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Brief Reviews

COVID-19 as an Acute Inflammatory Disease
Rose H. Manjili,* Melika Zarei,” Mehran Habibi,* and Masoud H. Manjili*¥

The 2019 coronavirus disease (COVID-19) pandemic
caused by the virus severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has created an unprece-
dented global crisis for the infrastructure sectors, in-
cluding economic, political, healthcare, education, and
research systems. Although over 90% of infected individ-
uals are asymptomatic or manifest noncritical symptoms
and will recover from the infection, those individuals
presenting with critical symptoms are in urgent need of
effective treatment options. Emerging data related to
mechanism of severity and potential therapies for patients
presenting with severe symptoms are scattered and there-
fore require a comprehensive analysis to focus research on
developing effective therapeutics. A critical literature re-
view suggests that the severity of SARS-CoV-2 infection
is associated with dysregulation of inflammatory immune
responses, which in turn inhibits the development of pro-
tective immunity to the infection. Therefore, the use of
therapeutics that modulate inflammation without com-
promising the adaptive immune response could be the
most effective therapeutic strategy.  The Journal of Im-
munology, 2020, 205: 12-19.

ollowing reports of patients with severe pneumonia

caused by a 3 coronavirus in China, the World Health

Organization (WHO) named the causative agent se-
vere acute respiratory syndrome (SARS) coronavirus (SARS-
CoV)-2 and named the disease as the 2019 novel coronavirus
disease (COVID-19). There is a high homology between
SARS-CoV-2 and SARS-CoV, as well as the Middle East
respiratory syndrome (MERS) coronavirus (MERS-CoV) (1).
The clinical manifestations of COVID-19 include asymp-
tomatic carriers, presymptomatic carriers, and symptomatic
patients with acute respiratory distress syndrome (ARDS)
or pneumonia (2, 3). Although the incubation period for
COVID-19 varies between 4 and 14 days, one study reported
that over 97% of infected individuals who were presymp-
tomatic developed clinical symptoms within 11-12 days (4).
The prevalence of asymptomatic cases is over 80%, and cases

are defined as individuals with positive viral tests but without
any COVID-19 symptoms (2, 5, 6). Among symptomatic
patients, the severity of illness ranges from mild to moderate
pneumonia symptoms (fever, fatigue, and cough) (81%), se-
vere pneumonia symptoms (dyspnea, tachypnea with respi-
ratory rates =30/min, and hypoxia) and lung infiltrates
(14%), and critical condition associated with respiratory
failure or multiorgan system dysfunction (5%) (7). The most
serious complications of COVID-19 are sepsis-like in-
flammation, coagulopathy, and respiratory or cardiovas-
cular complications. In response to injury or infection, the
innate immune system mounts immediate inflammatory re-
sponses to limit the infection and to help the adaptive immune
system develop long-lasting, host-protective Abs and T cell
responses against the virus within 7-10 days postinfection.
However, when inflammation is not modulated or resolved
after serving its purpose, it turns into hyperinflammation or
becomes chronic and results in the inhibition of adaptive im-
mune responses, tissue damage, or organ failure. Such dysreg-
ulated inflammation results in a “cytokine storm” that is
evident in sepsis as well as in patients with severe respiratory
diseases caused by coronaviruses such as SARS, MERS, and
COVID-19 (8, 9). A cytokine storm is manifested by uncon-
trolled production of inflammatory cytokines such as IL-6,
G-CSF, IP-10, MCP-1, MIP-1a, TNF-a, IL-10, IL-7, and
IL-2, which are significantly higher in intensive care unit (ICU)
patients than non-ICU patients hospitalized with COVID-19
(10). A cytokine storm causes lymphopenia and prevents the
adaptive immune system to produce antiviral Abs. Emerging
evidence suggest that complications of COVID-19 are associ-
ated with a gender or age disparity in inflammatory immune
responses to SARS-CoV-2 infection as well as underlying
health issues. Therefore, understanding and successfully con-
trolling inflammation would be a promising approach for the
management of COVID-19, as discussed below.

