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COVID-19 Artificial Intelligence Diagnosis
Using Only Cough Recordings
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Abstract—Goal: We hypothesized that COVID-19 sub-
jects, especially including asymptomatics, could be accu-
rately discriminated only from a forced-cough cell phone
recording using Artificial Intelligence. To train our MIT
Open Voice model we built a data collection pipeline of
COVID-19 cough recordings through our website (open-
sigma.mit.edu) between April and May 2020 and created the
largest audio COVID-19 cough balanced dataset reported
to date with 5,320 subjects. Methods: We developed an
AI speech processing framework that leverages acoustic
biomarker feature extractors to pre-screen for COVID-19
from cough recordings, and provide a personalized patient
saliency map to longitudinally monitor patients in real-time,
non-invasively, and at essentially zero variable cost. Cough
recordings are transformed with Mel Frequency Cepstral
Coefficient and inputted into a Convolutional Neural Net-
work (CNN) based architecture made up of one Poisson
biomarker layer and 3 pre-trained ResNet50’s in parallel,
outputting a binary pre-screening diagnostic. Our CNN-
based models have been trained on 4256 subjects and
tested on the remaining 1064 subjects of our dataset.
Transfer learning was used to learn biomarker features on
larger datasets, previously successfully tested in our Lab
on Alzheimer’s, which significantly improves the COVID-19
discrimination accuracy of our architecture. Results: When
validated with subjects diagnosed using an official test,
the model achieves COVID-19 sensitivity of 98.5% with a
specificity of 94.2% (AUC: 0.97). For asymptomatic sub-
jects it achieves sensitivity of 100% with a specificity of
83.2%. Conclusions: AI techniques can produce a free, non-
invasive, real-time, any-time, instantly distributable, large-
scale COVID-19 asymptomatic screening tool to augment
current approaches in containing the spread of COVID-19.
Practical use cases could be for daily screening of stu-
dents, workers, and public as schools, jobs, and transport
reopen, or for pool testing to quickly alert of outbreaks in
groups. General speech biomarkers may exist that cover
several disease categories, as we demonstrated using the
same ones for COVID-19 and Alzheimer’s.

Index Terms—AI diagnostics, convolutional neural net-
works, COVID-19 screening, deep learning, speech recog-
nition.
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Impact Statement—We present the dataset, model ar-
chitecture and performance of a zero-cost, rapid and in-
stantly distributable COVID-19 forced-cough recording AI
pre-screening tool achieving 98.5% accuracy, including
100% asymptomatic detection rate. An orthogonal set
of biomarkers may be developed to diagnose COVID-19,
Alzheimer’s and perhaps other conditions.

I. INTRODUCTION

S
TRICT social measures in combination with existing tests
and consequently dramatic economic costs, have proven

sufficient to significantly reduce pandemic numbers, but not
to the extent of extinguishing the virus. In fact, across the
world, outbreaks are threatening a second wave, which in the
Spanish flu was way more damaging than the first one [1].
These outbreaks are very hard to contain with current testing
approaches unless region-wide confinement measures are sus-
tained. This is partly because of the limitations of current viral
and serology tests and the lack of complementary pre-screening
methods to efficiently select who should be tested. They are
expensive making the cost of testing a whole country each day
impossible, e.g. $8.6B for the US population alone assuming
a $23 test [2]. And to be effective, they often require subjects
remain isolated for a few days until the result is obtained. In
contrast, our AI pre-screening tool could test the whole world
on a daily, or even hourly basis at essentially no cost. In terms of
capacity, in the week leading up to July 13, 2020, daily diagnostic
testing capacity in the United States was fluctuating between
520,000 and 823,000 tests. However, certain experts forecasted
the need for 5 million tests per day by June, increasing to 20
million tests per day by July [3]. The unlimited throughput
and real-time diagnostic of our tool could help intelligently
prioritize who should be tested, especially when applied to
asymptomatic patients. In terms of accuracy, in an evaluation of
nine commercially available COVID-19 serology tests, in early
phase (7-13 days after onset of disease symptoms) sensitivities
vary between 40-86% and AUC vary between 0.88-0.97 [4].
Meanwhile, our tool with AUC 0.97 achieves 98.5% sensitivity.

