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Abstract
Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to 
efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples 
extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we 
illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The 
results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase 
in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was 
also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. 
While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) 
remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the 
hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory 
impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders 
through neuroinflammation and oxidative stress mechanisms.
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CNS  Central Nervous System
TNFα  Tumor Necrosis Factor-alpha
IL-6  Interleukin-6
SARS-CoV-2  Severe Acute Respiratory Syndrome 

Coronavirus 2
Aβ  Amyloid beta
NFT  Neurofibrillary Tangles
CS  Cytokine Storm
NND  Nearest neighbor distance
CA1  Cornu Ammonis
TrkB  Tropomyosin receptor kinase B
DG  Dentate Gyrus
Ang  Angiotensin

Introduction

More than one year since the emergence of COVID-19, this 
disease has caused millions of deaths and despite efforts 
including vaccine and therapeutic development, the number 
of casualties is still significant [1]. Initially, the main con-
cern of clinicians was to manage the acute complications of 
the disease; however, as long-term consequences of SARS-
CoV-2 infection have emerged, management of these seque-
lae has become a priority. Although COVID-19 is largely 
known for its respiratory symptoms, multiple organ dam-
age, including to the nervous system, kidneys, heart, etc., 
occurs–especially in the severe forms of the disease—and 
can impose permanent sequelae or even lead to death [2].

The prevalence of central nervous system (CNS) mani-
festations in COVID-19 is about 25% [3, 4], with neurologi-
cal symptoms including learning deficits (in both adults and 
children), hippocampal and cortical memory and attention 
impairment (either acute or chronic), and delirium [5–7]. 
Cognitive deficits have been reported in COVID-19 patients 
both acutely and after recovery [2, 8]. According to evidence 
garnered from animal and human studies, SARS-CoV-2 can 
invade the brain, including the brainstem, directly through 
the olfactory nerves even without any prior lung involvement 
[9, 10]. This might be explained by the presence of ACE2 
(angiotensin-converting enzyme 2) receptors in the brain, 
which can bind to viral spike glycoprotein. These receptors 
are widely found in the brain, from cardiorespiratory centers 
in the medulla, to dopamine neurons of striatum [11–13].

So far, some investigations [14, 15] have found direct 
evidence for SARS-CoV-2 neurotropism. To gain access 
to human cells, both SARS-CoV and SARS-CoV-2 bind to 
ACE2 receptor [7]. Many SARS-CoV-mediated pathologies 
may also be the same as SARS-CoV-2 due to similarities in 
target receptors and structure. Numerous papers have largely 
found documentations for neurotropism and neurovirulence 
of SARS-CoV [16]. Some case reports revealed that CSF 
samples from a patient with SARS infection along with 

tonic–clonic seizures indicated positive tests for SARS-CoV, 
implying SARS-CoV infection transmission through CNS 
[17]. Moreover, Jun et al. have isolated SARS-CoV from 
a brain tissue sample from a SARS patient, indicating neu-
ronal glial cell hyperplasia and necrosis [18]. According to 
Berardis study, the spike protein of SARS-CoV-2 can mod-
erate virus entry into cells via ACE-2 receptors and is trig-
gered by a serine two protease transmembrane (TMPRSS2). 
Both TMPRSS2 and ACE-2 are abundant in the brain, 
particularly in critical areas for psychiatric disorders such 
as the hippocampus and prefrontal cortex. Furthermore, 
microglia is considered a target for the SARS-CoV-2 via 
the same mechanisms causing its activation, which harms 
the brain via a local cytokine storm syndrome similar to mild 
autoimmune and viral encephalitis. Also, CD8-positive T 
cells have been found to have roles in the CNS infiltrations 
[19]. These findings of neurovirulence and neuroinvasion in 
SARS-CoV could provide strong circumstantial evidence of 
SARSCoV-2's neurotropic properties [18].

Infectious disease-associated encephalopathy is an 
umbrella term used to describe neurological manifestations 
in infections—in this instance, SARS-CoV-2—which are 
assumed to have different pathophysiological mechanisms 
than encephalopathy of a non-infectious origin [20]. Several 
hypotheses have now been proposed to explain the mecha-
nism of acute and long-term SARS-CoV-2-associated cogni-
tive impairment; including extensive systemic inflammation 
(e.g. microglia activation [21, 22] and cytokine signaling 
[23, 24]), viral neurotropism, and psychological burden of 
the pandemic. Unfortunately, it has been shown that CNS 
dysfunction can lead to poorer prognosis in COVID-19 
patients [25].