The severity of COVID-19 is associated with a gender, age, or health
disparity in the immune response: inflammation

Emerging evidence suggests a higher rate of death in men
compare with women who are infected with SARS-CoV-2 (11).
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As of May 6, 2020, mortality of men exceeded that of women
worldwide (Fig. 1, p < 0.000001). The gender-related sus-
ceptibility to COVID-19 is due to sex differences in innate as
well as adaptive immunity. Similar to COVID-19, in acute
inflammatory sepsis, women survive better than men (12).
Although women and men mount inflammatory immune
responses to pathogens, women resolve acute inflammation
and prevent hyperinflammation better than men (13). Such
ability of women to modulate inflammation without com-
promising adaptive immune responses is in part due to higher
production of specialized proresolving mediators such as lip-
oxins, protectins, resolvins, and maresins (13). The ability of
women in modulating inflammation has been shown by in-
ducing PBMC:s by various ligands for the innate TLR, TLR2,
TLR4, or TLR7/8, which resulted in the release of higher
levels of inflammatory cytokines in men compared with
women (14). The X chromosome perhaps plays a key role in
the induction and resolution of inflammation because many
proteins that are involved in immune responses are encoded
on the X chromosome (15). For instance, TLRs, CD40L, and
the main proteins associated with NF-kB signaling pathway
are linked to the X chromosome (16). Although one of the
two X chromosomes in females is randomly inactivated by
methylation, ~15% of X-linked genes escape this process of
methylation, thereby increasing the X-linked proteins in
women compared with men (17, 18). In fact, females are
composed of a mosaic of cells from paternal and maternal X
chromosomes, providing them with greater diversity of im-
mune responses (16, 19) and enabling them to show lower
levels of some inflammatory cytokines and better T cell and
Ab responses compared with men (20). Given that inflam-
matory markers are significantly different between prepubertal
boys and girls, sex chromosomes appear to be more important
than sex hormones during inflammation (21). This notion has
been supported by data from X-linked diseases. In subjects
with Turner syndrome, who are phenotypically female but
carry one X chromosome, inflammatory responses are similar
to males (22). In subjects with Klinefelter syndrome who are
phenotypically male but carry two X chromosomes like fe-
males, inflammatory responses are similar to females (14).
This is despite a higher level of testosterone in individuals
with Klinefelter syndrome than in women. These data
suggest that X chromosome mosaicism on X-linked genes is
involved in the TLR signaling pathways. Perhaps, the lower
secretion of inflammatory cytokines in women as well as
their ability to resolve inflammation could protect them
from life-threatening inflammatory responses during sepsis,
trauma, or COVID-19.

Molecular polymorphism in the innate and adaptive im-
mune systems reflected in the TLR and HLA systems, re-
spectively, could explain gender disparity associated with
COVID-19 symptoms. Both SARS-CoV and SARS-CoV-2
are pH dependent and require acidification of endosome
(23, 24) as well as lysosome (25) for infecting the cells.
Similar to SARS-CoV, ssRNA of SARS-CoV-2 will likely
bind TLR3/7/8 in the endosome and lysosome, resulting
in the induction of innate inflammatory responses such as
type I IFNs (26), which are involved in viral clearance. A
greater expression of TLR7 in women compared with men
(27) could help them to better cope with COVID-19 by

producing highly tailored but transient antiviral inflammatory
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FIGURE 1. Gender-disaggregated cases of death. Average of COVID-19 fa-
tality in men and women reported by the Global Health 5050 website, http://
globalhealth5050.0rg/covid19/. Graph represents the data from 48 countries as
of May 6, 2020. Statistical analysis was performed using two-tailed Student ¢ test.