It has been proposed optimal region-wide daily testing and
contact tracing could be a close substitute to region-wide con-
finement in terms of stopping the spread of the virus [5] and
avoid the costs of stopping the economy. However, many current
attempts at testing, contact tracing, and isolation like the UK
initially employed, have been far from successful [6]. This is
mainly caused by many countries lacking the tools at the time to
employ an agile, responsive, and affordable coordinated public
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health strategy [6]. Therefore, as the virus spreads to countries
who cannot afford country-wide daily testing nor confinement,
a large-scale, low-cost, and accurate pre-screening tool may
be essential to prioritize tests for rapidly detecting and locally
preventing outbreaks. Different AI approaches have recently
been proposed to support the management of the pandemic
[7]–[10].

An AI coughing test would provide some advantage that
may partially offset the issues with existing biological testing
approaches. Capabilities of our AI tests include: non-invasive
real-time results, essentially zero variable cost, accessible by
anyone, and capable to longitudinally monitor patients.

As any AI deep learning approach, we needed training data
and a modelling strategy. To address the data component, which
was not available, we initiated a worldwide crowd-sourced ef-
fort to collect COVID-19 forced-cough audios along with 10
multiple choice questions related to the diagnosis of the disease
and relevant symptoms as shown in Table I. Our MIT Open
Voice COVID-19 Cough dataset [10] sets a new benchmark as
the largest audio health dataset with several hundred thousand
coughs of which 5,320 COVID-19 positive and negative bal-
anced subjects were selected for this research. We selected all
COVID-19 positives and, randomly, an equivalent number of
negative ones from the rest of our dataset.

To address the modelling strategy, we were inspired by our
research on Alzheimer’s [11] and the growing evidence of re-
cently reported symptoms of COVID-19 patients who suffered
neurological impairments such as temporary neuromuscular im-
pairment and loss of smell during and post infection [12]–[14].

After trying unsuccessfully a few basic CNN models, the
connection between COVID-19 and the brain is what led us
to pivot the COVID-19 modelling efforts to our Open Voice
Brain Model framework (OVBM), based on the Brain Model
of the MIT Center for Brain Minds and Machine [15], since
we had recently applied it to the diagnostic of Alzheimer’s
achieving above state-of-the-art accuracy of 93.8%. Our MIT
OVBM framework is based on orthogonal acoustic biomarkers
to diagnose and create an individualized patient saliency map to
longitudinally monitor patients [11].

In the following sections we present the data collection
pipeline for this study (Section II.A), an overview of our
COVID19 AI model (Section II.B), the four biomarkers
(Section II.C) and the results (Section III), including our model
performance on pre-screening COVID-19 subjects, followed by
an evaluation of the biomarkers and our individualized patient
longitudinal saliency map. We conclude in Sections IV and V
with a brief summary, limitations, and implications on suggested
next steps for the deployment in practice of our COVID-19
pre-screening tool, suggesting a pooling strategy, and, more
broadly, implications of our approach for the role of AI in
Medicine going forward.

II. METHODS

A. COVID-19 Cough Dataset

Approved by the MIT COHUES Institutional Review
Board, in April 2020 we initiated a worldwide cough data
collection effort of through our website recording engine

TABLE I
THE SELECTION FOR THE COVID-19 SUBJECTS FOR PERFORMANCE

COMPARISON AIMED TO REPRODUCE A SCENARIO WHERE SUBJECTS ARE

REQUESTED TO VOLUNTARILY USE A SCREENING TOOL. THAT IS WHY THE

RATIO IS NOT EXACTLY BALANCED IN TERMS OF ANY SPECIFIC

DEMOGRAPHIC STATISTIC. INSTEAD, WE CHOSE THE SPLIT TO REFLECT

THE VOLUNTARY PARTICIPATION IN OUR CROWD-SOURCING EXERCISE,
WHICH IN THE CASE OF COVID-19 POSITIVES WAS 41.8% MALE, 53.0%
FEMALE AND 8.9% OTHER BECAUSE THAT WAS THE RATIO OF VOLUNTARY

PARTICIPANTS. NOTE THE RATIO OF CONTROL PATIENTS INCLUDED A 6.2%
MORE FEMALES, POSSIBLY ELICITING THE FACT THAT MALE SUBJECTS ARE

