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Abstract

Within the past several decades, the emergence of new viral diseases with severe health complications and mortality is evidence of an age-
dependent, compromised bodily response to abrupt stress with concomitantly reduced immunity. The new severe acute respiratory syndrome 
coronavirus 2, SARS-CoV-2, causes coronavirus disease 2019 (COVID-19). It has increased morbidity and mortality in persons with underlying 
chronic diseases and those with a compromised immune system regardless of age and in older adults who are more likely to have these conditions. 
While SARS-CoV-2 is highly virulent, there is variability in the severity of the disease and its complications in humans. Severe pneumonia, 
acute respiratory distress syndrome, lung �brosis, cardiovascular events, acute kidney injury, stroke, hospitalization, and mortality have been 
reported that result from pathogen–host interactions. Hallmarks of aging, interacting with one another, have been proposed to in�uence health 
span in older adults, possibly via mechanisms regulating the immune system. Here, we review the potential roles of the hallmarks of aging, 
coupled with host–coronavirus interactions. Of these hallmarks, we focused on those that directly or indirectly interact with viral infections, 
including immunosenescence, in�ammation and in�ammasomes, adaptive immunosenescence, genomic instability, mitochondrial dysfunction, 
epigenetic alterations, telomere attrition, and impaired autophagy. These hallmarks likely contribute to the increased pathophysiological 
responses to SARS-CoV-2 among older adults and may play roles as an additive risk of accelerated biological aging even after recovery. We 
also brie�y discuss the role of antiaging drug candidates that require paramount attention in COVID-19 research.
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The recently emerged severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) is distinguished phylogenetically from other corona-
viruses (1), causing more severe upper respiratory tract infections, re-
spiratory distress, and hospitalization. These symptoms often result 
in admissions to intensive care units, mechanical ventilation, as well 
as mortality (2,3), mainly in persons with compromised immune 
systems and/or comorbidities such as diabetes, hypertension, and 
cancer (4). Previous outbreaks of community-acquired pneumonia 
and severe respiratory disease from coronaviruses reported in 2003 
and 2012 were caused by SARS-CoV-1 and the Middle East respira-
tory syndrome (MERS-CoV), respectively (5). The latest coronavirus 
disease 2019 (COVID-19) started in Wuhan, China (6), and with its 
high virulence capacity and fast transmissibility, primarily through 
aerosol droplets (7), rapidly spread around the world. COVID-19 
can be asymptomatic or minimally symptomatic with or without 
fever, cough, shortness of breath, fatigue, and gastrointestinal symp-
toms. COVID-19 can progress to moderate or severe pneumonia, 

severe symptomatic acute respiratory distress syndrome, cardiovas-
cular complications, kidney injury, stroke, and mortality (2,4,8,9). In 
laboratory examinations, most patients appeared to have “cytokine 
storm,” leukopenia, thrombocytopenia, and coagulopathy (2,10). 
Computed tomography depicted multifocal ground-glass opacities 
and subsegmental areas of consolidation and �brosis—in some 
cases, even without overt clinical symptoms (11).

The silent spread of SARS-CoV-2 via asymptomatic cases likely 
increases transmission to all individuals, especially to older persons 
who are at higher risk for more severe complications (3) or abruptly 
develop stroke or cardiovascular incidents as the result of virus–host 
interactions. Therefore, understanding the variability in host re-
sponses to viral infection is likely to yield better clinical management 
among older adults (12,13).