cytokines. Upon stimulation of TLR7 and TLRS, women
produce higher amounts of antiviral IFN-a and similar levels
of TNF-a, respectively (28, 29). Such gender disparity in
TLR activity was reported to be associated with a lower HIV-
1 viral load in women compared with men (29). In addition,
polymorphism in TLR7 might be involved in susceptibility to
SARS-CoV-2 infection associated with severity of the symp-
toms. To this end, specific nonsynonymous single nucleotide
polymorphisms in TLR7 have been reported to be associated
with greater susceptibility of males to hepatitis B infection
compared with females (30). In hepatitis C infection, specific
TLR7/8 polymorphisms are associated with greater antiviral
IFN-a and lower levels of proinflammatory cytokines upon
stimulation (31). In addition to the polymorphisms in the
innate immune response, MHC class II polymorphism may
also play a role. Processing of SARS-CoV-2 in the lysosome
could makes viral proteins available to MHC class 1T Ag
presentation. This presentation could be influenced by highly
polymorphic HLA-DP, -DQ, -DR, and -DM in modulating
immune responses, as reported in other inflammatory diseases
(32). However, data from population genetic studies in pa-
tients with SARS are inconclusive, as some reports show the
association of HLA polymorphism with the severity of the
infection (33), whereas some other reports show no correla-
tion (34). This could be due to different experimental design,
as some correlated the severity of the disease whereas others
correlated the disease incidence with HLA polymorphism. It
is yet to be determined whether severe symptoms are associ-
ated with certain HLA polymorphism while randomizing
patients based on gender, age, and underlying diseases.
Mortality of COVID-19 worldwide is also caused by re-
spiratory failure, cardiovascular failure, and multiorgan failure
secondary to ARDS, coagulopathy, shock, and arrythmia,
especially in adults older than 65 and people with underlying
health conditions such as asthma, diabetes mellitus, cardio-
vascular disease, or cancer (35, 36). It was reported that pa-
tients with a history of cancer had higher incidence of severe
symptoms or death compared with those who did not have
cancer (36). This overall increase in mortality is because pa-
tients with these conditions also suffer from chronic inflam-
mation. The impact of age is due to the immune system
becoming dysregulated and increased levels of inflammatory
cytokines as we age (37). To this end, age does not seem to be
an independent risk factor for patients with COVID-19;
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rather, it is correlated with gender disparity in inflammatory
immune responses. As men and women age, the anti-
inflammatory angiotensin-converting enzyme II (ACE2) sig-
nificantly decreases in men, but it increases in women (38).

Viremia or dysregulated immune responses? A hyperactive
inflammatory immune response dismantles adaptive immune responses

Although patients with severe COVID-19 tend to have a high
viral load (39), the viral load in asymptomatic patients is
similar to that of symptomatic patients (6). These data suggest
that viral load may not be the primary cause of fatality in
patients with SARS-CoV-2 infection. In contrast, although no
elevated levels of inflammatory cytokines/chemokines were
reported in asymptomatic patients, inflammatory responses
were consistently detected in symptomatic patients. Circu-
lating levels of cytokines (IL-6, TNF-a) and chemokines
(CXCL10, CCL2) involved in the cytokine storm syndrome
are elevated in COVID-19, which could promote hyper-
inflammation, leading to ARDS and multiorgan failure (Refs.
40, 41, and S. Wan, Q. Yi, S. Fan, ]J. Lv, X. Zhang, L. Guo,
C. Lang, Q. Xiao, K. Xiao, Z. Yi, et al., manuscript posted on
medRxiv). ICU patients with severe disease had higher plasma
levels of IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-1a, MIP-1,
and TNF-o, again suggesting a cytokine storm associated
with severity of the disease (10). These data suggest that
mortality due to organ failure might be because of hyper-
inflammation similar to a cytokine storm seen in sepsis. A
cytokine storm and lymphopenia were also evident in patients
with SARS and MERS (42—44). This cytokine storm perhaps
initiates viral sepsis and inflammatory-induced organ failure.
Similar to sepsis, patients with severe COVID-19 manifest
inflammatory cytokines associated with lymphopenia, in ad-
dition to decreased antiviral IFN-y production by CD4*
T cells (45). This suggests that hyperinflammation prevents
the establishment of antiviral adaptive immune responses
for the clearance of the virus. In fact, patients with severe
symptoms failed to clear the virus, whereas patients with mild
symptoms were able to develop immunity and clear the virus
(39). Inflammatory cytokines such as TNF-a and IL-6 could
induce apoptosis in lymphocytes, causing lymphopenia (46).
High levels of IL-2 could also promotes activation-induce cell
death in lymphocytes (47). In addition, lymphocytes express
the coronavirus receptor ACE2 and may be a direct target of
COVID-19-induced apoptosis (48). Also, patients with se-
vere symptoms have elevated lactic acid levels in the blood,
which might suppress the proliferation of lymphocytes (49).