LESS LIKELY TO VOLUNTEER WHEN POSITIVE. THUS, THE PERCENTAGES

REFLECT OUR SAMPLE AND THEREFORE PRODUCE WHAT WE FEEL IS THE

BEST ESTIMATE OF OVERALL PERFORMANCE IF A SCREENING TOOL WAS

VOLUNTARILY USED AT SCALE. IN ANY CASE, OUR EXTENSIVE DATABASE

ALLOWS SELECTIVE TRAINING FOR OTHER DEMOGRAPHICS. NOTE THE ‘HIT’
COLUMN SHOWS THE MODEL ACCURACY ON EACH RESPECTIVE

SUBGROUP. THE CATEGORIES PERSONAL, DOCTOR AND OFFICIAL

CORRESPOND TO THE SOURCE OF DIAGNOSTIC ENTERED BY EACH

SUBJECT, WHETHER THEY TOOK AN OFFICIAL TEST, HAD A DOCTOR’S
DIAGNOSIS, OR SIMPLY A PERSONAL ASSESSMENT. THE LAST ROW SHOWS

THE RESULTS OF APPLYING THE SAME BIOMARKERS TO ALZHEIMER’S [11]

(opensigma.mit.edu) with the aim of creating the MIT Open
Voice dataset for COVID-19 cough discrimination [10]. We
collected variable length cough audio recordings (on average
3 coughs per subject) accompanied by a set of 10 multiple
choice questions related to the diagnosis of the disease and
general subject information: age, sex, country, region; whether,
when and outcome of medical diagnosis done and whether the
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Fig. 1. Overview architecture of the COVID-19 discriminator with
cough recordings as input, and COVID-19 diagnosis and longitudinal
saliency map as output. A similar architecture was used for Alzheimer’s
[11].

source of diagnosis was an official test, a doctor’s evaluation or
a personal assessment; and finally information about symptoms
and days since their onset. Symptoms requested included fever,
tiredness, sore throat, difficulty breathing, persistent pain or
pressure in the chest, diarrhoea and coughing.

So far, we have an estimated subject count of 2,660 COVID-19
positives and a 1-10 ratio of positive to control subjects. Record-
ing was available on various browsers and devices, reducing any
possible device specific bias. Data was anonymized before being
collected on our secure server and samples were saved without
compression in WAV format (16kbs bit-rate, single channel,
opus codec). Samples that had no audio content (e.g. where
the file was 44 bytes) were removed. No segmentation was
performed on the cough recordings used to train and test.

We used all the COVID-19 positive samples in our dataset
and randomly selected the same number of COVID-19 negative
subjects for a balanced distribution. We only used samples with
two conditions, first a diagnostic had been done in the last 7 days
and, second, with symptoms onset no longer than 20 days and
where symptoms continued until the sample was captured. The
subject forced-cough audios and diagnostic results were used to
train and validate the COVID-19 discriminator. 4256 subjects
(80%) were used for training and 1064 (20%) for validation.
Table I provides more details on the patient distribution for the
randomly sampled patients selected from the dataset.

B. Overview of the COVID-19 Model Architecture

Our proposed architecture, drawn in Fig. 1, takes a recording
with one or more coughs, performs two pre-processing steps
with the recording and inputs it into a CNN based model to output
a pre-screening diagnostic along with a biomarker saliency map
(e.g. in Fig. 3(c)).

As pre-processing, each input cough recording is split into
6 second audio chunks, padded as needed, processed with
the MFCC package [16] and subsequently passed through
biomarker 1. The output of these steps becomes the input to
a CNN as described in the next paragraph.

The CNN architecture is made up of three ResNet50s in paral-
lel. The 7 × 7 × 2048 4-d tensor output layer of each ResNet50
model is concatenated in parallel as depicted in Fig. 1. In the
baseline models, these ResNet50s are not pre-trained. In the
best performing model, they are pre-trained to capture acoustic

features on biomarkers 2,3 and 4 as described in Section II.C.
The output of these three concatenated tensors is then pooled
together using a Global Average Pooling 2D layer, followed by
a 1024 neuron deeply connected neural network layer (dense)
with ReLU activation, and finally a binary dense layer with
sigmoid activation. The whole architecture is trained on the
COVID-19 cough dataset for binary classification. The various
chunk outputs from the CNN architecture are aggregated using
competing schemes to generate the subject’s saliency map as
illustrated in Fig. 3(c). The results of this paper and presented
in Table I are based solely on the first audio chunk outputs.
Future work may show that aggregation can not only improve
explainability but also increase diagnostic accuracy.