Normal aging includes changes at the cell, tissue, and organ levels 
(hallmarks of aging) that are known to contribute to morbidity, 
frailty, and mortality in the aging population. Hallmarks of aging, 
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affecting one another, interfere with all aspects of cellular and system 
functions and play roles in chronic diseases (14–16) and interact dir-
ectly or indirectly with the viral infection. Some of these hallmarks 
include immunosenescence, in�ammation and in�ammasomes, 
adaptive immunosenescence, genomic instability, mitochondrial 
dysfunction, epigenetic alterations, telomere attrition, and impaired 
autophagy that result in variability in reserve and adaptation cap-
acity in response to stress. With the COVID-19 pandemic, consider-
ation of these hallmarks when treating infected older patients may 
be critical to enhance positive outcomes (12,13). Here, we focus on 
some of the hallmarks of aging with regard to their potential roles in 
the host response to SARS-CoV-2 infection (Figure 1) and as possible 
underlying factors for poorer outcomes.

SARS-CoV-2 Virology

Classi�ed within the Coronaviridae family, SARS-CoV-2 shares the 
main common characteristics of this family. Coronaviruses are en-
veloped with large (∼30-kb) single-stranded positive-sense RNA 
(17). Their genome is divided into two parts, 5′ two-thirds and 3′ 
one-third, with the former including open reading frames (ORF1a 
and ORF1b) that encode pp1a and pp1ab, two large polyproteins 
that can be cleaved to nonstructural proteins (nsp1–16) required for 
the synthesis of new viral genetic material. The rest of the genome 
includes genes that encode the structural proteins to produce virions 
and accessory genes that play a role in the host response (17).

Structural proteins include the spike (S) glycoprotein, known for 
its pathogenicity, that comprises two functional subunits: S1 as the 
receptor-binding domain and S2 that mediates fusion between the 
virus envelope and host cell membrane. Other coronavirus proteins 
include nucleocapsid (N), involved in genome replication; a mem-
brane (M) protein from the host endoplasmic reticulum or Golgi re-
sponsible for virus assembly; and the envelope protein (E) (Figure 2A; 
Table 1). SARS-CoV-2 highly resembles SARS-CoV-1, sharing 77% 
similarity with the residual amino acids of the S protein (1). Also, 

the similarity of N, M, and 3a proteins in SARS-CoV-1 and SARS-
CoV-2 implies a similar pathogenic pathway. SARS-CoV-2 binds to 
the angiotensin-converting enzyme 2 (ACE2), a cell surface receptor 
that converts the vasopressor octapeptide angiotensin-II to the vaso-
dilator angiotensin 1-7 and is highly expressed in the vascular endo-
thelia, lung, kidney, small intestine epithelial cells, immune cells, and 
testis (18,19). Following binding to ACE2, the virus enters the cell 
through either an endosome (in acidic environments) or by S glyco-
protein cleavage with host cell proteases, such as TMPRSS2 and furin 
(20–22). Using their own RNA polymerase, coronaviruses replicate 
their genome in the host cell cytoplasm and employ the host ribosome 
machinery to produce proteins. Subsequent viral assembly occurs in 
the host endoplasmic reticulum–Golgi intermediate complex and ma-
ture virions are released through a secretory mechanism in smooth-
walled vesicles, resulting in endoplasmic reticulum stress (Figure 2B).

Hallmarks of Aging and COVID-19

Innate Immunosenescence, Inflammation, and 

Inflammasomes

The human body uses pattern recognition receptors to identify 
pathogen-associated molecular patterns and endogenous danger 
(or damage)-associated molecular patterns. The most well-known 
pattern recognition receptors include the Toll-like receptors (TLRs), 
cytoplasmic retinoic acid-inducible gene I (RIG-I), the RIG-I-like re-
ceptor (RLR), and the nucleotide-binding oligomerization domain-
like receptor (NLR). TLRs such as TLR7 are induced in response to 
recognized particles (23,24), including single-stranded RNA viruses, 
and stimulate proin�ammatory cytokines and interferons (IFNs) 
type I  and III (25). The latter, released from virus-infected cells, 
upregulates IFN-stimulated genes, which is a �rst step in limiting 

Figure 1. The schematic figure implies the interaction between severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) with the cell structures, 

clockwise including cell membrane, endoplasmic reticulum, Golgi, 

extracellular matrix, followed by hallmarks of aging such as senescence cells, 

inflammation, genome instability, mitochondrial function, telomere length, 

epigenetics, and stem cell exhaustion. The entire cell fitness is required to 

combat viral infection, and coronavirus engages cell systems.
Figure 2. (a) Key SARS CoV-2 proteins implicated in COVID-19. The viral 

genome encodes 29 proteins among which at least 13 have been implicated 

in its virulence. (b) Coronavirus structure, cell entry, and replication. 