SARS-CoV-2 can trigger innate inflammartory responses via
several pathways. One pathway involves TLRs. As a ssRNA
viruses, SARS-CoV and SARS-CoV-2 invade the cells using
endosomal pathway and releases genomic RNA into the
endosome (23, 24) to bind TLR7/8 and trigger inflammatory
responses in the lungs. ACE2 also contributes to inflamma-
tion in the lungs. ACE2 is the cellular receptor for spike (S)
protein of SARS-CoV and SARS-CoV-2 (50-52), with 10- to
20-fold higher affinity to SARS-CoV-2 than to SARS-CoV
(53). ACE2 is mainly expressed in type 2 alveolar cells in the
lungs, myocardial cells, kidney proximal tubule cells, bladder
urothelial cells, and testis (54—56). TLR7 and TLRS are also
expressed in the lungs (57, 58). These are the organs that are
involved in severe COVID-19. Physiological activity of ACE2
is vital to control inflammation in the lungs by hydrolyzing

BRIEF REVIEWS: COVID-19 AND INFLAMMATION

the inflammatory angiotensin II to anti-inflammatory angio-
tensin 1-7 (59). In patients with severe clinical symptoms,
ACE2 is depleted by SARS-CoV-2 infection (60). Reduction
of ACE2 can cause dysfunction of the renin—angiotensin
system and enhance inflammation and pulmonary edema
through an increase in angiotensin II levels (61). Angio-
tensin IT induces several inflammatory responses by signaling
through AT1R (62, 63) and upregulation of E-selectin,
P-selectin, IL-8, CCL5, and CCL2 (MCP1) expression in en-
dothelial cells (62, 64). Angiotensin II can also induce TLR4
activation triggering the innate immune response (65). In
addition, depletion of ACE2 decreases the production of
angiotensin 1-7, which has an anti-inflammatory and anti-
fibrotic activity (60). This facilitates massive inflammatory
responses in the lungs.

Potential therapeutics for the management of patients with
severe COVID-19

Some therapeutics are mainly focused on the control of vi-
remia for the management of COVID-19 patients who
manifest severe symptoms. Also, there are some controversial
reports (T. Siekmann and K.T. Kopec, manuscript posted
on emDocs) on the efficacy of corticosteroids for the control
of hyperinflammation in patients with COVID-19. To this
end, emerging evidence suggests that nonsteroidal drugs that
reduce inflammation and modulate the innate immune re-
sponse by inhibiting a cytokine storm without compromis-
ing the adaptive immune response could be more effective
for the management of patients with severe symptoms. This
is because adaptive arms of the immune system including
antiviral Ab production in the presence of help from CD4"
T cells, as well as CD8" T cell responses, are required for
clearance of the virus and establishment of immunological
memory to protect the host from a recall infection. It takes
7-10 d for an adaptive immune response to be established
following viral infection. In the case of SARS, antiviral
memory CD8" T cells as well as neutralizing Ab response to
SARS-CoV showed long-lasting immunity that protected
the host from recall infection (66, 67).