C. COVID-19 Model Biomarkers

The MIT Open Voice Medicine architecture uses the same
four biomarkers we previously tested for the detection of
Alzheimer’s which achieved above state-of-the-art accuracy
[11]. These four biomarkers inspired by medical community
choices [17]–[21] are: muscular degradation, changes in vocal
cords, changes in sentiment/mood, and changes in the lungs and
respiratory tract.

1) Biomarker 1 (Muscular Degradation): Following mem-
ory decay models from [22], [23] we introduced muscle fatigue
and degradation features by modifying input signals for all train
and test sets with the Poisson mask in Equation 1. Poisson decay
is a commonly occurring distribution in nature [24] which has
previously been proposed to model muscular degradation. We
find it effective since removing this biomarker roughly doubles
the error rate in official predictions. To capture the influence of
muscular degradation in individual predictions, we developed
a muscular degradation metric based on comparing the output
with and without this initial Poisson step. This metric is the
normalized ratio of the prediction with and without the mask
and it is incorporated in the saliency map as illustrated in Fig. 3.
For COVID negatives this metric is plotted directly; and for
positives we plot one minus this metric.

The Poisson mask applied on a cough recording MFCC point,
Ix, is calculated by multiplying this value by a random Poisson
distribution of parameters Ix and λ, where λ is the average of all
values in the MFCC.

M (Ix) = Poiss (λ) Ix (1)

Poiss (X = k) =
λ
k
e
−k

k!
(2)

2) Biomarker 2 (Vocal cords): Subjects with lung diseases
often have distinct expressions of vocal cords biomarkers as
compared to healthy ones [25]. For example, studies have re-
ported phonation threshold pressure, the minimal lung pressure
necessary to start and hold vocal fold oscillation, correlates to
vocal fatigue [26]. Therefore, we were interested in creating a
vocal cord biomarker model capable of detecting changes in
basic features of vocal cord sounds in continuous speech.

We focused on developing a Wake Word model [27] for a
very universal sound ”mmmmmm”. We trained a ResNet50
[28] with input shape (300, 200) from MFCC to discriminate
the word ’Them’ from others using LibriSpeech, an audiobook
dataset with ≈1,000 hours of speech [29]. The model was
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TABLE II
THE FIRST THREE ROWS SHOWS THE UNIQUE PERCENTAGE OF SAMPLES

DETECTED BY EACH INDIVIDUAL BIOMARKER FOR COVID-19 AND

ALZHEIMER’S, DEMONSTRATING THE DISCRIMINATORY VALUE OF THE EXACT

SAME THREE BIOMARKERS FOR BOTH DISEASES. THE NEXT THREE ROWS

FOCUS ON THE OVERLAP BETWEEN TWO BIOMARKERS DEMONSTRATING

HOW ORTHOGONAL THEY ARE TO EACH OTHER

trained by creating a balanced sample set of 11,000 two-second
audio chunks, half containing the word and half without it, and
achieved a validation accuracy of 89%.

We found that the learned features from this biomarker enable
the detection of variations in the vocal cords that exist between
COVID-19 and control subjects, discriminating 54% of the test
set. As shown in Table II, for 19% of the subjects, this is the
only biomarker to correctly discriminate them.

3) Biomarker 3 (Sentiment): Studies [14] show a cogni-
tive decline in COVID-19 patients and clinical evidence sup-
ports the importance of sentiments in the early-diagnosis of
neurodegenerative decline [19], [30]. Different clinical settings
emphasize different sentiments, such as doubt [31] or frustra-
tion [31] as possible neurodegenerative indicators. To obtain
a biomarker that detects this decline, we trained a Sentiment
Speech classifier model to learn sentiment features on the
RAVDESS speech dataset [32], which includes actors intonating
in 8 emotional states: neutral, calm, happy, sad, angry, fearful,
disgust, and surprised. A ResNet50 [28] was trained on 3 sec-
ond samples for categorical classification of the 8 intonations
with input shape (300, 200) from MFCC which achieved 71%
validation accuracy.

4) Biomarker 4 (Lungs and Respiratory Tract): The hu-
man cough has already been demonstrated to be helpful in
diagnosing several diseases using automated audio recognition
[33], [34]. The physical structure of the lungs and respiratory
tract get altered with respiratory infections, and in the early days
of the COVID-19, epidemiologists listened to the lungs while
patients forced coughs as part of their diagnostic methods. There
is evidence that many other diseases may be diagnosed using AI
on forced-coughs. An algorithm presented by [35] uses audio
recognition to analyse coughs for the automated diagnosis of
Pertussis - a contagious respiratory disease that if left untreated
can be fatal. Algorithms based on cough sounds collected using
smartphone devices are already diagnosing pneumonia, asthma
and other diseases with high levels of accuracy [36]–[39]. There-
fore, a biomarker model capable of capturing features on the
lungs and respiratory tract was selected.

