
1/24https://immunenetwork.org

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory 

syndrome coronavirus 2 has severely impacted global health and economy. There is currently 

no e�ective approved treatment for COVID-19; although vaccines have been granted 

emergency use authorization in several countries, they are currently only administered to 

high-risk individuals, thereby leaving a gap in virus control measures. The scienti�c and 

clinical communities and drug manufacturers have collaborated to speed up the discovery of 

potential therapies for COVID-19 by taking advantage of currently approved drugs as well as 

investigatory agents in clinical trials. In this review, we strati�ed some of these candidates 

based on their potential targets in the progression of COVID-19 and discuss some of the 

results of ongoing clinical evaluations.

Keywords: COVID-19; Severe acute respiratory syndrome coronavirus 2; Antiviral agents; 

Immunotherapy; Drug repositioning

INTRODUCTION

The coronavirus disease 2019 (COVID-19) was �rst reported in December 2019 in Wuhan, 

Hubei, China as cases of respiratory illness leading to pneumonia of unknown etiology. 

Viral isolation and genetic characterization revealed the causative agent to be closely related 

(79% nucleotide identity) to the severe acute respiratory syndrome coronavirus (SARS-

CoV) of the genus Betacoronavirus of the Coronaviridae family (1). This family includes several 

veterinary and human viruses, including 4 human coronaviruses that cause the common cold 

(HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1) and the Middle East respiratory 

syndrome coronavirus (MERS-CoV). Owing to its genetic relationship to SARS-CoV, the 

COVID-19 agent was named SARS-CoV-2 by the International Committee on Taxonomy of 

Viruses. Further phylogenetic analyses showed that SARS-CoV-2 shares 96.2% of its genome 

with a SARS-like CoV (RaTG13) isolated from the intermediate horseshoe bat Rhinolophus 

a�nis in 2013, suggesting that SARS-CoV-2 is zoonotic in nature and emerged from a spillover 

event from bats (2). SARS-CoV-2 has spread at a much larger scale than either SARS-CoV or 

MERS-CoV, eventually leading the World Health Organization (WHO) to declare a COVID-19 

pandemic on March 11, 2020. At the time of writing, the number of cases has breached 90 

million, with more than 1.9 million deaths (https://coronavirus.jhu.edu/map.html) (3). Apart 
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from its apparent impact on public health, COVID-19 has severely a�ected global economy 

due to the strict measures enforced by several nations to curb the spread of SARS-CoV-2. 

Thus, scientists and medical practitioners are scrambling to discover agents to reduce the 

morbidity and mortality related to COVID-19 and to ease the socioeconomic burden of the 

COVID-19 pandemic.

Quantitative RT-PCR is the gold standard for the diagnosis of SARS-CoV-2 infection, and 

chest computed tomography (CT) scans are typically performed to monitor COVID-19 

progression. People infected with SARS-CoV-2 develop symptoms at around 5 (range, 2–7) 

days post-exposure, and most people (97.5%) do so up to 11.5 days post-exposure (4,5). 

However, viral shedding starts 2–3 days before symptom onset, suggesting that people who 

do not display symptoms (asymptomatic or presymptomatic) can transmit the virus (6). 

Symptoms are mild in majority of cases (≤81%), with fever, cough, dyspnea, and anosmia as 

the most common presentations (7). The disease can then progress to the in�ammatory or 

severe phase (≤15% of cases) characterized by pulmonary or systemic hyperin�ammation that 

can cause airway damage (8). High levels of pro-in�ammatory cytokines (“cytokine storm” or 

cytokine release syndrome), including IL-6, TNF-α, IL2, IL-7, IL-1β, and GM-CSF, have been 

consistently observed in severe COVID-19 cases and further contribute to disease severity 

(9). Patients who have progressed to the in�ammatory stage generally seek medical help 

and require respiratory support (7); they are typically 47–73 years old, with 60%–90% having 

comorbidities (10). If hyperin�ammation persists, it can promote vascular permeability, 

platelet hyperactivation, and activation of coagulation factors (11). This can then lead to the 

thrombotic stage of COVID-19, which is characterized by venous, arterial, and microvascular 

thrombosis, and these factors contribute further to pulmonary damage and multiorgan 

injury seen in critical COVID-19 patients. Hypercoagulation, acute respiratory distress 

syndrome (ARDS), viral sepsis, and multiorgan failure are considered major contributors 

to the deterioration of critically ill COVID-19 patients, 20%–80% of whom succumb to the 

disease (7,11). Notably, an increasing number of studies and anecdotes suggest that patients 

can experience symptoms long a�er viral clearance and hospital discharge, indicating 

persisting or lingering physiological e�ects of SARS-CoV-2 infection (12). Children typically 

exhibit milder COVID-19 symptoms; however, cases of SARS-CoV-2-associated multisystem 

in�ammatory syndrome in children have been reported (13).

There is currently no approved e�ective therapeutic agent for human coronaviruses. The 

strategy for drug discovery and development for COVID-19 treatment involves testing 

agents that have shown promise against other human coronaviruses (especially against 

SARS-CoV and MERS-CoV); agents that have shown promise or are approved against 

other viruses; and agents that target host mechanisms to alleviate COVID-19 symptoms 

and complications. With the growing knowledge on the course of SARS-CoV-2 infection, 

including the understanding of both viral and host factors (Fig. 1), several candidates have 

been identi�ed. Based on the di�erent phases of infection, antivirals can be used to target 

the early phases of infection to reduce viral load; anti-in�ammatory agents can be used in 

the hyperin�ammatory stage of the disease; and anticoagulants can be used to alleviate 

thrombosis associated with critical COVID-19. These agents may also be used in tandem to 

prevent further progression of the disease, and some of these agents may target both viral 

and host factors. In this review, we discuss some of the candidates for COVID-19 treatment, 

their modes of action, and the current progress of clinical evaluations.
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ANTIVIRALS

Remdesivir (RDV)

RDV (GS-5374) is considered one of the leading candidates in the search for drugs against 

SARS-CoV-2 (Table 1). RDV is a prodrug with a triphosphate form (RDV-TP) that closely 

resembles ATP and has been reported to be slightly more preferentially incorporated than ATP 

into the nascent RNA strand by the viral RNA-dependent RNA polymerase (RdRp) (14). Unlike 

typical RNA chain terminators, RDV causes delayed termination at i+3 and i+5 positions (where 

i is the RDV-TP insertion position), likely due to steric strain at the RdRp active site (15).

