of astrocytes to viral particles and proinflam-
matory mediators triggers the activation of cytokines 
and the production of vascular endothelial growth factor 
(VEGF) in these cells [124, 125]. VEGF in brain capillary 
endothelial cells breaks down TJ proteins by activating 
the phosphoinositide 3 (PI3)-kinase and AKT signalling 
pathways and by upregulating MMP-9 protein levels, 
resulting in BBB leakage [126–128]. Increased secretion 
of proinflammatory cytokines associated with COVID-19 
impairs BBB integrity and accelerates SARS-CoV-2 entry 
into the brain parenchyma [99, 122, 129] (Fig. 3).

In addition, virus-infected leukocytes spread into the 
blood circulation and extravasate into the brain paren-
chyma with other immune cells, and this may be another 
route for the virus to enter the CNS. Infected leukocytes 
with neurotropic viruses, such as human immunode-
ficiency virus (HIV) and West Nile virus (WNV), can 
infiltrate the brain through the vasculature, meninges, 
and choroid plexus, and this mechanism is known as 
the “Trojan horse” [130, 131]. SARS-CoV-2 likely also 
uses this mechanism to invade the CNS by infecting 
ACE2-expressing leukocytes. This evidence, combined 
with the systemic inflammatory and hypoxic conditions 
in COVID-19, shows that there is increased leukocyte 
infiltration through the BBB during infection [118, 132], 
which reinforces this pathway for SARS-CoV-2 to invade 
nerves (Fig.  3). Experience from cohort observations 
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Fig. 3  Possible mechanism of SARS-CoV-2 infection of the brain via the haematogenous route. Pulmonary infection with SARS-CoV-2 leads to 
vascular endothelial damage and increase capillary permeability, allowing virus transfer from the lungs to the pulmonary microcirculation. After 
reaching the BBB, SARS-CoV-2 may enter the CNS through direct interaction with ACE2 receptors or by altering tight junction proteins formed by 
BBB endothelial cells. Infection with SARS-CoV-2 increases circulating concentrations of proinflammatory cytokines (IL-1, IL-1β, TNF-α, IL-6, IL-12, etc.), 
thrombin, fibrinogen, and plasmin, and induced hypoxia to disrupt the BBB may lead to paracellular passage of SARS-CoV-2 as a means of entry into 
the CNS. In addition, infected leukocytes can carry SARS-CoV-2 across the BBB to infect the CNS through a “Trojan horse” mechanism
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suggests that persistent systemic inflammation during 
COVID-19 infection is associated with subsequent cog-
nitive decline [133] and leads to persistent electroen-
cephalography (EEG) changes and hippocampal atrophy 
[134].

Therefore, in cognitive impairment related to COVID-
19, attention should be given to the impact of proin-
flammatory factors on the body. SARS-CoV-2 infection 
causes proinflammatory cytokines to activate specific 
signalling cascades and increase BBB leakage by impair-
ing TJ proteins assembly and expression levels, which in 
turn allows SARS-CoV-2, peripheral immune cells and 
other molecules to enter the CNS, thereby exacerbating 
brain damage.

SARS‑CoV‑2 infection leads to coagulopathy, promotes TJ 
disruption and increases BBB permeability
Acute viral infections, including SARS-CoV-2, have been 
reported to increase the risk of ischaemic stroke [135, 
136]. The severity of COVID-19 is positively correlated 
with the risk of stroke [51]. Coagulation is frequently 
impaired in COVID-19 patients, resulting in a common 
hypercoagulable state in patients, and may be related to 
the incidence of stroke [137–139]. In two COVID-19 
cohorts, the incidence of ischaemic stroke secondary to 
thromboembolic complications was 1.6% [140] and 2.5% 
[141]. Critically ill patients infected with SARS-CoV-2 
often exhibit elevated d-dimer levels and severe throm-
bocytopenia, which may increase the probability of cer-
ebrovascular events [95, 142]. Han et al. [143] conducted 
a prospective retrospective analysis of coagulation data 
from 94 patients with confirmed COVID-19 and found 
that d-dimer, fibrin/fibrinogen degradation products and 
fibrinogen levels were significantly higher in all SARS-
CoV-2-infected cases than in the healthy control group.