Past models we created with a superset of the cough dataset
collected through MIT Open Voice for COVID-19 detection
[10] accurately predicted a person’s gender and mother tongue

Fig. 2. The top orange line with a square shows the ROC curve for the
set of subjects diagnosed with an official test with AUC (0.97), while the
bottom blue curve with a circle shows the ROC curve for all subjects in
the validation set. The square shows the chosen threshold with 98.5%
sensitivity and 94.2% specificity on officially tested subjects, and the
black circle shows the chosen threshold for high sensitivity (94.0%)
on the whole validation set, although any point on the curve could be
chosen depending on the use case.

based on one cough. We hypothesized that such models capable
of learning features and acoustic variations on forced coughs
trained to differentiate mother tongue could enhance COVID-19
detection using transfer learning. We stripped from the dataset
all metadata but the spoken language of the person coughing
(English, Spanish), and split audios into 6s chunks. A ResNet50
[28] was trained on binary classification of English vs Spanish
with input shape (600, 200) from MFCC and 86% accuracy. We
found that the cough biomarker is the one that provides the most
relevant features with 23% unique detection and 58% overall
detection as shown in Table II.

III. RESULTS

A. COVID-19 Forced-Cough Discrimination Accuracy

Our model achieves a 97.1% discrimination accuracy on
subjects diagnosed with an official test. The fact that our model
discriminates officially tested subjects 18% better than self-
diagnosed, as shown in Table I, is consistent with this discrep-
ancy being caused by self-diagnostic errors. These errors can
contribute to the expansion of the virus even if subjects are well
intentioned, and our tool could help diminish this impact. To
that end, it is remarkable that our tool discriminates 100% of
asymptomatics at the expense of a false positive rate of 16.8%.
Note the tool sensitivity/specificity can be tailored depending
on the use case, such as improving specificity at the cost of
sensitivity, as shown in Fig. 2.

B. Biomarker Saliency Evaluation

To measure the role of each biomarker in the discrimination
task, we compared the results between a baseline model and the
complete model with and without each biomarker. The baseline
model is defined as the same architecture shown in Fig. 1 trained
on COVID-19 discrimination as in our model but without the
pre-trained biomarker model features. Therefore, the baseline
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Fig. 3. A. The numbers on the x-axis describe the number of layers in the biomarker models fine-tuned to COVID-19. The fewer required to beat
the baseline (which is the same architecture trained on COVID-19 discrimination without the pre-trained biomarker models) shows the relevance
of each biomarker for COVID-19. “Complete: shows the final COVID-19 discriminator with all the biomarkers integrated. B. The white dotted part
of the bar shows the performance gained when the Cough biomarker model is incorporated, while pre-trained denotes individually training the
biomarker models for COVID-19 before integrating them into the multi-modal architecture on Fig. 1. C. shows the explainable saliency map derived
from biomarker model predictions to longitudinally track patient progression and is analogous to the saliency map derived for Alzheimer’s [11].
OVBM denotes the final model diagnostic. The BrainOS section shows the model aggregated prediction for 1-4 coughs of a subject. The COVID-19
progress factor calculates based on the 1-4 cough predictions, a possible degree of severity from the quantity of acoustic information required for
a confident diagnostic. The voting confidence and salient factor indicate, based on the composite predictions of individual biomarker models, the
aggregate confidence and salient discrimination for each subject.

model has the exact same number of neurons and weights
but is initialized randomly instead of with pre-trained models.
From Fig. 3(a), the lungs and respiratory track biomarker model
requires very few layers to be fine-tuned to COVID-19 discrimi-
nation to beat the baseline which emphasizes the relevance of its
pre-learned features. Meanwhile, sentiment requires retraining
many more features in order to surpass the baseline showing
that although the pre-learned features bring value, they may be
less closely related. Fig. 3(b) shows leave-one-out significance
by measuring the performance loss when a chosen biomarker
model is removed. Compared to the sentiment biomarker, the
vocal cord biomarker contributes twice the significance in terms
of detection accuracy.