RDV was initially reported to have the potential to inhibit �loviruses. It progressed to 

phase 2/3 clinical trials against the Ebola virus (EBOV) but was found to be inferior to 
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Table 1. Summary of COVID-19 treatment evaluations for developed antivirals and approved drugs with antiviral potential

Drug Target COVID-19 stage(s)* Known viral targets & modes of action Status

Direct-acting antivirals

RDV Early (potential) Adenosine analog viral RdRp inhibitor •  RECOVERY trial (phase 3) shows improved clinical outcomes in 

hospitalized patients

Middle (demonstrated) •  WHO Solidarity trial (phase 3) suggests no benefits for hospitalized 

patients

• Approved by the US-FDA

•  Ongoing phase 2/3 trials for COVID-19 outpatients, pediatric 

patients, and combinatorial therapy

•  Ongoing phase 1 trial for inhaled RDV formulation for early-stage 

COVID-19

Lopinavir+ritonavir Early (potential) HIV protease inhibitor (approved) • Does not benefit hospitalized patients

Potential CoV protease inhibitor • Ongoing phase 2/3 trials as prophylaxis or for early-stage COVID-19

Ribavirin Early (potential) Guanosine analog • Monotherapy does not benefit COVID-19 patients

Inhibits GTP synthesis •  Ongoing phase 1 trial for aerosolized ribavirin in hospitalized 

patients

Viral mutagenesis • Ongoing phase 2/3 trial for combination with IFNs and other agents

Immunomodulatory activity

SOF+DCV Early (demonstrated) Hepatitis C virus (approved) •  Phase 2/3 randomized controlled trials suggest treatment benefits 

of SOF+DCV on severe COVID-19

Middle (demonstrated) SOF may bind SARS-CoV-2 RdRp •  Ongoing phase 2/3 trials for SOF alone, with DCV or with other 

agentsDCV may bind SARS-CoV-2 protease

Favipiravir Early (demonstrated) Influenza virus emergency drug (Japan) •  Open-labeled trial shows improved therapeutic responses and 

accelerated viral clearance

Purine analog • Ongoing trials for various degrees of COVID-19 severity

Viral RdRp inhibitor

Umifenovir Early (potential) Influenza treatment and prophylaxis 

(China and Japan)

• Mixed results for COVID-19 treatment

Viral endocytosis inhibitor • Ongoing phase 4 trials for COVID-19 treatment

Inhibitor of viral genome replication

Potential antivirals with non-antiviral indications

CQ, HCQ Early (potential) Anti-malaria • No benefits for hospitalized COVID-19 patients

Anti-rheumatoid arthritis (HCQ) • Ongoing phase 1 trials as prophylaxis for COVID-19

Viral endocytosis inhibitor in vitro • Ongoing phase 2 trials for mild to moderate COVID-19

Statins Early (potential) Anti-cholesterol •  Continuous use or use prior to infection associated with less severe 

COVID-19 in retrospective studiesMiddle (potential) Evidence for antiviral activity in vitro

Anti-inflammatory effects

Camostat 

mesylate, 

nafamostat 

mesylate

Early (potential) Acute pancreatitis •  Camostat mesylate under phase 2 trials for varying degrees of 

COVID-19 severity

Late (potential) Anticoagulatory effects •  Nafamostat mesylate under phase 2/3 trials for varying degrees of 

COVID-19 severitySerine protease inhibitor

CoV, coronavirus; US-FDA, United States Food and Drug Administration.
*Target COVID-19 stages are divided into: early (first week of infection, viral phase, pre-/early symptomatic phase); middle (second week of infection, 

symptomatic, early stages of hyperinflammation); and late (beyond second week of infection, hyperinflammatory to thrombotic stages). Demonstrated: denotes 

existence of evidence based on COVID-19 clinical studies; potential: target is yet to be demonstrated in clinical trials but is based on the agent's known modes of 

action and other viral targets.



other treatments (16). Several in vitro studies have also reported the activity of RDV against 

other RNA viruses such as paramyxoviruses (e.g., the Nipah virus), pneumoviruses, and 

coronaviruses (e.g., SARS-CoV and MERS-CoV), indicating the potential of RDV as a broad-

spectrum antiviral (17). The promise of RDV as an agent against coronaviruses was further 

extended to SARS-CoV-2 in an in vitro study (18). Based on its good safety pro�le in the EBOV 

trials, RDV was used against COVID-19 under the compassionate use protocol and advanced 

to phase 2/3 clinical trials. An early trial in China has shown that RDV treatment resulted 

in faster improvement in severe COVID-19 patients, but the e�ects were not signi�cantly 

di�erent from those of placebo (19). Compassionate use of RDV in hospitalized patients also 

increased recovery rate in the cohort (20). The interim results of the National Institute of 

Allergy and Infectious Diseases (NIAID) double-blind, randomized, placebo-controlled phase 

3 trial (NCT04280705) showed that a 10-day course of RDV reduced the time to recovery of 

hospitalized COVID-19 patients (21). The �nal results of this trial show that RDV treatment 

improved clinical outcomes, including shorter time to improvement in an ordinal scale of 

patient categories, shorter time to recovery, shorter time for oxygen supplementation, and 

lower mortality compared to placebo (21). This trial also suggests that, while RDV is more 

bene�cial when given early into the illness, RDV provides bene�ts even when administered 

later in the course of COVID-19. In contrast, results of the WHO Solidarity trials show that 

RDV does not bene�t hospitalized COVID-19 patients in terms of mortality, progression to 

ventilation, and length of hospital stay (22). Whether RDV treatment is bene�cial to mild to 

moderate COVID-19 patients (outpatients), to pediatric patients, and when used with other 

agents are still being evaluated (e.g., NCT04501952, NCT04431453, and NCT04409262).