Control of viremia by antiviral therapies may not be the best
therapeutic strategy. Chloroquine (CQ) or its less toxic me-
tabolite hydroxychloroquine (HCQ) is suggested to inhibit
cellular processing of SARS-CoV-2 in vitro (24). CQ is an
antimalarial drug that blocks autophagy by reducing acidity of
endosome and lysosome and preventing the virus—cell fusion;
it also interferes with glycosylation of the ACE2 receptor and
inhibit the binding of SARS-CoV to ACE2 (68), although
such mechanism has not been shown for SARS-CoV-2. Studies
in cell culture suggested that CQ can cripple the virus, but the
doses needed are usually high, which could cause severe
toxicities such as cardiovascular effects (arrythmia and
cardiomyopathy resulting in cardiac failure, sometimes
fatal), hematologic effects (bone marrow suppression),
and hypoglycemia. In patients with chronic diseases, who
often show severe symptoms, both CQ and HCQ cause
severe hypoglycemia (69). In addition, when used in
patients with glucose-6-phosphate dehydrogenase (G6PD)
deficiency at higher than normal therapeutic doses, there is
a high risk for hemolytic anemia (70). Importantly, both CQ
and HCQ are metabolized by hepatic cytochrome P450
enzyme 2D6 (CYP2D6), which is genetically polymorphic
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among individuals (71). CYP2D6 polymorphisms lead to a
wide variation in blood HCQ concentrations, thus rendering
the drug either ineffective or toxic in patients with CYP2D6
polymorphisms (71). Approximately 7% of white Americans
have no functional CYP2DG6, which could increase the toxicity
of the drug (72). Such a genetic variability influences
the response to treatment and increases the risk of toxicity
(73). Chinese experts recommended a twice daily use of
CQ phosphate tablet (500 mg) for 10 d for patients
with symptomatic COVID-19 pneumonia and without
contraindications to CQ (74). However, results on the
efficacy of CQ or HCQ against COVID-19, in vivo, are
murky. By referring to a Chinese Clinical Trial Registry, a
letter to Bioscience Trends (75) claims that results from more
than 100 patients showed CQ phosphate was superior to the
control treatment in inhibiting the progression of pneumonia
and reducing SARS-CoV-2 viral load, but without publishing
data. Other COVID-19 studies in China using CQ or HCQ
have not been shared with WHO (76). A recent clinical trial
approved by the French Ministry of Health reported that use
of 200 mg of HCQ sulfate three times daily alone (14
patients) or with azithromycin (six patients) for 10 d
reduced viral load in nasopharyngeal swabs (77), but the
trial was not randomized. Treated patients who were
asymptomatic accounted for 10% (2/20), but symptomatic
patients were not randomized for those with upper
respiratory tract infection showing rhinids, pharyngitis, or
isolated low-grade fever and myalgia, nor were patients with
lower respiratory tract infections with symptoms of pneumonia
or bronchitis. In addition, clinical outcomes such as deaths were
not reported. A retrospective analysis of data from 368 patients
with COVID-19 hospitalized in the United States Veterans
Health Administration medical centers showed that taking
HCQ alone or in combination with azithromycin did not
reduce the risk of mechanical ventilation and that the risk
of death was higher in the HCQ group compared with
control group (Magagnoli, Narendran, Pereira, Cummings,
Hardin, Sutton, and Ambati, manuscript posted on medRxiv).
Following this report, the U.S. Food and Drug Administration
issued warning about use of HCQ for COVID-19 (https://time.
com/5827085/fda-warning-hydroxychloroquine/). A comprehensive
review of literature show insufficient evidence on the efficacy
of CQ or HCQ against COVID-19 (78). Although CQ or
HCQ have antd-inflammatory effects through the inhibition
of TLR signaling (TLR7/8/9) (79), CQ directly suppresses
proliferation, metabolic activity, and cytokine secretion of
human CD4" T cells by modulating AP-1 signaling (80).
This could in turn inhibit antiviral Ab production and
adaptive immunity against SARS-CoV-2. This is likely
because of the inhibition of protease activity of the
lysosome, a cellular compartment involved in Ag processing
for MHC class II presentation and activation of CD4" T cells
to assist Ab production by B cells. Direct immune suppressive
effects of CQ on B cell activation has also been reported to be
through inhibiting Ca** permeable IPsR and TRPC3 and/or
STIM/Orai channels in B cells (81). Use of CQ and HCQ as
part of the standard treatment for patients with autoimmune
theumatoid arthritis and systemic lupus erythematosus is
because of their inhibitory effects on the adaptive immune
system, which cannot be translated to viral infections in
which an adaptive immune response is needed for clearance
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of the infection. Because CQ and HCQ have prolonged half-
lives, their negative impact on the adaptive immune response
should be considered (82).

Remdesivir is an investigational antiviral compound that is a
nucleoside analog developed by Gilead Sciences to fight Ebola
by inhibiting the RNA polymerase to dismantle viral repli-
cation. Remdesivir did not help patients with Ebola during the
2019 outbreak in the Democratic Republic of Congo (83), and
in a phase II clinical trial, the efficacy of remdesivir was sig-
nificantly worse than that of the two mAbs MAb114 and
REGN-EB3 arms (84). This drug has been considered for
patients with COVID-19. A recent study showed that
remdesivir can inhibit SARS-CoV-2 in a human liver cancer
cell line in vitro (24). Thus far, the use of remdesivir in
COVID-19 patients in the United States and Europe has
produced anecdotal evidence of benefit. A daily i.v. admin-
istration of remdesivir in patients with severe COVID-19 who
were hospitalized in the US, Europe, or Japan showed that of
patients receiving mechanical ventilation while on remdesivir
therapy, 57% were extubated within 18 d follow-up (85). The
study was not randomized, and thus it does not show if pa-
tients who were extubated were responding to remdesivir, not
having other comorbidities, or not being in a high-risk cate-
gory (men or elderly) compared with those who were not
extubated while receiving remdesivir. Another study on pa-
tients with severe COVID-19, of which 63% were men and
58% had diabetes mellitus, showed that 33% of patients were
extubated within 14 d follow-up without remdesivir, and a
greater percentage of patients who died were over 65 y of age
(62 versus 37%) (86). Adjusting the results for age, gender,
and underlying diseases would determine what percentage of
patients who are in a high-risk category were extubated be-
cause of remdesivir in one study compared with 33% who
were extubated without this medication in another study.
Control of inflammation could be a promising approach for the
management of COVID-19. Therapeutic strategies that target
the virus rather than the inflammatory immune response have not
produced consistent results. Although controlling tissue-
damaging hyperinflammation could be a promising approach,
highly tailored use of ant-inflammatory compounds that
modulate inflammation without compromising the adaptive
immune response should be considered. Current results from
the use of different inflammatory compounds and potential
candidates for the management of patients with severe
COVID-19 are evaluated below.