We illustrate similar metrics in Table II by showing the
percentage of unique patients captured by each biomarker.
This is consistent with each biomarker model bringing com-
plementary sets of features, and suggests incorporating ad-
ditional biomarker models may increase the diagnostic accu-
racy and explainability of the MIT OVBM AI architecture for
COVID-19. Note that the three biomarkers are quite distinct
because in pairs they find no unique subjects.

As shown in Fig. 3(c), on top of the diagnostic accuracy
for COVID-19, our AI biomarker architecture outputs a set of
explainable insights for doctors to analyse the make-up of each
individual diagnostics as follows: the Sensory Stream indicates
the expression of the chosen biomarkers; the BrainOS shows
the model confidence improvement as more coughs from one
subject are fed into it, signalling the strength of the diagnosis
and in turn potentially of the disease severity; the Symbolic
Compositional Models provides a set of composite metrics based
on the Sensory Stream and BrainOS. Together, these modular
metrics could enable patients to be longitudinally monitored
using the saliency map of Fig. 3(c), as well as for the research
community to hypothesize new biomarkers and relevant metrics.
Future research may demonstrate to what extent our model can
promptly detect when a COVID-19 positive subject no longer
has the disease and/or is not contagious.

IV. DISCUSSION

We have proven COVID-19 can be discriminated with 98.5%
accuracy using only a forced-cough and an AI biomarker fo-
cused approach that also creates an explainable diagnostic in
the form of a disease progression saliency chart. We find most
remarkable that our model detected all of the COVID-19 positive
asymptomatic patients, 100% of them, a finding consistent with
other approaches eliciting the diagnostic value of speech [40].

Our research uncovers a striking similarity between
Alzheimer’s and COVID discrimination. The exact same
biomarkers can be used as a discrimination tool for both, suggest-
ing that perhaps, in addition to temperature, pressure or pulse,
there are some higher-level biomarkers that can sufficiently
diagnose conditions across specialties once thought mostly dis-
connected. This supports shared approaches to data collection
as suggested by the MIT Open Voice team [27].

This first stage of developing the model focused on training
it on a large dataset to learn good features for discriminating
COVID-19 forced-coughs. Although coughs from subjects that
were diagnosed through personal or doctor assessment might
not be 100% correctly labelled, they enable training the model
on a significant variety and quantity of data, essential to reduce
bias and improve model robustness. Thus, we feel the results
on the set of subjects diagnosed with an official test serve as
an indicator that the model would have similar accuracy when
deployed, and to verify this we are now undergoing clinical trials
in multiple hospitals. We will also gather more quality data that
can further train, fine-tune, and validate the model.

Since there are cultural and age differences in coughs, future
work could also focus on tailoring the model to different age
groups and regions of the world using the metadata captured,
and possibly including other sounds or input modalities such as
vision or natural language symptom descriptions.

Another issue that may be researched is whether cough seg-
mentation can improve the results. For the screening outputs
to have diagnostic validity, there must be a process to verify
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Fig. 4. In cases where there are very few infected individuals, a group
pre-screening tool can be derived from the COVID-19 OVBM model to
accurately alert infected groups while avoiding false-positives as illus-
trated in the graph. With the current accuracy, shown in blue, a threshold
of 3 positives in a group of 25 are required so that only 1% of groups of
25 with no cases are falsely labelled and therefore unnecessarily tested
via expensive biological tests. In other words, in a campus with 2500
yet uninfected students, only 25 will have to be tested with biological
methods until 3 people in a class of 25 catch the virus, in which case
the screening will alert of the outbreak. The x-axis shows how the
required number of positives in a group, 3 in this example, drops if the
COVID-19 model accuracy improves. Each line shows percent of groups
of 25 people falsely tagged with COVID-19 with a minimum number of
COVID-19 positives in it. As a second example, assume a country like
New Zealand, with very few COVID-19 cases, wanted to screen for new
early outbreaks and to do so tested 50M inhabitants using a PCR or
serology test with 99% specificity. The country would purchase 50M
tests and obtain 500 000 false-positives. Meanwhile, assume a group
test yielding a 99.9% test accuracy was used, i.e. requiring 5 positives
instead of 3 in the example above. Of the, 2M groups of 25, only 2000
groups would be falsely tagged or 50 000 people. Hence, 0.1% of the
cost and 0.1% of the false positives otherwise. The value of this group
testing tool is that it enables organizations and countries to pre-screen
its whole population daily, and rapidly locate incipiently infected groups,
without the necessity of using an expensive PCR or serology test on
each inhabitant.

recordings correspond to coughs. In the official tests of our
dataset only three recordings corresponded to speech instead
of coughs and we had to sort these manually since there is still
no way to do so automatically.