ACE2 = angiotensin-converting enzyme 2; ERGIC = endoplasmic reticulum–

Golgi intermediate compartment; ER = endoplasmic reticulum. 
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viral entry or viral replication (26). At later stages, IFNs can inhibit 
viral assembly, the viral spread, and modulate the immune system by 
promoting macrophage, natural killer (NK)-, T-, and B-cell activities 
(27). It has been suggested that coronavirus can antagonize IFNs 
and thereby evade the immune system (28).

RIG-I-like receptors, which reside on mitochondria, can de-
tect RNA viruses and activate mitochondrial antiviral-signaling 
proteins. Mitochondrial antiviral-signaling proteins, in turn, in-
crease proin�ammatory cytokines including interleukin (IL)-6, 
tumor necrosis factor-α (TNF-α) that are related to nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, 
interferon regulatory factors, and in�ammasome-related cyto-
kines (IL-1β and IL-18) (23). Elevated in�ammasome pathways in 
normal aging have been associated with age-related chronic diseases 
(29,30). By further stimulating in�ammasome pathway activity, 
viral infections can exacerbate age-related impairment of im-
munological responses. With aging, the decline in innate immunity 
attenuates IFN responses to viral infection in neutrophils, mono-
cytes and macrophages, and NK cells (24,27,31,32). Moreover, 
costimulatory signals are reduced from the antigen-presenting cells, 

including macrophages, B cells, NK, and dendritic cells that are re-
quired to activate T cells (32).

Coronaviruses have been shown to activate both the NLRP3 
in�ammasome and the NF-κB pathway (33,34). Of particular im-
portance are elevated levels of TNF-α-converting enzyme (TACE), 
a proteolytic enzyme in the processing of TNF-α, TNF receptors 
(TNFRs), and ACE2. Both ACE2 and TACE levels are associated 
with poor prognosis in heart failure. In addition, TNFR-1 and 
TNFR-2 are strongly associated with kidney failure in older adults 
(35). ACE2 is an enzyme that promotes the formation of angiotensin 
1-7, which has anti-in�ammatory functions (36–38). However, 
ACE2 expression levels in human aging and ACE2 activity upon 
SARS-CoV-2 infection remain to be elucidated.

Moreover, in response to viral infections, plasminogen activator in-
hibitor-1 level increases to neutralize proteases such as TMPRSS2 and 
thus reduces the infectivity. Transforming growth factor-beta (TGF-
beta) increases in response to persistent in�ammation, and is known 
to trigger SERPINE1 expression, the gene encoding plasminogen 
activator inhibitor-1, which further increases TGF-beta levels (26). 
Of note, increased plasminogen activator inhibitor-1 level, a known 

Table 1. COVID-19 Structural, Nonstructural, and Accessory Proteins

Replication Phase Host Factor Virus Factor Function

Binding and entry ACE2 Spike glycoprotein (S) Cellular receptor
Viral transcription/
replication, ribosome 
frameshift

 Replicase polyprotein 1a 
(R1a)

 

Viral transcription/
replication, ribosome 
frameshift

 Replicase polyprotein 1ab 
(R1ab)

 

Protein 3a  Independent budding Induction of apoptosis
Protein 3b   Inhibition of type I interferons, induction of 

apoptosis
Envelope small 
membrane protein (E)

 Independent budding  

Membrane protein (M)  Virion morphogenesis  
Nonstructural protein 
6 (NS6)