Emerging research points out to the potential role of 
COVID-19 in exacerbation of the clinical spectrum of 
neurological diseases. Additionally, it has been recently 
hypothesized that the novel coronavirus plays a role in the 
future development of neurological diseases. Therefore, the 
relationship between SARS-CoV-2 infection and neurologi-
cal diseases and their manifestations has recently become 
a matter of great interest. It have already been established 
that coronaviruses can be detectable in the CNS of patients 
with neurodegenerative diseases such as Alzheimer disease 
(AD), Parkinson disease (PD), and multiple sclerosis (MS) 
[12, 26]. AD, as one of the most common neurodegenerative 
disorders, is known to affect the memory and learning and 
alter the behavior and cognitive performance of the patients. 
According to the pathophysiology of the disease, deposition 
of amyloid beta (Aβ) or neurofibrillary tangles (NFT) in cer-
tain brain regions (especially the hippocampus), which are 
responsible for the process of learning and memory, leads to 
these behavioral and cognitive impairments [4, 27].

As mentioned earlier, the most eminent pathophysiology 
of SARS-CoV-2 is rooted in the inflammatory response of 
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the immune system and “cytokine storm (CS)” is its hall-
mark. CS is described as a state in which the elevation 
of pro-inflammatory cytokines and chemokines includ-
ing interleukins (specifically IL-6 and IL-1β), chemokine 
(C–C-motif) ligand 2 (CCL2), tumor necrosis factor-alpha 
(TNF-α), and granulocyte colony stimulating factor (G-CSF) 
occurs [23, 28–31]. Previous studies have revealed that 
inflammation and peripheral immune response can lead to 
(or in some cases exacerbate) both acute and chronic neuro-
inflammation [32–39]. For instance, mast cells are immune 
cells implicated in the process of inflammation (specifically 
neuro-inflammation) and psychological stress [25, 40].

Multiple and interacting causes have been proposed to 
explain the mechanism of SARS-CoV-2 infection-associated 
sub-clinical cognitive impairment and neurological symp-
toms, including both indirect causes due to non-CNS sys-
temic impairment or psychological trauma, and direct causes 
due to damage caused by the virus to the cortical and adja-
cent subcortical structures (e.g. brainstem) [41]. As stated 
earlier, the involvement of the nervous system structures, 
particularly the brainstem, by SARS-CoV-2 is possible [10]. 
This has previously been observed in other coronaviruses 
which demonstrated ability to invade the peripheral-nerve 
terminals and retrograde progression toward the CNS, via 
synapse-connected routes [42–45]. This capacity is also well 
established in other viruses, such as Herpes Simplex and 
Herpes Zoster, which lay dormant and later start to migrate 
via peripheral neurons to the CNS (or sensory ganglia) and 
cause extensive damage [46–48]. Interestingly, another 
single-stranded RNA beta coronavirus, named hemaggluti-
nating encephalomyelitis virus (HEV), has also been found 
to be able to disseminate in the primary motor cortex of 
infected rats [44, 49].

Altogether, the present study aims to elucidate the link 
between SARS-CoV-2 infection and hippocampal-related 
neurodegenerative disorders in order to further illuminate 
potential long-term sequelae of COVID-19 for the scientific 
and medical communities.

Materials and methods

Ethics and informed consent

The study was approved by the ethics committee of Shahid 
Beheshti University of Medical Sciences, Tehran, Iran (eth-
ics committee No. IR.SBMU.RETECH.REC.1400.476).

Sample and data collection

This study was conducted on four patients with COVID-
19 and four age- and sex-matched healthy control groups. 
Control data were obtained from people in the age range of 

30 − 45 years, with the following exclusion criteria applied: 
history of neurological complications or addiction, cause 
of death including cardiac arrest, head trauma, and internal 
bleeding. In the COVID-19 group, the subjects were selected 
from patients admitted to the intensive care unit of a major 
university-affiliated hospital between March 26, 2020 (the 
outbreak of the epidemic in Iran) and April 17, 2020. Four 
patients with clinical features including anosmia and respira-
tory symptoms compatible with COVID-19 were intubated 
due to respiratory distress. The diagnosis of COVID-19 was 
confirmed by RT-PCR. Additionally, a computed tomog-
raphy scan showed pneumonia in the COVID-19 group. 
After death, it took about 4 to 5 h to transfer the dead body 
to the dissection room of the legal medicine. With previ-
ous permission from the patients’ families, the brains were 
removed from the skull, and the hippocampus was dissected 
and immersed into the 10% formalin. The specimen of the 
hippocampal formation was taken at a mid-anterior–poste-
rior level of the hippocampus. Then, the specimens were 
routinely processed under standard biosafety measures for 
further investigation. Tissue specimens were then dehy-
drated in graded ethanol, embedded in paraffin and serially 
cut in 5-µm coronal sections (Fig. 1).