Corticosteroids. Because of the strong correlation between severity
of symptoms in patients with COVID-19 and inflammation,
anti-inflammatory steroids are suggested for the management
of the disease (41). Corticosteroids have been used during the
outbreaks of SARS-CoV (87) and MERS-CoV (88) and are
being used in combination with other medications in patients
with SARS-CoV-2 infection (10). The results in patients with
SARS and MERS suggest that corticosteroids not only failed to
reduce mortality but also delayed viral clearance (88).
Corticosteroid treatment in influenza was even associated with
increased mortality (89). A recent report on the use of
corticosteroid (40 mg methylprednisolone once or twice per
day) in 11 patients with COVID-19 in two hospitals in
China showed no efficacy on virus clearance time or duration
of symptoms (90). In general, clinical evidence are not
supportive of systemic administration of corticosteroids for the
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treatment of patients with severe COVID-19 (91); rather, it is
more likely that systemic administration of corticosteroids
would be harmful because of the suppression of the adaptive
immune system. Corticosteroids such as prednisolone act
through their nuclear receptors repressing the activity of the
transcription factors NF-kB and AP-1, as well as members of
the STAT, C/EBP, and NFAT families, thereby having a broad
immunosuppressive activity on Ag presentation as well as the
suppression of antiviral T cell and Ab responses (92).
According to WHO interim guidance, corticosteroids should
not be given systemically unless in the setting of a clinical trial
(https:/fwww.who.int/publications-detail/clinical-management-
of-severe-acute-respiratory-infection-when-novel-coronavirus-
(ncov)-infection-is-suspected). Per the Infectious Diseases
Society of America guidelines, despite widespread use of
corticosteroids during the SARS outbreak, conclusive evidence
of benefit was lacking, and administering steroids early in the
disease process, before viral replication is controlled, may lead to
a delay in viral clearance (https://www.idsociety.org/practice-
guideline/covid-19-guideline-treatment-and-management/).

Nonsteroidal anti-inflammatory drugs. Nonsteroidal anti-
inflammatory drugs (NSAIDs) such as naproxen and
indomethacin have been shown to manifest antiviral activity
against SARS-CoV and influenza A and B viruses by
inhibiting viral RNA synthesis (93, 94). As SARS-CoV-2 is
a ssRNA virus, naproxen is suggested to be effective in
patients with COVID-19 because of having both anti-
inflammatory and antiviral activity (95). However, their use
could also inhibit the induction of an adaptive immune
response against the virus. NSAIDs reduce inflammation by
inhibiting the cyclooxygenase (COX) enzymes, COX-1 and
COX-2, thereby inhibiting the production of PGs and
thromboxane A2 (TXA2). The caveat is that COX-2 is also
upregulated during activation of human B cells for Ab
production. It was reported that ibuprofen, aspirin, naproxen,
and acetaminophen inhibit Ab production, with ibuprofen
having the greatest inhibitory effect (96). Preclinical studies
show that aspirin and ibuprofen can inhibit both MHC class I
and MHC class II-restricted Ag presentation in dendritic cells
(97). Also, during acute respiratory tract infections, a short-term
use of NSAIDs has been reported to be associated with higher
rates of complications, including pneumonia (98), which is more
likely a complication in patients with severe COVID-19. The
implications of these results are that the use of widely available
NSAID:s after viral infection or vaccination could alter the ability
of the patients to mount antiviral and immune responses.