Lopinavir + ritonavir

Lopinavir-ritonavir (LPVr) is a combination of HIV protease inhibitors used for AIDS 

treatment. Most of the protease inhibitory e�ects are attributed to lopinavir, while ritonavir is 

used to elevate systemic levels of lopinavir (23). An in silico study suggests that LPVr bind the 

SARS-CoV 3C-like protease (3CLpro) (24). In line with this, a study has shown that both drugs 

can inhibit SARS-CoV infection in vitro, and treatment with LPVr has clinical bene�ts against 

SARS in a small cohort (25). Similarly, post-exposure prophylaxis with LPVr and ribavirin has 

been associated with protectivity against MERS in a retrospective study (26).

Given the high sequence conservation of the CoV protease, LPVr was expected to have 

COVID-19 treatment bene�ts (27). Based on the previous guidelines for MERS and SARS 

management, LPVr was given to patients in South Korea and in China early into the SARS-

CoV-2 outbreak and appeared to have treatment bene�ts (28,29). However, the results of The 

E�cacy of Lopinavir Plus Ritonavir and Arbidol Against Novel Coronavirus Infection (30) and 

Randomised Evaluation of COVID-19 Therapy (RECOVERY) (31) suggest that LPVr provides 

little to no bene�t to hospitalized COVID-19 patients (Table 1). The WHO's Solidarity 

trial revealed similar �ndings, leading to the WHO's decision to halt the LPVr arms of the 

Solidarity trial (22,32). However, whether LPVr is e�ective against the early stages of SARS-

CoV-2 infection or as a prophylactic agent is still currently being explored in some trials (e.g., 

NCT04372628 and NCT04328285).

Ribavirin

Ribavirin is a guanosine analog clinically used against the hepatitis C virus (HCV). The 

reported mechanisms for the antiviral activity of ribavirin include: competitive inhibition of 

inosine monophosphate dehydrogenase, a rate-limiting enzyme for GTP synthesis (33); and 

mutagenesis of the viral genome via the incorporation of ribavirin triphosphate instead of 
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GTP, which results in lower virus viability (34). Ribavirin has also shown immunomodulatory 

activity in cases of HCV infection (35).

Ribavirin has displayed antiviral e�ects against SARS-CoV in vitro and has shown synergistic 

e�ects with type I IFNs (36,37). Ribavirin alone or in combination with IFN-β1b improved the 

clinical scores and promoted viral clearance in MERS-CoV-infected rhesus macaques (38). 

The combination of ribavirin with LPVr and IFNs, rather than treatment with ribavirin alone, 

has been seen to improve clinical outcomes in some MERS cases (39,40). In line with this, a 

retrospective study has shown that treatment with ribavirin alone did not improve outcomes 

in COVID-19 patients (41). Thus, most COVID-19 trials involving ribavirin test its combination 

with other agents, particularly IFNs, for optimal e�ects. A prospective randomized study has 

shown that early treatment with the combination of ribavirin with IFN-β1b and LPVr alleviates 

symptoms and shortens the duration of viral shedding in patients with mild to moderate 

COVID-19 (42). In contrast, a randomized open-labeled prospective study suggests that 

ribavirin+IFN-α, LPVr+IFN-α, and ribavirin+LPVr+IFN-α do not have signi�cantly di�erent 

antiviral e�ects, and that the combination of ribavirin+LPVr may have adverse e�ects in patients 

with mild to moderate COVID-19 (43). The results of ongoing trials (e.g., NCT04551768, 

NCT04494399, and NCT04563208) are needed to determine whether ribavirin alone is 

bene�cial to or enhances the bene�ts of other (e.g., IFNs) agents in COVID-19 treatment.

Sofosbuvir + daclatasvir (SOF/DCV)

SOF and DCV are direct-acting antivirals used in combination to treat HCV infection. 

DCV inhibits the HCV nonstructural (NS) 5A protein and is hypothesized to a�ect HCV 

replication, assembly, and secretion (44). Meanwhile, SOF is a nucleotide analog that inhibits 

the HCV polymerase, NS5B (45). SOF has also demonstrated activity against Zika virus 

(ZIKV), dengue virus (DENV), yellow fever virus, and chikungunya virus (46).

The conserved nature of the RdRp in positive-sense RNA viruses prompted the interest in 

SOF for COVID-19 treatment. In silico studies have shown that the SARS-CoV-2 RdRp can bind 

SOF, suggesting that SOF may be used to inhibit SARS-CoV-2 replication (47,48). Indeed, a 

study has demonstrated that the SARS-CoV-2 RNA strand terminated by the incorporation of 

SOF was more resistant to the SARS-CoV-2 exonuclease proofreading activity than the RNA 

strand terminated by the incorporation of RDV (49). DCV was likewise shown to bind the 

SARS-CoV-2 3CLpro (50). An unpublished study also suggests that treatment with DCV or SOF 

inhibits SARS-CoV-2 production in vitro (51).

A series of small clinical trials to evaluate the bene�ts of the SOF/DCV combination against 

COVID-19 have been performed in Iran. One of these studies, a randomized, controlled trial, 

suggests that SOF/DCV shortens the time to recovery and hospital stay of severe COVID-19 

patients relative to standard of care (LPVr or hydroxychloroquine [HCQ]), but without 

signi�cant e�ects on mortality (52). SOF/DCV was superior to ribavirin in terms of safety, 

symptom improvement, mortality, and hospital stay in severe COVID-19 cases in another 

study (53). A double-blind, randomized parallel, active-controlled study on outpatients 

(IRCT20200403046926N1) shows that SOF/DCV with HCQ had a tendency to reduce the 

rate of hospital admission and a tendency towards faster resolution of appetite loss (54). 

Furthermore, SOF/DCV signi�cantly improved dyspnea and fatigue within the 30-day 

follow-up period, suggesting that SOF/DCV may help patients who su�er from the long-term 

e�ects of COVID-19, which include both symptoms. However, these studies are small and 

are not placebo-controlled; larger randomized trials with placebo controls will have to be 
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conducted to form de�nite conclusions regarding the treatment bene�ts of SOF/DCV against 

COVID-19. More trials to determine the e�ects of SOF with DCV and with other agents (e.g., 

NCT04497649, NCT04530422, NCT04460443, and NCT04468087) have been registered.