Immunohistochemistry

Hippocampal tissues were first dehydrated in a series of 
graded ethanol baths, and then infiltrated with paraffin using 
the tissue-embedding machine. Samples were sectioned by a 
microtome and 5 μm of the formalin-fixed paraffin-embed-
ded tissue samples were deparaffinized and rehydrated. To 
block nonspecific background staining, tissues were incu-
bated with the protein block for 5 min at room tempera-
ture and washed in a buffer. Sections were incubated in the 
primary antibodies against Iba-1, Ki67, cleaved caspase-3 
and glial fibrillary acidic protein (GFAP) overnight at 4 °C. 
The following morning, tissues were washed four times in 
the buffer before the application of Streptavidin Peroxidase. 
They were then incubated for 10 min at room temperature, 
and rinsed again four times in the buffer. Afterwards, 20 μl 
of 3, 3′-Diaminobenzidine (DAB) chromogen was added to 

Fig. 1  a A general view of excracted hippocampus of postmorterm 
subjects. b H&E staining of hppocampal areas: subiculum (SUB); 
dentate gyrus (DG) and cornu ammonis (CA)
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1 ml of DAB substrate and mixed by swirling before being 
applied to the tissue sample. For immunofluorescence detec-
tion, secondary antibodies (TRITC or FITC) were used. 
Finally, tissues were incubated for 10 min, and washed in 

the buffer. After the immunohistochemical reaction, tissues 
were counterstained with hematoxylin or DAPI, and exam-
ined under a microscope.
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Investigation of microglia and astrocyte 
morphology and distribution

Microglial cells were stained with iba-1 antibody (spe-
cific microglia marker) and Astrocyte cells were stained 
with GFAP antibody (specific astrocyte marker). Thirty 
individual iba-1+ and  GFAP+ cells were selected and cap-
tured by 40 ×  objective lens for reconstruction [50]. Figure 
was imported to ImageJ (Java. NIH, USA) after setting the 
image scale, the nucleus of each microglia and astrocyte 
were marked as the center. Soll analysis and total process 
length was performed based on previous descriptions [51, 
52]. Total number of branches was calculated by the ‘Ana-
lyze Skeleton’ menu in ImageJ [53]. To measure soma size, 
each image was imported to ImageJ. After setting the image 
scale by ‘Wand’ tools the border of each soma was selected, 
nearest neighbor distance (NND) was determined, and a 
script for Fiji (ImageJ) developed by Mao [54] was used as 
described in previous studies [55]. To calculate soma round-
ness following formula was used:

where A is the area of the soma and M is the length of the 
major axis [55].

Regularity index (RI) was calculated by following 
formula:

where X
NND

 is the average NND of a population and �
NND

 is 
the standard deviation of that population [55, 56]. To calcu-
late arbor area, a polygon was drawn manually by connecting 
the endpoints of the appendages using the imageJ ‘Polygon’ 
tools [55].

Roundness =

4A

�M2
,

RI =
X
NND

�
NND

,

Investigation of the spatial distribution 
of hippocampal neurons

Following tissue processing, the serial coronal sections of 
5 μm in thickness were prepared and stained with hema-
toxylin and eosin (H&E) (0.1%). The spatial distribution of 
neurons in the pyramidal layer of CA1 and granular layer 
of dentate gyrus was investigated by Voronoi tessellation 
method. Each polygon represents the space that a cell occu-
pies [57]. The neurons were mapped by the Image J Voronoi 
Plugin (Java. NIH, USA). Each polygon was drawn around 
the cell body of neurons. To do this, brain section images 
were captured by a 40 × objective lens (Nikon Eclipse 
E-200). Each image imported to Image j, after set scale, by 
Voronoi plugin, and polygons were drawn by clicking on the 
nuclei. Area of the polygon by running analyze → measure 
was calculated [58, 59]. The area variation of the polygons 
was analyzed by calculating the variance. To determine the 
spatial distribution of neurons, percentage coefficient of 
variation (CV) calculated (standard deviation of the poly-
gon areas/mean × 100). CV of 33%–64% is associated with a 
random distribution of the neurons; CVs less than 33% have 
a regular pattern, and those more than 64% are considered 
as a clustered distribution [60].