Highly tailored anti-inflammatory drugs. Coronaviruses that
cause severe acute respiratory syndrome (SARS-CoV and
SARS-CoV-2) bind to ACE2 in alveoli pulmonis, which
then cause lung damage and even lung function failure.
Although ACE2 is a receptor for SARS-CoV-2, upon infecting
the cells, the virus depletes ACE2, thereby disturbing a normal
inflammatory immune response by increasing the inflammatory
angjotensin II and decreasing the ant-inflammatory angjotensin
1-7. Therefore, induction of ACE2 is considered as a possible
therapeutic strategy for the modulation of inflammation in
patients with severe COVID-19 (99). It was suggested that
administration of recombinant ACE2 protein can protect the
host from severe acute lung injury (100). In Europe, Apeiron
Biologics has received approval to test recombinant ACE2 in
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COVID  patients (101). Because there are multiple
mechanisms dysregulating inflammatory immune responses,
use of recombinant ACE2 alone may not be highly effective,
as shown for patients infected with SARS-CoV in 2017 (101).
Statins are shown to be effective inducers of ACE2 allowing
patients with Ebola to recover from the infection (102). Also,
statins are known inhibitors of the MYD88 pathway (103),
which has been shown to be highly activated during infection
with SARS-CoV (103). Importantly, they do not significantly
alter the expression of MYD88 in normal conditions (103).
Angiotensin 1-7 heptapeptide may also be used as a highly
tailored anti-inflammatory drug to counteract the activities of
angiotensin II when ACE2 is depleted by SARS-CoV-2.
Furthermore, drugs such as losartan that block type I an-
giotensin II receptor could block inflammatory pathways
in the lungs without compromising the adaptive immune
system (99). Kuba and colleagues (104) found that mice
treated with losartan after acid aspiration—induced acute
lung injury with the addition of SARS-CoV spike protein
had significantly diminished lung injury and pulmonary
edema compared with mice treated with placebo. Further-
more, recombinant human ACE2 infusions and losartan both
prevented severe lung injury and pulmonary edema in ACE2
depleted mice (104).
Passive immunotherapy by convalescent plasma could be the most
promising strategy. Convalescent plasma therapy has been suc-
cessfully used for the treatment of SARS, MERS, and 2009
HINI influenza pandemic with no toxicity (105-107). Al-
though convalescent plasma therapy did not significantly
improve the survival patients with Ebola, it could be because
of insufficient neutralizing Ab, as Ab titration data were not
available (108). Because of the similarity in the virological and
clinical characteristics between SARS or MERS and COVID-
19, similar efficacy with convalescent plasma therapy is
expected for COVID-19. In fact, convalescent plasma
containing sufficient neutralizing Ab has improved the clinical
outcomes through neutralizing viremia and alleviating
inflammation in severe COVID-19 cases (109—111). Because
of its efficacy, the U.S. Food and Drug Administration has
recommended investigational use of passive immunotherapy by
means of convalescent plasma for the treatment of critically ill
patients with COVID-19 (112). Because over 80% of infected
patients are asymptomatic, they could serve as donors of
convalescent plasma for the management of clinically ill
patients to prevent or treat severe clinical symptoms, allowing
patients develop immunity against the virus.

Conclusions

Emerging data suggest that fatality of COVID-19 is deter-
mined by gender, age, or health disparities associated with the
innate and adaptive immune responses. To this end, sepsis-like
inflammation or a cytokine storm as a result of a hyper-
activation of the innate immune system, along with the in-
hibition of the adaptive immune response, makes COVID-19
deadly for the elderly or individuals with underlying diseases,
with men being more vulnerable than women. TLR7/8
polymorphism and/or HLA class II haplotypes could be as-
sociated with vulnerability to SARS-CoV-2 infection. Ther-
apeutic strategies for the management of severe symptoms are
focused on the control of viremia and/or inflammation. An-
tiviral therapeutics for alleviating symptoms of the disease
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might be effective as a preventive strategy or very early during
infection. However, they could prevent the development of
protective immunity against the virus, putting patients at risk
for recurrence of disease through reinfection. A similar out-
come could be created by the use of anti-inflammatory
compounds that suppress both innate and adaptive immune
responses. Highly tailored anti-inflammatory drugs such as
losartan that block type I angiotensin II receptor, thereby
inhibiting inflammation without compromising an adaptive
immune response, should be considered. Combination of
losartan with passive immunotherapy by means of convalescent
plasma in symptomatic patients could be a promising strategy
for the prevention or treatment of severe clinical symptoms and
will allow patients to develop immunity against the virus.
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