  Inhibition of type I interferons, alteration in cellular 
DNA synthesis

Nonstructural protein 
7a (Ns7a)

  Activate in�ammation (MAPK-8) and NF-κB 
pathways

Ns7b   Unknown
Ns8a    Induction of apoptosis, alteration in cellular DNA 

synthesis
Nucleoprotein (N)  Viral genome packaging  
Ns14  Exonuclease and repair 

activity
 

Ns9b   Unknown
Ns10   Unknown
 IFITM (interferon-induced 

transmembrane)
 Inhibits cell entry

 TMPRSS2 (transmembrane 
protease serine 2)

 Cleaves and activates S protein

 Furin  Cleaves and activates S protein
Genome replication 
and transcription

GSK3 (glycogen synthase 
kinase 3)

 Phosphorylates N protein and facilitates viral 
replication

Translation of 
structural proteins

N-linked glycosylation 
enzymes in Golgi 

 Modi�es S and M protein; N-linked glycosylation 
of the S protein facilitates lectin-mediated virion 
attachment and constitutes some neutralizing 
epitopes

Endoplasmic reticulum 
chaperones

 Proper folding and maturation of protein

Note: ACE2 = angiotensin-converting enzyme 2; COVID-19 = coronavirus disease 2019.
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marker of senescence (39), may increase thromboembolism and 
coagulopathy, which are risk factors for acute cardiovascular events 
and stroke (26). Similar to MESR-CoV, SARS-CoV-2 also has been 
reported to have a furin-like cleavage site (40). Furin, another host cell 
protease, stimulates both NLRP3 and NF-κB in�ammatory pathways 
and activates TGF-beta (41). Notably, TGF-beta and growth differ-
entiation factor 15, a member of TGF-beta superfamily, are known 
markers associated with aging (42) as well as signi�cant prognostic 
markers in acute respiratory distress syndrome (43,44).

Adaptive Immunosenescence

Adaptive immunity that identi�es and responds to speci�c patho-
gens includes humoral and cellular immunities, which are mediated 
by B cells, and CD8+ and CD4+ T cells, respectively. B lymphocytes 
are triggered to differentiate into immunoglobin-producing plasma 
cells by cytokine production from CD4+ cells (42). Increased levels 
of all immunoglobulins (Ig), including IgA from respiratory mucosal 
cells, IgM, and IgG, have been reported in response to coronavirus 
(23). IgM is the �rst antibody secreted in response to acute viral 
infection. IgG, produced later and enhanced upon reinfection, facili-
tates phagocytosis of infected cells and antibody-dependent cellular 
toxicity by both NK and CD8+ cells (45). With aging, there is a shift 
from the naïve toward memory B cells, alterations in the key stimu-
latory factors mediating the B-cell response to antigens, as well as 
reduced capacity for antigen recognition sites on antibodies to rec-
ognize novel pathogens. Moreover, in response to antiviral vaccines, 
long-lived plasma cells decrease (46).

With aging, in addition to the decreased number of naïve T cells, 
communication between T cells and antigen-presenting cells, which 
is required to convert naïve T cells to memory cells, is reduced (47).

Upon viral infection, the activated cytotoxic CD8+ cells release 
the lysing enzymes to degrade infected cells and viral genomes. If 
CD8+ cells fail to eliminate the virus, cytokines released from CD4+ 
T effector cells induce augmented in�ammatory responses (48). 
Decreased numbers of naïve CD8+ T cells and reduced T-cell re-
ceptor diversity—as well as alterations in distribution and function 
of effector, memory, and regulatory CD8+ T cells—lead to impaired 
recognition of new antigens and accumulation of dysfunctional 
memory T cells (49–51). Of note, transcription factor FOXO3 that 
is expressed on T cells was shown to play an essential role in the 
regulation of T-cell functions in response to pathogens (52).