Using an adult rat model of intraventricular haemor-
rhage, Liu et  al. [144] found that thrombin can disrupt 
the BBB through a molecule that activates the phospho-
rylation of Src kinase by its protease-activated receptor. 
Src family members can increase BBB permeability by 
phosphorylating MMPs and TJ proteins [145, 146] and 
upregulating VEGF [147]. In addition, it was shown in 
vascular endothelial experiments that fibrinogen can 
damage endothelial cell integrity by disrupting TJ pro-
teins bound to actin filaments [148]. Increased actin for-
mation may lead to cellular stiffness, retraction of actin 
filaments, and widening of interendothelial junctions, 
thereby disrupting endothelial cell integrity [149, 150]. 
By the intraventricular injection of endogenous tissue 
plasminogen activator (tPA), Yepes et  al. [151] found a 
rapid dose-dependent increase in vascular permeability. 
Consistent with the features of thrombotic microangi-
opathy, coagulation factors were elevated in COVID-19 

patients with abnormal mental status [138]. Computed 
tomography (CT) images of a patient with COVID-19 
and necrotizing haemorrhagic encephalitis showed sym-
metrical hypodensity in the bilateral medial thalamus, 
and MRI confirmed haemorrhagic lesions in the bilateral 
thalamus, subinsula, and medial temporal lobes [152]. 
These studies suggest that ischaemia-induced increases 
in endothelial permeability involve a cascade of events in 
which the thrombin, fibrinogen and plasmin systems are 
major players.

In summary, abnormalities in the coagulation system 
caused by SARS-CoV-2 infection may increase the per-
meability of the BBB and increase the entry of SARS-
CoV-2 into the brain parenchyma by disrupting TJ 
proteins (Fig. 3). Invasion of vascular endothelial cells by 
SARS-CoV-2 activates a thrombotic and inflammatory 
cascade leading to capillary occlusion. For example, brain 
structures that manage cognition, such as the hippocam-
pus, temporal lobe, and thalamus, are involved, resulting 
in ischaemia and hypoxia damage to nerve cells nour-
ished by these capillaries, which can promote the occur-
rence of vascular cognitive impairment.

Lung injury caused by SARS‑CoV‑2 leads to hypoxia 
increasing BBB permeability
Patients with COVID-19 frequently experience severe 
hypoxia due to respiratory distress, putting them at 
risk for hypoxia-related encephalopathy [153, 154]. An 
autopsy analysis of the brains of COVID-19 subjects 
revealed a very high incidence of acute hypoxic injury 
[155]. Respiratory failure from lung damage can lead to 
severe hypoxia in the brain [156]. Neurons rely on blood 
vessels to provide oxygen and nutrients. When brain 
tissue is continuously hypoxic, it will eventually lead to 
irreversible damage to neurons [157]. Consistent with 
hypoxic brain injury, postmortem studies of COVID-19 
have demonstrated neuronal damage in regions of the 
neocortex, hippocampus, and cerebellum [155, 158, 159]. 
Autopsy studies have shown that hypoxia can lead to oli-
godendrocyte death and extensive gliosis [160]. Numer-
ous in vitro and in vivo studies have shown that hypoxia 
leads to BBB disruption, which may be a trigger for sub-
sequent CNS disease [161].