Investigation of dendrites of hippocampal 
pyramidal neurons by scholl analysis

To stain pyramidal neurons and these processes, hippocam-
pal tissues were immersed in Golgi-Cox solution [61]. After 
processing the tissue, 60 µm-thick serial coronal sections 
were prepared. The microscopic images for analysis were 
captured by a 40 ×  objective lens (Nikon Eclipse E-200). 
Thirty individual Golgi cells were selected for reconstruc-
tion [61]. Nucleus of pyramidal neurons was marked as the 
center Scholl analysis and total dendrite length was done 
according to the previous part.

Data analysis

All statistical analyses were performed using SPSS23 soft-
ware. The graphs were designed by Graph Pad Prism 7. Data 
are expressed as mean ± SEM. Differences between experi-
mental groups were measured using the independent sample 
T-test. P-values < 0.05 were considered as significant.

Fig. 2  Sholl analysis findings in hippocampal microglia. a The immu-
nohistochemical images in both groups to show a number of micro-
glia in the microscopy view. b In contrast to control group, COVID 
-19 reduced the complexity of microglial processes. c COVID -19 
administration significantly decreased the microglia process length 
and their number d. In COVID -19 infection the percentage of the 
primary arbores, P, increased (70%) but secondary, S, and tertiary (T) 
arbores decreased (2%) (e). The area of microglia arbores is signifi-
cantly reduced due to COVID-19 infection (f). Measurement of cell 
body area showed that it increased due to COVID-19 infection (g). 
Examination of the cell body showed that COVID-19 infection sig-
nificantly reduced the cell body roundness (h). Investigation of the 
microglia scattering showed that nearest neighbor distance (NND) 
(i) and regularity index significantly decreased in COVID-19 infec-
tion (j). Asterisk (*) shows the difference between the COVID-19 and 
the control groups (*P < 0.05; **P < 0.01; ***P < 0.001). The values 
were expressed as means ± SEM

◂
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Results

COVID‑19 changed morphological characteristics 
and distribution of microglia cells

Immunohistochemistry was done against Iba-1 as a marker 
of microglia (Fig. 2a). Our results showed that SARS-CoV-2 
infection significantly reduced morphological complex-
ity of microglia processes (Fig. 2b), reducing their length 
(P < 0.001) (Fig. 2c) as well as their number (P < 0.001) 
(Fig. 2d). Analysis of branching structure showed that in 
infected descendants, the percentage of primary arbores 
increased (70%) but secondary and tertiary arbores 
decreased (2%) (Fig. 2e). Our studies have also shown that 
the area of microglia arbores is significantly reduced due to 
COVID-19 (P < 0.001) (Fig. 2f). Measurement of cell body 
area showed an increase in individuals with COVID-19 
(P < 0.001) (Fig. 2g). Examination of the cell body showed 
that infection significantly reduced cell body roundness 
(P < 0.001) (Fig. 2h). Investigation of microglial scattering 
showed that nearest neighbor distance (NDD) (P < 0.01) 
(Fig. 2i) and regularity index significantly decreased in 
COVID-19 patients (P < 0.001) (Fig. 2j).

COVID‑19 changed morphological characteristics 
and distribution of astrocytes cells

Immunohistochemistry was done against GFAP as a marker 
of astrocyte (Fig. 3a). Similar to the changes that occurred in 
astrocyte cells, COVID-19 significantly reduced the complex-
ity (Fig. 3b), length (Fig. 3c) and total number (P < 0.001) 
(Fig. 3d) of astrocyte processes, determined by analysis of 
branching structure. The percentage of primary (87%) and ter-
tiary arbores (8%) increased but secondary arbores decreased 
(5%) (Fig. 3e). Furthermore, the area of astrocyte arbores sig-
nificantly decreased (P < 0.001) (Fig. 3f). The soma size, as 
in astrocytes, significantly increased due to infected patients 
(P < 0.001) (Fig. 3g). Soma roundness (P < 0.001) (Fig. 3h), 

NND (P < 0.01) (Fig. 3i) and regularity index (P < 0.001) 
(Fig.  3j) also increased significantly in individuals with 
COVID-19.