Notably, an age-dependent sex discrepancy in immune systems 
has been demonstrated (53), and the incidence of coronavirus in-
fection has also been reported to be higher in men than women. 
With SARS-CoV-1, viral titers and the accumulation of in�amma-
tory monocytes and neutrophils in the lungs were higher among men 
than women (54,55). A  study of epigenomics and transcriptomics 
of immune cells has suggested a bimodal reduction in B-cell func-
tion in men, �rst in the early 30s and then at age 65 years and older 
(53). The sex- and age-dependent immune cell-speci�c epigenetic 
and transcriptomic discrepancy can also underlie the sex and age 
differences in severity of COVID-19 symptoms. Moreover, estrogen 
receptor signaling (56), variability in testosterone levels, and an-
drogen receptor expression have been implicated in the variability of 
immune responses (57). Notably, androgen receptor element genes 
are upstream to the TMPRSS2 transcription start site and regulate 
its expression (58). While more rigorous epidemiological data on sex 
and age distribution of COVID-19 are warranted (59), more inves-
tigation on sex- and age-dependent immune response to RNA viral 
infections will shed more light on COVID-19 severity.

DNA Repair and Genomic Instability

The accumulation of somatic mutations, genomic instability, and at-
tenuated DNA repair have been shown in aging immune cells. The 
overexpression of oxidative stress seen with a viral infection, along 
with attenuated DNA repair capacity, could accelerate genome in-
stability and apoptosis in noninfected cells (60,61).

Among DNA repair mechanisms, p53 plays a vital role in re-
sponse to low levels of stress and protects cells from oxidative 
damage. Conversely, higher levels of oxidative stress (eg, increased 
in�ammatory responses secondary to viral infection) result in per-
sistent activation of p53 and increased mitochondrial outer mem-
brane permeability, which in turn leads to apoptosis (Figure 3) (62). 
Although p53 can downregulate coronavirus replication via regula-
tion of the cell cycle (63), the coronavirus papain-like protease de-
grades p53 and allows replication of infected cells (64). Further, the 
DNA damage response can play a role in the pathogenesis of RNA 
viruses through induction of apoptosis, deleterious somatic muta-
tions, and excessive stimulation of in�ammatory immune responses 
(Figure 3) (65). Additionally, coronavirus can inhibit the activity of 
the cyclin-dependent protein complex, resulting in inactivation of 
the retinoblastoma protein, which is an important tumor suppressor 
protein and cell cycle check (66).

Of note, coronavirus accessory proteins such as the 7a protein 
also mediate apoptosis by interfering with Bcl-X (an antiapoptotic 
protein); additionally, coronavirus accessory proteins 3a and 9b, as 
well as structural proteins such as S, E, M, and N modulate apop-
tosis by inducing endoplasmic reticulum stress and activating the 
p38 MAPK pathway (Figure 3) (67,68).

Collectively, adverse cellular responses to DNA damage and di-
minished DNA repair capacity have been associated with genome in-
stability and a decline in immune system function. This hallmark of 
aging not only is likely to be a risk for poor outcomes in older adults 
but also is likely to be ampli�ed by coronavirus infection.

Figure 3. Mitochondria, outer membrane permeability, and apoptosis 

pathways. Apoptosis induced by coronavirus infection, including intrinsic 

and extrinsic apoptosis. FasL  =  Fas ligand; TNF-α  =  tumor necrosis factor-

alpha. Antiapoptotic factors: Bcl-xL  =  Bcl-2-like protein 1; Bcl2  =  B-cell 

lymphoma 2; Mcl1  =  myeloid cell leukemia 1. Proapoptotic factors: 

PUMA  =  p53-upregulated modulator of apoptosis; BAD  =  Bcl2-associated 

agonist of cell death; BAX  =  Bcl2-associated X; BIM  =  Bcl2-interacting 

mediator of cell death; APAF1  =  apoptotic peptidase-activating factor 1; 

Casp = caspase; FADD = Fas-associated via death domain; AKT = RAC-alpha 

serine/threonine protein kinase; IL = interleukin; IRFs = interferon regulatory 

factors; MAVS = mitochondrial antiviral-signaling proteins; NF-κB = nuclear 

factor kappa-light-chain-enhancer of activated B cells; RIG-I = retinoic acid-

inducible gene I; SARS = severe acute respiratory syndrome (70).