Favipiravir

Favipiravir (T-705) is a nucleoside analog that has been approved for the treatment of novel 

in�uenza virus strains in Japan. It is believed to inhibit viral RdRp either by incorporation 

into the nascent RNA strand as a pseudo-purine or by direct binding to the RdRp (55,56). 

Although the mechanisms underlying the antiviral activity of favipiravir have not yet been 

fully elucidated, studies across several other viruses, including, chikungunya virus (57), Ri� 

Valley fever virus (58), HCV (59), and the West Nile virus (60) suggest that it can induce lethal 

mutagenesis a�er incorporation into the RNA chain and that it has a broad range of targets.

An in vitro study reports that favipiravir exerts inhibitory e�ects on SARS-CoV-2 as well (61). 

Additionally, a study using a hamster SARS-COV-2 infection model has shown that high 

doses of favipiravir reduced infectious viral titers in the lungs and reduced transmission to 

favipiravir-treated hamsters (62). In an open-labeled comparative controlled study in China, 

favipiravir treatment led to faster SARS-CoV-2 clearance and to improvement in chest CT 

scans compared to LPVr treatment (63). Another trial has reported that while favipiravir did 

not signi�cantly reduce mortality and improve the overall outcome, it alleviated some of 

the symptoms, especially cough and pyrexia, suggesting that favipiravir may be bene�cial 

to patients with mild COVID-19 (64). A prospective, randomized, open-label study on 

early (day 1 of study participation) or late (day 6 of participation) treatment with favipiravir 

(jRCTs041190120) on patients with asymptomatic SARS-CoV-2 infection or with mild disease 

showed that early treatment tended to accelerate viral clearance and defervescence, although 

the di�erences between the treatment groups were not signi�cant (65). Remarkably, 

reduction in body temperature was observed as early as the day a�er initiation of treatment 

in both groups. Larger placebo-controlled clinical trials are needed to further evaluate the 

treatment bene�ts of favipiravir. Other clinical trials (e.g., NCT04359615, NCT04464408, 

NCT04402203, NCT04346628, JapicCTI-205238) have been registered to evaluate the 

e�ectivity of favipiravir against the various degrees of COVID-19 severity.

Umifenovir

Umifenovir is a non-nucleoside antiviral licensed in China and Russia for the prophylaxis 

and treatment of in�uenza. It binds hemagglutinin (HA) on the envelop of the in�uenza 

virus to prevent pH-induced conformational changes to HA, thereby inhibiting viral fusion 

with the host (66). It has also been demonstrated to inhibit the early stages of infection by 

disrupting endocytosis of several viruses including the respiratory syncytial virus, hepatitis 

B virus, adenoviruses, and EBOV, and to inhibit the replication stage of human herpesvirus 8 

(67-69). The inhibitory e�ects of umifenovir on SARS-CoV-2 has already been demonstrated 

in vitro (70). However, a retrospective study has shown that umifenovir did not improve 

patient outcomes based on time to reach a double-negative result and on time to symptom 

recovery (71). In contrast, a retrospective study in China has reported that the combination of 

umifenovir and IFN-α2b signi�cantly improved clinical symptoms and CT scans of patients 

with COVID-19 compared to treatment with IFN-α2b alone, although viral clearance and 

time to recovery did not di�er between combinatorial and single therapy (72). Additionally, 

the results of a randomized, controlled trial comparing the e�ects of HCQ+umifenovir with 

those of HCQ+LPVr show that umifenovir treatment led to signi�cantly shorter hospital stay 
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and lower ICU admission rates among hospitalized COVID-19 patients (73). More trials will 

have to be performed to evaluate the e�ects of umifenovir on COVID-19 treatment.

POTENTIAL ANTIVIRALS WITH NON-ANTIVIRAL 
INDICATIONS

Chloroquine (CQ) and HCQ

CQ is a quinine used for malaria prophylaxis. HCQ is also a quinine used for rheumatoid 

arthritis and lupus, but it can also be used as prophylaxis against CQ-sensitive malaria. While 

both are e�ective against malaria, HCQ is better tolerated than CQ (74). Both have displayed 

antiviral activities against a broad range of viruses including DENV, ZIKV, �loviruses, 

SARS-CoV, etc. in vitro and in animal models, suggesting that it may also exert inhibitory 

e�ects on SARS-CoV-2 (75). In most of these viruses, CQ and HCQ are believed to increase 

endosomal pH, thereby interfering with viral endocytosis, which requires acidic conditions 

(76). A study has suggested that HCQ with azithromycin accelerates SARS-CoV-2 clearance 

(77). However, further studies show that CQ and HCQ do not bene�t hospitalized COVID-19 

patients, leading the WHO to halt the CQ and HCQ arms of the Solidarity trial (32). The �nal 

results of the RECOVERY group's HCQ trial also show that HCQ does not lower the 28-day 

mortality rate among hospitalized COVID-19 patients (78). Given that CQ and HCQ target 

early stages of infection, several trials are still ongoing to determine whether they can be used 

as prophylactic agents or for early stages of SARS-CoV-2 infection (Table 1).

Statins

Statins are cholesterol-lowering agents mainly used to prevent primary or secondary 

cardiovascular disease. However, they have demonstrated inhibitory e�ects on several 

viruses, including ZIKV, DENV, in�uenza, HIV, and EBOV in vitro (79). Much of the statins' 

antiviral capacity is attributed to their ability to inhibit the synthesis of cholesterol, which is 

important for the formation of lipid ra�s that are needed in di�erent stages of viral infection 

(80). Angiotensin-converting enzyme (ACE) 2, the primary receptor used by SARS-CoV-2 

(Fig. 1), is embedded in lipid ra�s, suggesting that destabilizing lipid ra�s through the 

inhibition of cholesterol production may inhibit SARS-CoV-2 infection (81). Moreover, 

statins have been suggested to have cholesterol-independent anti-in�ammatory e�ects (82). 

Furthermore, although evidence have so far been mixed, an observational suggests that 

continuous or prior use of statins have bene�ts to patients with sepsis-related ARDS (83).