This non-invasive, free, real-time pre-screening tool may
prove to have a great potential to complement current efforts
to contain the disease in low-infected areas as well as to
mitigate the impact in highly-infected areas, where unconscious
asymptomatics may spread the virus. We contend the MIT Open
Voice approach presented has great potential to work in parallel
with healthcare systems to augment current approaches to man-
age the spread of the pandemic, especially if combined with
broader uses of an open approach, as is being attempted by the
https://www.openvoicenetwork.org. We present some possible
example use cases:

Population daily screening tool: As workers go back to
work, students go back to school, and commuters use public
transport, to name a few, methods are required to screen in-
fected COVID-19 carriers, especially asymptomatics. The only
screening method currently available is using thermometers,
however this study [41] showed only 45% of mild-moderate

COVID-19 cases have fever (this represents 9% of COVID-19
positives when asymptomatics are included). Meanwhile our
tool detects 98.5% of COVID-19 positives, including 100% of
asymptomatics.

Pre-selection of candidates for test pooling: The test pooling
strategy is expected to be employed in many countries, espe-
cially in low-incidence areas to rapidly identify a sub group of
individuals likely to be infected, however, “preliminary results
show there is no dilution and no decrease on test sensitivity when
minipools of five samples each are used” [42]. Group testing with
our tool as shown in Fig. 4, could pre-screen school classrooms,
factories or even countries on a daily basis signalling probable
infected candidate groups for smaller test pooling batches.

COVID-19 test in countries where PCR/serology testing is

not possible: The availability of COVID-19 tests worldwide
is far from evenly distributed. “Even where there is enough
money, many African health authorities are unable to obtain the
supplies needed as geopolitically powerful countries mobilise
economic, political, and strategic power to procure stocks for
their populations” [43]. This pre-screening tool has the potential
to bring large-scale detection to areas of the world were testing
is too expensive or logistically complex, essential to halt the
spread of the disease worldwide.

V. CONCLUSION

We have created an AI pre-screening test that discriminates
98.5% COVID-19 positives from a forced-cough recording, in-
cluding 100% of asymptomatics, at essentially no cost and with
an accompanying saliency map for longitudinal explainability.

A group outbreak detection tool could be derived from this
model to pre-screen whole-populations on a daily basis, while
avoiding the cost of testing each inhabitant, especially important
in low-incidence areas where the required post-test confine-
ment is harder to justify. Figure 4 shows that by deriving the
COVID-19 cough discrimination model for a group test, it
can correctly detect the presence of COVID-19 in 99.9% of
groups of 25 people with 5 positives, and 95% of groups with
3 positives.

As part of our ongoing clinical trials, data pipelines with
hospitals worldwide have been setup to continue to improve
the tool including: Mount Sinai and White Planes Hospitals
in the US, Catalan Health Institute in Catalonia, Hospitales
Civiles de Guadalajara in Mexico, and Ospedale Luigi Sacco
in Italy. We plan on leveraging this data to further train and
validate our models with the aim of improving pandemic
management practices. Note from Fig. 4 how the number of
COVID-19 positives required in group testing greatly drops as
the individual model improves, calling for a larger database and
further refinement of our model.

To that end, we have reached an agreement with a Fortune
100 company to demonstrate the value of our tool as part of their
COVID-19 management practices. As we have shown there are
cultural and age differences in coughs, future work could focus
on tailoring the model to different age groups and regions of the
world using the metadata captured, something we would like to
test at the company site.

Eventually we hope our research methods inspire others
to develop similar and complementary approaches to disease

https://www.openvoicenetwork.org
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management beyond dementia and COVID-19, possibly ex-
panding our initial set of orthogonal audio biomarkers. We
have followed the MIT Open Voice approach [27], [10] that
postulates voice samples may eventually be broadly available
if shared by smart speakers and other ever-listening devices
such as your phone. Voice may be combined into a multi-modal
approach including vision, EEG and other sensors. Pandemics
could be a thing of the past if pre-screening tools are always-on
in the background and constantly improved. In [44] we introduce
“Wake Neutrality” as a possible approach to make that vision a
reality while we discuss associated legal hurdles.
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