COVID‑19 altered the spatial distribution of neurons 
in the hippocampal granular layer

Voronoi tessellation of the dentate gyrus (granular layer) in the 
control and COVID-19 groups was performed (Fig. 4a). Our 
data showed that 43.18% Voronoi polygons in the granular 
layer in the control group were in the range of 40–60 μm2, 
however, in COVID-19 only 4.16% polygons areas of the 
neurons were within this range, while most of polygon areas 
(27%) were in the range of 80–100 μm2 (Fig. 4b). Additionally, 
the mean area of the polygons in the COVID group was sig-
nificantly increased compared to the control group (P < 0.01) 
(Fig. 4c). Based on the (CV) classification, the mean CV 
of polygon areas in both groups located in a random range 
(33%–64%) while in COVID-19 group significantly increased, 
indicating the distribution of neurons in the granular layer is 
more regular than COVID-19 group (P < 0.01) (Fig. 4d). Also, 
our results show that the number of neurons in the granular 
layer is significantly reduced in COVID-19 patients compared 
to the control group (P < 0.05) (Fig. 4e).

COVID‑19 changed spatial distribution of neurons 
in the hippocampal pyramidal layer

Voronoi tessellation of the CA1 neurons (pyramidal layer) in 
the control and COVID-19 groups was performed (Fig. 5a). 
Examination of the pyramidal layer in the control group 
showed that 21.2% polygons areas of the neurons were in 
the range of 3900–4900 μm2 while in COVID-19 group 
30% polygons areas of the neurons were in the range of 
200–3900 μm2 (Fig. 5b). Mean area of the polygons in the 
Covid group was significantly increased compared to the 
control group (Fig. 5c). Based on the (CV) classification, 
the mean CV of polygon areas in both groups located in a 
random range (33%–64%) while in COVID-19 group sig-
nificantly increased that this indicates distribution neurons 
in pyramidal layer is more regular than COVID-19 group 
(P < 0.001) (Fig. 5d). Also, our results show that the number 
of neurons in the pyramidal layer is significantly reduced in 
COVID-19 infection (P < 0.05) (Fig. 5e).

COVID‑19 increases apoptosis and decreases 
neurogenesis in hippocampus

IHC was applied to measure two agents: the apoptosis factor 
of cleaved caspase-3 and the neurogenesis factor Ki67. Our 
results showed a surge in the cleaved caspase-3 in the CA1 
of the hippocampus and dentate gyrus group of COVID-
19 group in comparison to the control group (P < 0.001) 

Fig. 3  Sholl analysis findings in hippocampal astrocytes. a The 
immunohistochemical images in both groups to show several number 
of astrocytes in the microscopy field. b In contrast to control group, 
COVID -19 reduced the complexity of astrocyte processes. c COVID 
-19 administration significantly decreased the astrocyte process 
length and their number d. In COVID -19 infection the percentage 
of the primary arbores (P) increased (70%) but secondary (S) and ter-
tiary (T) arbores decreased (2%) (e). The area of astrocytic arbores is 
significantly reduced due to COVID-19 infection (f). Measurement of 
cell body area showed that it increased due to COVID-19 infection 
(g). Examination of the cell body showed that COVID-19 infection 
significantly reduced the cell body roundness (h). Investigation of the 
astrocyte scattering showed that nearest neighbor distance (NND) (i) 
and regularity index significantly decreased in COVID-19 infection 
(j). Asterisk (*) shows the difference between the COVID-19 and the 
control group (*P < 0.05; **P < 0.01; ***P < 0.001). The values were 
expressed as means ± SEM

◂
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(Fig. 6 a, b). On the other hand, a significant drop was 
observed in the Ki67 in the dentate gyrus of COVID-19 
group (P < 0.001) (Fig. 6c).

COVID‑19 changed morphological characteristics 
pyramidal cells

Our results showed that morphological complexity of den-
dritic of pyramidal cells in COVID-19 infection was sig-
nificantly reduced (P < 0.001) (Fig. 7a). Branching analysis 
showed that the percentage of primary arbores decreased 
(33%) while secondary and tertiary arbores increased (50% 

and 17% respectively) (Fig. 7b). Total dendritic length in 
COVID-19 infection significantly decreased (P < 0.001) 
(Fig. 7c). Investigation of dendrites with high magnifica-
tion showed that the number of dendritic spin in COVID-19 
infection significantly decreased (P < 0.001) (Fig. 7d).