Statins seem to have multiple potential targets in the progression of COVID-19: the infection 

stage, the hyper-in�ammatory stage, and ARDS; therefore, statins may be e�ective against 

COVID-19 (Table 1). Indeed, a large retrospective study has associated the in-hospital use 

of statins with lower morbidity and mortality among COVID-19 patients (84). Another 

retrospective study has associated the use of statins with asymptomatic SARS-CoV-2 

infection and has shown that the combination of statins with ACE inhibitors and angiotensin 

II receptor blockers signi�cantly reduced the risks of symptoms and serious disease (85). 

Another study suggests that prior statin use reduced the risk of progression to severe 

COVID-19 and could be linked to faster recovery of severe COVID-19 patients (86). Supporting 

these, an unpublished study reports that selective statins, particularly �uvastatin, inhibits 

SARS-CoV-2 entry (87). Several controlled trials to evaluate di�erent statins against COVID-19 

have already been registered.
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Nafamostat mesylate and camostat mesylate

Similar to SARS-CoV, SARS-CoV-2 fusion with the host cell requires priming of the spike (S) 

protein by a cellular protease, transmembrane protease serine 2 (Fig. 1); camostat mesylate, a 

clinically approved serine protease inhibitor, was demonstrated to partially block priming of 

the S protein (88). Similarly, nafamostat mesylate, another serine protease inhibitor has been 

shown to inhibit SARS-CoV-2 S priming and subsequently block virus-host fusion in vitro (89). 

Furthermore, nafamostat mesylate was reported to have more potent e�ects than camostat 

mesylate. Together, these reports suggest that protease inhibitors are potential candidates 

for COVID-19 treatment (Table 1). Additionally, nafamostat has anticoagulatory properties, 

suggesting that it may be bene�cial to the management of the thrombotic stage of COVID-19 

(90,91). Clinical trials evaluating the e�ectivity of nafamostat mesylate and camostat 

mesylate in COVID-19 treatment are ongoing.

IMMUNE-BASED THERAPEUTIC AGENTS

IFNs

IFNs are cytokines involved in the host antiviral defense system, especially in the early stages 

of infection. They are classi�ed into 3 families: type I (IFN-I: 13–14 IFN-α subtypes, IFN-β, 

IFN-ε, IFN-κ, IFN-ω, IFN-δ, IFN-ζ, and IFN-τ), type II (IFN-γ), and type III (IFN-λ subtypes) 

and generally di�er by the receptors and signaling pathways they activate.

An early study has suggested that SARS-CoV-2 does not stimulate an IFN response in 

patients, which may lead to disease progression (92). Supporting this, another study has 

shown that mild to moderate COVID-19 patients had higher systemic type I IFN levels than 

severe patients (93). Furthermore, mutations in type I IFN-related genes and auto-Abs against 

type I IFNs have been correlated with critical COVID-19 cases (94,95). An in vitro study also 

shows that although SARS-CoV-2 infection did not induce IFN production in primary human 

airway epithelial (pHAE) cells, pretreatment with type I and III IFNs reduced SARS-CoV-2 

replication in the pHAE cells (96). In contrast, IFN-stimulated genes have been reported 

to be upregulated in COVID-19 patients (97). Although these studies provide contradictory 

evidence for the role of IFN in COVID-19 progression, a few clinical studies have already 

been completed and suggest that type I IFNs alone or in combination with other agents are 

bene�cial to the treatment of mild to moderate COVID-19 (Table 2) (42,98). In particular, 

early administration of IFN-α2b and IFN-β1 reduced the COVID-19-associated mortality 

but did not improve recovery time (99,100). Additionally, a prospective observational study 

in Cuba suggests that the use of IFN-α2b in addition to standard treatment (LPVr and CQ) 

increased the likelihood of recovery and survival among hospitalized COVID-19 patients 

(101). Remarkably, adding IFN-β1b to standard LPVr therapy reduced the recovery time and 

mortality of severe COVID-19 patients (102). However, the results of the WHO Solidarity trial 

suggest that IFN-β1 treatment is not bene�cial to hospitalized COVID-19 patients (22). In 

contrast to this, however, nebulized IFN-β1a increased the likelihood of improvement based 

on an ordinal scale and led to faster recovery of hospitalized COVID-19 patients in a phase 2 

randomized, double-blind, placebo-controlled study (103). Given the contradictory results 

of IFN for COVID-19, several clinical trials are ongoing to further explore the bene�ts of IFN 

treatment (Table 2).
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Table 2. Summary of COVID-19 treatment evaluations for immune-based therapeutics

Agent Target COVID-19 stage(s)* Target/mode of action Status

IFNs Early (potential) Antiviral cytokines • Type I IFNs exhibit treatment benefits in multiple small trials

•  WHO Solidarity trial shows that IFN-β1 treatment does not benefit hospitalized 

COVID-19 patients

•  Ongoing phase 2 trials for different stages of infection and varying degrees of 

severity

• Ongoing phase 3 trial for combination with remdesivir

CP Early (potential) Viral neutralization • Inconclusive results from small trials

•  Randomized placebo-controlled trial shows no treatment benefits for hospitalized 

patients with COVID-19 pneumonia

• Ongoing phase 2/3 trials for hospitalized COVID-19 patients

• Emergency use authorization (USA)

Monoclonal Abs Early (demonstrated) Viral neutralization •  Eli-Lilly’s LY-CoV555 accelerates viral clearance and lowers hospitalization rates. It 

has been granted emergency use authorization by the US-FDA

•  Eli-Lilly’s LY-CoV555 and LY-CoV016 cocktail in phase 2/3 evaluation for mild-to-

moderate COVID-19

•  Regeneron’s REGN-COV2 accelerates viral clearance and symptom recovery in 

SARS-CoV-2 seronegative patients and in patients with high viral load at baseline. 