Journals of Gerontology: BIOLOGICAL SCIENCES, 2020, Vol. 75, No. 9 e37

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
d
g
e
ro

n
to

lo
g
y
/a

rtic
le

/7
5
/9

/e
3
4
/5

8
5
8
1
4
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Mitochondrial Dysfunction

Mitochondria, through several functions, play pivotal roles in cell 
homeostasis. They play a powerhouse role with metabolic oxidation 
via the tricarboxylic acid cycle and the production of adenosine tri-
phosphate via the electron transport chain and the beta-oxidation of 
fatty acids. With aging, mitochondrial phosphorylation capacity is 
decreased. Accordingly, the increased energy expenditure secondary 
to a cytokine storm can lead to a nonadaptive state, overwhelming 
the metabolic reserve capacity of mitochondria among older adults 
who have COVID-19. As a normal body function against patho-
gens, mitochondria also produce reactive oxygen species (ROS) (69). 
However, excessive ROS production can be damaging in a similar 
way to encountering coronavirus infection (70). Moreover, aug-
mented ROS production, known as one of the contemporary the-
ories of aging, has been associated with age-related diseases and 
decreased life span (71). Though diminished with aging, detoxifying 
systems including catalase, superoxide dismutase, glutathione per-
oxidase, and glutathione reductase with selenium and magnesium as 
their cofactors (72), vitamins E and C, and coenzyme Q10 all help 
minimize ROS-induced tissue damage (73). Supplementation with 
coenzyme Q10, an integral part of the mitochondrial respiratory 
chain, has been linked with antioxidant activity, less severe respira-
tory viral infections, and less severe in�ammatory response (74).

As mentioned above, mitochondria regulate innate and adaptive 
immunity (eg, viral RNA activates mitochondrial antiviral-signaling 
proteins via RIG-I on mitochondria), which in turn stimulate NF-κB, 
NLRP3 pathways, and interferon regulatory factors. Mitochondria 
also mediate cytotoxic responses to lung cell stress (75,76).

Together, the combination of impaired respiration, diminished 
adenosine triphosphate production, increased ROS, and reduced 
detoxi�cation capacity with dysregulated immune functions seems 
likely to play a pivotal role in the increased in�ammation and se-
verity of COVID-19.

Epigenetic Alterations

With aging, epigenomic alterations play a pivotal role in 
distinguishing immune cell phenotypes and regulating in�ammatory 
responses to intrinsic or extrinsic stressors. Age is one of the main 
drivers of variations in chromatin structure measured by the assay for 
transposase-accessible chromatin with high-throughput sequencing 
(ATAC-seq) (53). Speci�c epigenetic modi�cations such as chromatin 
accessibility via histone acetylation/methylation play essential roles 
in response to viral infection (77–79). Shared epigenomic patterns of 
aging result in decreases in naïve T cells and increases in monocytes 
and cytotoxic cell functions. However, the magnitude of alterations 
is more signi�cant in men than in women, with an accompanied loci-
speci�c methylation decline in the B cells (53). As such, sex and age 
differences in epigenetic patterns of immune cells, in part, can ex-
plain variability in the severity of COVID-19.

Moreover, the epigenetic changes in CpG-sites located in 
subtelomeric regions that control innate immunity can mediate in-
�ammatory responses to COVID-19. Chronic viral infection can ac-
celerate aging as measured by the “epigenetic clock” (80). It remains to 
be elucidated whether these epigenetic clocks based on chronological 
or biological age (80,81) can predict the severity of COVID-19 and 
subsequent exacerbation of chronic diseases in COVID-19 survivors.