Chen et al. [132] established an in vitro BBB model by 
coculturing mouse brain microvascular endothelial cells 
and astrocytes and found that hypoxia reduces ZO pro-
tein expression and induces ZO protein phosphorylation. 
Furthermore, using primary bovine brain microvascular 
endothelial cells, Mark et  al. [162] found that hypoxia 
resulted in a 2.6-fold increase in actin rearrangement and 
the paracellular permeability marker [14C] sucrose. These 
findings are consistent with previous reports show-
ing increased permeability of brain capillary endothelial 
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cells after 2  h to 48  h of hypoxia treatment [163, 164]. 
Notably, the expression of occludin and ZO proteins 
increased, while the protein expression or localization of 
claudin-1 was almost unchanged after hypoxia or reoxy-
genation [162]. This suggests that claudin may not be 
involved in the hypoxia-induced changes in paracellular 
permeability. The hypoxia-induced increase in paracel-
lular permeability of brain capillary endothelial cells 
may be associated with altered actin distribution and the 
loss of TJ proteins (Fig. 3). Conditions such as hypoxia, 
encephalitis, and stroke are known to produce long-term 
or even permanent neurocognitive impairment [165]. 
Therefore, some patients with COVID-19 are expected 
to develop long-term neurocognitive sequelae after the 
acute disease has resolved. In general, the chronic cogni-
tive sequelae of ischaemia and hypoxia can range from 
mild attention and memory impairment to general cogni-
tive decline and dementia and even coma.

Conclusions
Growing evidence suggested that survivors of COVID-
19 suffer from neurological involvement. The brain is 
undoubtedly one of the targets of COVID-19. The exact 
pathophysiology of CNS infection is currently still specu-
lative but appears to be related to a range of processes, 
including neuroinvasion and the effects of systemic infec-
tion consequences, both of which trigger BBB dysfunc-
tion, neuroinflammation, ischaemia and hypoxia and 
thus lead to secondary infections and brain dysfunction. 
The infection mechanism of COVID-19 in the brain may 
be related to the high-density expression of ACE2 recep-
tors in the brain and other organ tissues and the entry 
of the virus into the brain through the olfactory nerve, 
trigeminal nerve, optic nerve and vague nerve path-
ways. Another blood-borne route is also possible, which 
involves viruses crossing the BBB. Mechanisms by which 
SARS-CoV-2 interacts with the BBB may lead to the 
neurological dysfunction that is associated with SARS-
CoV-2-induced COVID-19. Recent information suggests 
that SARS-CoV-2 is able to infect CNS cells, especially 
the brain microvascular endothelial cells of the BBB. 
The effects of SARS-CoV-2 on the CNS may cause acute 
and long-term changes in the nervous system or could 
exacerbate existing neurological diseases or symptoms. 
Therefore, neuroinvasion and BBB dysfunction may be 
potential pathways that promote SARS-CoV-2 entry into 
the CNS and may contribute to the cognitive impairment 
observed during disease progression.

Notably, it is important for SARS-CoV-2 models to reli-
ably test the molecular and functional consequences of 
infection and drug treatment strategies via the establish-
ment of a high paracellular tightness in vitro that is com-
parable to physiological conditions in vivo. Currently, the 

link between BBB leakage and cognitive decline is poorly 
understood, and more research is needed to further 
define this link. Furthermore, COVID-19 will continue 
to affect the health of the body long after the epidemic 
ends, so continuous assessment of an individual’s suscep-
tibility to cognitive decline and dementia in the future 
will be important to improve patients’ quality of life later 
in life. Although it is too early to elucidate the long-term 
side effects of SARS-CoV-2 infection, growing evidence 
pointed that SARS-CoV-2 may lead to permanent seque-
lae of the CNS, including cognitive decline. However, 
whether SARS-CoV-2 could enter the brain and replicate 
in the brain parenchyma, whether it has neuroinvasive 
capabilities, should be explored in future. In summary, 
with the advent of the post-epidemic era, the subsequent 
brain damage caused by SARS-CoV-2 will become a clin-
ical symptom and social problem that cannot be ignored. 
The exploration of the mechanism on cognitive impair-
ment in patients with COVID-19 and the early interven-
tion will improve patient’s life quality in future.
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