It has been granted emergency use authorization by the US-FDA

•  Regeneron’s REGN-COV2 is undergoing phase 2/3 evaluation for COVID-19 

outpatients and hospitalized patients

•  Phase 1 trial for Celltrion’s CT-P59 shows accelerated recovery in patients with mild 

COVID-19

• Celltrion’s CT-P59 is undergoing phase 2/3 trials for COVID-19 outpatients

Cytokine inhibitors

Tocilizumab Middle to late 

(demonstrated)

IL-6 receptor • COVIDOSE (phase 2) suggests improved outcomes in hospitalized patients

•  EMPACTA (phase 3) suggests lower likelihood of progression to mechanical 

ventilation

•  Randomized, double-blind placebo-controlled study shows no reduction in 

mortality and progression to mechanical ventilation

• Ongoing phase 3 trial in combination with remdesivir

Sarilumab Middle to late (potential) IL-6 receptor • No benefits seen in phase 3 trials (halted)

Siltuximab Middle to late (potential) IL-6 • Phase 2 of SISCO study suggests reduced mortality in COVID-19 ARDS patients

• Ongoing phase 3 trials for severe COVID-19

Olokizumab Middle to late (potential) IL-6 • Pending results for a phase 2/3 trial for severe COVID-19

Mavrilimumab Middle to late (potential) GM-CSF receptor α •  Phase 2 placebo-controlled trial suggests reduced mortality and shorter duration 

of mechanical ventilation in severe COVID-19 patients

• Ongoing phase 2/3 trials for severe COVID-19

Anakinra Middle to late (potential) IL-1 •  Retrospective study reports dampened inflammation and improved respiratory 

function in severe COVID-19

•  Prospective study reports reduced progression to mechanical ventilation and 

reduced mortality in severe COVID-19

• Ongoing phase 2/3 trials for severe COVID-19

JAK inhibitors

Ruxolitinib Middle to late (potential) JAK1/2 •  Case series, retrospective, and randomized controlled trials suggest improved 

outcomes in severe COVID-19

• Novartis phase 3 trial reports no benefits to hospitalized COVID-19 patients

Baricitinib Middle to late (potential) JAK1/2 • Associated with improved clinical outcomes in severe COVID-19

• Combination with RDV is associated with clinical improvement and faster recovery

• Ongoing phase 2/3 trials for moderate and severe COVID-19

Tofacitinib Middle to late (potential) JAK3 • Ongoing phase 2 trials for moderate and severe COVID-19

Fedratinib Middle to late (potential) JAK2 • Not yet being evaluated for COVID-19

Anti-inflammatory agents

Corticosteroids 

(dexamethasone, 

hydrocortisone, 

methylprednisolone)

Middle to late 

(demonstrated)

Anti-inflammatory •  Reduced likelihood of progression to mechanical ventilation and reduced mortality 

in severe COVID-19 across several studies

• WHO strong recommendation for systemic corticosteroids in severe COVID-19

US-FDA, United States Food and Drug Administration.
*Target COVID-19 stages are divided into: early (first week of infection, viral phase, pre-/early symptomatic phase); middle (second week of infection, 

symptomatic, early stages of hyperinflammation); and late (beyond second week of infection, hyperinflammatory to thrombotic stages). Demonstrated: denotes 

existence of evidence based on COVID-19 clinical studies; potential: target is yet to be demonstrated in clinical trials but is based on the agent's known modes of 

action and other viral targets.



Neutralizing Abs

Passive immunization has a long history of use in the treatment of infectious diseases. Plasma 

from convalescent patients carry neutralizing Abs (NAbs) and a host of other factors, such as 

clotting factors and cytokines, that may contribute to therapy. Thus, passive immunization can 

be used for post-exposure prophylaxis and in disease management. The use of plasma from 

convalescent COVID-19 patients is one of the treatments that has been considered early into 

the COVID-19 pandemic (Table 2). Case reports and case series have suggested the bene�ts of 

convalescent plasma (CP) to severe and critical COVID-19 patients (104,105). A randomized 

controlled trial in China shows that the rate of negative results a�er 72 hours was higher in 

the CP group than in the control group among patients with severe disease, and the rate of 

negative results was higher at certain timepoints among critically ill patients treated with CP 

(106). However, other outcomes, such as time to clinical improvement, time to discharge, and 

28-day mortality, were not signi�cantly a�ected by CP treatment. The largest completed CP 

study to date has reported no signi�cant di�erences in the outcomes of COVID-19 patients 

with severe pneumonia treated with CP and with placebo (107).

Potential risks that may arise from CP therapy include: Ab-dependent enhancement of 

infection or of disease, exacerbation of the hyper-coagulable state in COVID-19 by clotting 

factors in the plasma, and transfusion-related lung injury (104). Moreover, NAb titers from 

di�erent individuals vary, thereby requiring titration of NAbs per donor and pooling of 

plasma from a few donors. Thus, to minimize the adverse e�ects of plasma therapy, to have 

consistent Ab titers, and to maximize neutralization, the use of mAbs and mAb cocktails have 

been proposed. Several studies have already identi�ed NAbs that may be used for COVID-19 

treatment (108-111). The interim analysis of Eli-Lilly's BLAZE-1 trial (NCT04427501) suggests 

that the administration of LY-CoV555 (bamlanivimab), an IgG1 that targets the SARS-CoV-2 

S protein, at early stages of mild-to-moderate COVID-19 results in faster reduction of viral 

load and in the reduction of hospitalization rates (112). The combination of LY-CoV555 

with LY-CoV016 (etesivimab), which also binds the S protein, is also being evaluated 

in the same trial. Regeneron's REGN-COV2, a cocktail of 2 anti-SARS-CoV-2 S protein 

Abs (REGN10933+REGN10987), has also been reported to accelerate viral clearance and 

symptom recovery in COVID-19 outpatients, especially among those who were seronegative 

for SARS-CoV-2 Abs or those who had high viral loads at baseline (113). The results of the 

phase 1 placebo-controlled trials for Celltrion's CT-P59 (regdanvimab), a mAb that binds 

the receptor-binding domain of the SARS-CoV-2 S protein, show that CT-P59 accelerated 

the recovery of patients with mild COVID-19 (114). A phase 2/3 trial for CT-P59 in COVID-19 

outpatients has already been initiated (NCT04602000).