Telomere Attrition

Telomeres, which are repetitive nucleotides (TTAGGG)n at the ends 
of each chromosome, play a role in maintaining genome stability and 

regulate innate immunity in response to viral infection. Regions near 
telomeres called subtelomeres contain CG-enriched genes that regu-
late innate immunity (82). In�uenced by telomere length, these genes 
regulate telomere repeat-containing RNA (TERRA) transcription, 
and their expression can be upregulated in response to viral infec-
tion via activation of interferon-stimulated genes. Therefore, diverse 
telomere lengths often observed with aging immune cells (83) can 
underlie differential responses to viral challenge (82). Another con-
sequence of telomere attrition is the premature induction of genome 
instability in viral-speci�c CD8+ memory T cells that results in sen-
escent or antiapoptotic cells (84). Thus, telomere attrition, coupled 
with dysregulated innate and adaptive immune responses to viral 
infection, is another hallmark of aging that can contribute to the 
severe outcomes in older adults with COVID-19.

Impaired Autophagy

The process of autophagy is modi�ed by aging and thus can play a 
role in controlling viral infection through diminished viral degrad-
ation, as well as by dysregulating innate and adaptive immunity (85).

The autophagy process includes the functions of several protein 
complexes. In the absence of stress, the mTORC1/ULK1/2 complex 
inhibits the initiation of autophagy. Under stress, including viral in-
fections, mTORC1 is inhibited, which subsequently activates a series 
of proteins that result in the induction of autophagy and virion en-
capsulation and degradation of viral particles (86).

Moreover, autophagy regulates the bridge between the innate 
and adaptive immune responses to viral infection by inducing 
antigen-presenting cells such as B cells, macrophages, and den-
dritic cells. Antigen-presenting cells, in turn, present viral antigens 
to CD4+ T cells to release cytokines and regulate adaptive immune 
responses. The early autophagic process induces the release of 
interferon-gamma (IFN-γ) from CD4+ T cells to promote CD8+ T 
cells, NK cells, and macrophages in response to viral infection (87). 
Moreover, the autophagic process controls the in�ammatory re-
sponse, preventing the accumulation of ROS and the in�ammasome 
pathway via targeting pro-IL-1β for lysosomal degradation (88). 
While some viruses evade the direct autophagy-mediated function, 
immune-mediated effects of autophagy can still control viral infec-
tion and in�ammatory-mediated tissue damage. Therefore, impaired 
autophagy, a hallmark of aging, possibly contributes to the severity 
of COVID-19 and poor outcomes in older patients. Niclosamide and 
valinomycin, two FDA-approved drugs for other purposes, enhance 
autophagy, and diminish viral replication (89). However, the anti-
viral effect of polyamines, such as spermidine, a bolster of autophagy, 
has been debated (90). Of note, rapamycin and its analogs, and also 
Vitamin D3, drugs with suggestive antiaging effects, have antiviral 
ef�cacy by increasing autophagy (91). Despite its immunosuppres-
sive effects in transplant patients, rapamycin inhibition of mTORC1 
improves immune function in older adults and increases the re-
sponse to vaccines; some clinical trials using rapamycin have shown 
no serious side effects in humans (92–95). Therefore, rapamycin, 
by improving immunity, is expected to improve outcomes in older 
adults with COVID-19.