Cytokine inhibitors

Because high serum IL-6 levels have been consistently observed in severe COVID-19, IL-6 has 

been proposed as a marker for progression to severe disease and is being widely considered 

as a target for treatment (Table 2) (115). Tocilizumab is a humanized mAb that binds the IL-6 

receptor and is primarily used for the management of rheumatoid arthritis. Retrospective 

studies have associated subcutaneous and intravenous tocilizumab administration 

with improved clinical outcomes and reduced mortality in severe and critical COVID-19 

patients (116-119). COVIDOSE, a phase 2, single-armed trial, has reported the alleviation 

of in�ammation and faster defervescence following treatment with low-dose tocilizumab 

in non-critical hospitalized COVID-19 patients (120). Similarly, the results of EMPACTA, a 

global phase 3, placebo-controlled trial for tocilizumab, suggest that tocilizumab reduced 

the likelihood of progression to mechanical ventilation and death in COVID-19 pneumonia 
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patients (121). However, another randomized, double-blind placebo-controlled study shows 

that tocilizumab did not reduce the likelihood of death and progression to mechanical 

ventilation (122). Similarly, an observational study suggests that tocilizumab does not help 

in the management of cytokine storm in severe COVID-19 patients (123). These contradicting 

results emphasize the need for larger placebo-controlled studies to evaluate the treatment 

bene�ts of tocilizumab in COVID-19. On the other hand, the trials for sarilumab, which also 

targets the IL-6 receptor, have been halted a�er failing to improve clinical outcomes in severe 

COVID-19 patients (124).

Abs that directly bind IL-6 are also being considered for COVID-19 therapy. The unpublished 

results of SISCO, a phase 2 observational, control cohort study, suggest that siltuximab, a 

mAb that binds IL-6, reduced the death of COVID-19 ARDS patients who required mechanical 

support (125); a phase 3 trial (NCT04616586) has therefore been initiated. A phase 2/3 

trial to evaluate the e�ects of olokizumab, another IL-6 inhibitor, has also been recently 

completed with pending results (NCT04380519). Trials comparing the e�ects of di�erent 

IL-6 antagonists have also been registered (NCT04330638, NCT04486521).

Inhibitors of other cytokines implicated in the COVID-19 cytokine storm are also being 

evaluated (126). A preliminary study on mavrilimumab, a human mAb that binds the GM-

CSFRα, has also been reported to improve clinical outcomes (127). Furthermore, early results 

of the phase 2 portion of Kiniksa's phase 2/3 placebo-controlled trial on mavrilimumab 

(NCT04399980) suggest reduced mortality and shorter duration of mechanical ventilation 

among patients with severe COVID-19 pneumonia and hyperin�ammation (128). Anakinra, 

an IL-1 antagonist, has been reported to improve respiratory function, dampen in�ammation, 

and reduce progression to mechanical ventilation in severe COVID-19 patients (129-131). 

Cytokine inhibitor cocktails have also been proposed to maximize the bene�ts of modulating 

the immune response (126). However, more controlled studies will have to be performed to 

determine the bene�ts and risks associated with the use of cytokine inhibitor cocktails.

JAK inhibitors

JAK1, JAK2, JAK3, and tyrosine kinase 2 are members of the JAK family of non-receptor 

tyrosine kinases. They mediate cytokine signaling through the JAK/STAT pathway, making 

JAK inhibition a plausible option for regulating cytokine-stimulated in�ammatory responses 

in COVID-19 (Table 2). Ruxolitinib, which binds the kinase domain of JAK1 and JAK2, was 

the �rst approved JAK inhibitor and is currently used for the management of myelo�brosis, 

hemophagocytic lymphohistiocytosis, and gra�-versus-host disease. It has been shown to 

reduce C-reactive protein, TNF-α, and IL-6 plasma levels in myelo�brosis cases, suggesting 

that it can be used to reduce in�ammation in COVID-19 patients. In a pilot case series, a low 

starting dose of ruxolitinib was shown to improve clinical scores of patients without major 

signs of toxicity (132). Several other studies have suggested that ruxolitinib is bene�cial to 

hospitalized COVID-19 patients, with indications that it can dampen the hyperin�ammatory 

state in patients (133-135). However, Novartis has reported that ruxolitinib did not improve 

clinical outcomes in hospitalized COVID-19 patients in their phase 3 trial (136). Notably, a 

study suggests that the combination of ruxolitinib and steroids is bene�cial to patients with 

COVID-19 pneumonia (137). Whether this combination is an e�ective COVID-19 treatment 

will have to be veri�ed in larger studies.

Baricitinib, another JAK1/2 inhibitor, has been reported to signi�cantly reduce the fatality 

rate and ICU admission rate; accelerate viral clearance; and increase discharge rates in 
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COVID-19 patients with moderate pneumonia, compared to standard-of-care (138). The 

NIAID-sponsored ACTT-2 phase 3 trial for baricitinib in combination with RDV suggests 

that the combination shortens the median recovery time and reduces the 28-day mortality of 

hospitalized COVID-19 patients; in particular, the combination reduced the time to recovery 

of patients under non-invasive oxygen support from 18 days (RDV only) to 10 days (139). 

Several trials to evaluate the COVID-19 treatment bene�ts of baricitinib (e.g., NCT04421027, 

NCT04373044, NCT04640168) have already been registered.

One potential drawback to the use of JAK1/2 inhibitors against COVID-19 is their ability to 

target several types of cytokines, some of which (i.e., IFNs) are needed for viral clearance. 

Thus, other JAK inhibitors that can selectively target certain cytokines are also being 

considered. Tofacitinib, a potent inhibitor of JAK3, which is not involved in the IFNγ pathway, 

is already being evaluated in phase 2 trials for COVID-19 (e.g., NCT04415151, NCT04469114). 

Likewise, fedratinib a JAK2 inhibitor, is expected to not disrupt the type I IFN pathways and 

has already been seen to reduce cytokine production by Th17 cells in vitro, suggesting that it 

can be used for COVID-19 treatment (140).

ANTI-INFLAMMATORY AGENTS

Corticosteroids

Corticosteroids were initially not recommended for COVID-19 treatment based on existing data on 

MERS-CoV and SARS-CoV wherein corticosteroids delayed viral clearance; under the assumption 

that disease severity is associated with high viremia, the use of corticosteroids in COVID-19 was 

hypothesized to lead to severe disease and viral sepsis (141). However, given the current evidence 

that in�ammation plays a primary role in COVID-19 progression, anti-in�ammatory drugs were 

deemed viable candidates for the treatment of severe COVID-19 (Table 2).

A controlled, open-label trial (RECOVERY) has shown that a 10-day course of dexamethasone 

reduced the 28-day mortality among COVID-19 patients who were receiving respiratory 

support (142). Moreover, dexamethasone reduced the risk of progression to invasive 

ventilation in patients receiving oxygen support. Notably, improvements were not observed 

among patients who did not receive respiratory support. These �ndings suggest that 

dexamethasone is bene�cial to COVID-19 patients in later stages of infection, where 

pulmonary and systemic in�ammatory damage is present. Although another trial (COVID-19 

Dexamethasone) shows that while dexamethasone failed to signi�cantly reduce in mortality 

of COVID-19 patients with moderate or severe ARDS, dexamethasone signi�cantly increased 

the number of days alive and the number of days the patients were free of mechanical 

ventilation (143).

Due to the announcement of the RECOVERY �ndings, enrollment for corticosteroid 

trials were halted, but a few trials have reported their results. A randomized clinical study 

shows that hydrocortisone did not signi�cantly improve outcomes in terms of mortality 

and persistent mechanical ventilation in critical COVID-19 cases, but the study may have 

been underpowered due to premature termination of enrolment (144). The REMAP-CAP 

randomized clinical trial, on the other hand, suggested probable superiority of a �xed dose 

and shock-dependent dosing of hydrocortisone in patients with severe COVID-19, although 

de�nitive conclusions could not be made (145). In light of the RECOVERY �ndings, the 

WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) working group pooled 
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data from 7 randomized controlled studies and performed meta-analysis to evaluate the 

e�ects of corticosteroids (dexamethasone, hydrocortisone, and methylprednisolone) in 

critically ill COVID-19 patients. The REACT meta-analysis associated the use of systemic 

corticosteroids with lower 28-day mortality among COVID-19 patients, leading to the WHO's 

strong recommendation to use corticosteroids in severe and critical COVID-19 patients 

and to a conditional recommendation to use corticosteroids in non-severe cases (146,147). 

The bene�ts and risks of corticosteroids in non-severe COVID-19 patients; the long-term 

e�ects of corticosteroid use in COVID-19 survivors; and the optimal timing of corticosteroid 

administration will still have to be evaluated in future studies.

PERSPECTIVES AND CONCLUSIONS

The COVID-19 pandemic has spurred global cooperation for the speedy evaluation of 

drug and vaccine candidates. In a short span of time, several therapeutic candidates have 

already been tested, discontinued, reconsidered, or recommended based on the results of 

collaborative e�orts between research institutes, clinical practitioners, and manufacturing 

companies. However, the current e�orts still leave much to be desired. For example, the 

con�icting results of the WHO Solidarity and RECOVERY trials on RDV emphasize the need 

for standardized study designs and clinical outcomes to obtain coherent and conclusive 

evidence in large clinical studies.

Additionally, strati�cation of patients based on the di�erent phases of COVID-19 is important 

in determining the optimal timepoint for any intervention. As we have presented, COVID-19 

treatment candidates can be grouped based on modes of action (Fig. 1) and target stages in 

COVID-19 progression (Tables 1 and 2). The early stages of COVID-19 can be targeted using 

agents that promote viral clearance, which include antivirals (e.g. nucleoside analogs), 

approved drugs with non-antiviral indications but with antiviral potential (e.g. statins, 

CQ/HCQ, camostat mesylate, and nafamostat mesylate), IFNs, and NAbs. The middle 

stages of COVID-19, which is characterized by the decline in viral replication and the start 

of the hyperin�ammatory response, can be targeted using agents that can dampen the 

in�ammatory response, such as cytokine inhibitors, JAK inhibitors, and corticosteroids. 

Finally, the late stages of COVID-19, which is characterized by hyperin�ammation, 

thrombosis, and other critical manifestations, can be managed using anti-in�ammatory and 

anticoagulatory (e.g. nafamostat mesylate, camostat mesylate) agents.

Understandably, because of the initial surge in hospital burden early into the COVID-19 

pandemic, most of the therapeutic approaches, including antivirals and potential antivirals, 

were tested on hospitalized patients. However, this may explain why most of the candidates 

failed to show COVID-19 treatment bene�ts; antivirals and IFNs are expected to be bene�cial 

early into the course of the disease, where viral replication is at its peak, and would be less 

helpful in alleviating in�ammation and other complications that arise in later stages of 

COVID-19. This may also be the reason why corticosteroids, which target a stage of COVID-19 

that coincides with patient hospitalization, are, thus far, the only treatment with strong 

conclusive evidence. Recently, trials have been directed to COVID-19 outpatients and to 

mild-to-moderate COVID-19 patients. Some of the agents (e.g. CQ/HCQ, LPVr) are also 

being tested as prophylaxis for individuals with high risks of exposure to SARS-CoV-2 (e.g. 

healthcare workers). Various combinations of the candidates are also being looked into 

for potential synergistic e�ects. Hopefully, the results of all these studies will reveal early 
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treatments that will accelerate viral clearance and prevent COVID-19 progression to reduce 

the hospital burden, morbidity, and mortality associated with SARS-CoV-2 infection.

Although SARS-CoV-2 vaccines have been granted emergency-use authorization in various 

countries, several months are needed for the global vaccine roll out and to reach the desired 

level of community immunity. Furthermore, long-term data are needed to ascertain whether 

vaccination confers long-term protection or will have to be frequently administered (e.g., 

every few years). Thus, prophylactic and therapeutic agents are expected to �ll in the gap 

in virus control measures le� by the ongoing vaccination e�orts. Clinical evaluations of 

candidates for COVID-19 treatment therefore remain invaluable to the management of 

the SARS-CoV-2 pandemic. Hopefully, the learnings from this pandemic, especially the 

organization of rapid but thorough clinical evaluations for pharmaceutical interventions and 

the e�ective strategies in discovering and developing antiviral treatments, will arm us for 

future large viral outbreaks.
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