Interventions to Mitigate COVID-19 in Aging

Clinical manifestations of COVID-19 have indicated that host–virus 
interactions such as cytokine storm and coagulopathy, underlying 
comorbidities, and possibly polypharmacy are all possible culprits 
for the spectrum of COVID-19 severity. To combat both acute 
and chronic conditions related to COVID-19, enhancing response 

e38 Journals of Gerontology: BIOLOGICAL SCIENCES, 2020, Vol. 75, No. 9

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
d
g
e
ro

n
to

lo
g
y
/a

rtic
le

/7
5
/9

/e
3
4
/5

8
5
8
1
4
2
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



to the vaccine and antiviral therapies, using drugs that boost im-
mune system response and enhance body system health is warranted. 
Older adults with an attenuated response to vaccine or antiviral 
medications might skew the pandemic �gure toward epidemy in the 
older population. Therefore, some antiaging modalities possibly at-
tenuate the severity of COVID-19 and increase response to vaccines 
when they become available. Thus, combating SARS-CoV-2 requires 
methods that go beyond direct targeting of the virus to include 
those approaches that support bodily system function via improving 
immunity, especially in older adults.

As such, interfering with pathways associated with the hall-
marks of aging has the potential to improve the response to 
antiviral drugs (96). Potential drugs include agents that reduce 
mitochondrial ROS production and boost the immune system. 
Rapamycin has been shown to increase the immune response to 
the in�uenza vaccine and boost immune function in older adults 
(93,94). Metformin, an old antidiabetic drug and also a candidate 
antiaging modality, interferes with viral replication and host–viral 
interactions (97). Increasing Sirt6, an enzyme regulating multiple 
age-related signaling pathways, has been shown to reduce the im-
mense in�ammatory response to the fatal dengue virus infection 
(98). Some of the chloroquine-related family drugs, which are 
treatment candidates for prevention and treatment of COVID-19, 
also interfere with beta-galactosidase, a marker of senescence in 
cells (99). However, the ef�cacy and safety of chloroquine drugs in 
older adults require more data.

Although lists of drugs and vitamins have been suggested (100), 
at this writing, none of the ongoing clinical trials has considered 
recruiting older patients. Thus, the impact of all potential therapies 
and safety in older adults remains to be determined. We suggest an 
accelerated understanding of the interactions between COVID-19 
and the host hallmarks of aging in order to identify biomarkers with 
which to screen individuals at higher risk. Understanding the mech-
anisms of COVID-19 will likely arise from comparing the disease 
risks and response to treatments in young men and women with 
COVID-19 versus older patients—to do this, we need to include 
older adults in clinical trials.

Conclusion

The COVID-19 outbreak is a worldwide public health problem 
with health consequences that are likely to persist for many years. 
Currently, older adults and patients with comorbidities and other un-
known risk factors have developed more severe and critical compli-
cations, and therefore are at higher mortality risk. Both the incidence 
and severity of disease appear to be more prominent in men than 
women, which can be partially explained by both age-dependent and 
-independent sex dimorphism in the immune system. Coronaviruses 
use host factors for replication; these factors are affected by age and 
the same mechanisms as those linked with the hallmarks of aging. 
Some of the hallmarks of aging, coupled with immune system re-
sponses and comorbidities, seem likely to play a pivotal role in 
the severity of COVID-19. Innate immunity with cytokine storms, 
coagulopathy, neutralizing antibodies; cellular immune responses 
such as CD4+ and CD8+ T cells, B cells, NK cells, monocytes and 
macrophages, and in�ammatory host responses; along with speci�c 
virus antigen epitopes—all have interactive roles in disease devel-
opment. Diminished reserves and stress response capacity, coupled 
with the reduced immune response to vaccines, place older adults at 
higher risk for critical health complications and mortality, especially 
during times of acute stress. Together with antiviral interventions, 

the key hallmarks of aging can offer insights for the identi�cation 
and treatment of patients most at risk and help elucidate the basis 
for age and sex differences in response to such stressors. Application 
of candidate antiaging drugs such as rapamycin and metformin, 
and antiviral drugs with potential senolytic effects possibly boost 
the immune system of older adults. Further investigation requires 
immediate attention. Such drugs can also prevent the possible post-
COVID-19 accumulation of morbidities and accelerated biology 
of aging.
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