Discussion

Due to the increase of CNS complications in COVID-19 
patients, we anticipate potential enhancement in incidence 
of longer-term cognitive disorder affecting the ability to 

Fig. 4  Voronoi analysis on dentate gyrus. a A micrograph of neurons 
and schematic of Voronoi tessellation in the dentate gyrus for con-
trol and COVID-19 groups. b The most distribution of Voronoi pol-
ygon area is in the range 80–100 µm2. c Mean ± Standard deviation 
of Voronoi polygon area in both groups, d Coefficient of Variation 

(CV) of distribution of neurons within the dentate gyrus, e number of 
neurons per  mm2 of dentate gyrus. Asterisk (*) shows the difference 
between the COVID and the control group (*P < 0.05; **P < 0.01; 
***P < 0.001). The values were expressed as means ± SEM. The val-
ues were expressed as means ± SEM
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perform daily activities. Recovery after COVID-19 is mainly 
evaluated based on the improvement of respiratory symp-
toms; however, both animal and clinical investigations have 
demonstrated that coronaviruses can have a presence in the 
nervous system [41]. Therefore, at this time, studying poten-
tial long-term sequelae of COVID-19 is a priority.

Two groups of cells form the central nervous system: 
glial cells and neurons [62]. Glial cells, such as oligo-
dendrocytes, microglia, and astrocytes, regulate the neu-
ronal function [62, 63]. Astrocytes and microglia perform 
a variety of activities like innate immune reactions in 

the brain [64]. Results of Sholl analysis revealed a sig-
nificant microglial activation in the brain of COVID-19 
group, which was characterized by decreased number of 
microglial branches, NND, arbors area, regularity index, 
and process length, in addition to increased soma size. It 
was also determined that the number of primary branches 
of astrocytes had increased, while secondary and tertiary 
branches had reduced. Microglia will be activated follow-
ing the pathophysiology of the disease and then the micro-
glia exhibit neurotoxic or neuroprotective activity, which 
indicates the staging of the disease [65].

Fig. 5  Voronoi analysis in pyramidal layer. a A micrograph of 
neurons and schematic of Voronoi tessellation in the hippocam-
pal pyramidal layer for control and COVID-19 groups. b The most 
distribution of Voronoi polygon area is in the range 80–100 µm2. c 
Mean ± Standard deviation of Voronoi polygon area in both groups, 
d Coefficient of Variation (CV) of distribution of neurons within 

the hippocampus, e number of neurons per  mm2 of hippocam-
pus. Asterisk (*) shows the difference between the COVID and 
the control group (*P < 0.05; **P < 0.01; ***P < 0.001). The val-
ues were expressed as means ± SEM. The values were expressed as 
means ± SEM
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Fig. 6  Immunofluorescence staining of cleaved caspases-3 in tissue 
sections taken from the hippocampal pyramidal layer (a) and granular 
layer (b) of dentate gyrus, and neurogenesis factor Ki67 (c) in dentate 
gyrus of two groups of cases including control and COVID-19. The 
antibody in detecting cleaved caspases-3, and Ki67 are shown in right 
side (red is cleaved caspase-3 staining, green is KI67, and total nuclei 

stained with DAPI are blue) (a and b), and the left graphs illus-
trate in the mean and standard error of cleaved caspase-3 and Ki67 
marker expression in dentate gyrus. Asterisk (*) shows the difference 
between the COVID and the control group (*P < 0.05; **P < 0.01; 
***P < 0.001). The values were expressed as means ± SEM. The val-
ues were expressed as means ± SEM
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The M1 phenotype activation can be stimulated by 
IFN-γ and lipopolysaccharide (LPS) [66], and functions 
as a defense system against tumor growth and pathogens; 
so, pro-inflammatory cytokines, free radicals, reactive oxy-
gen species (ROS), and interleukins IL-12, IL-1β, STAT3, 
TNF-α, IL-23, IL-6, are generated along with the loss of 
neurons. M2 alternative/phenotype activation releases 

anti-inflammatory cytokines IL-13, IL-10, TGF-β, IL-4, 
causing tissue remodeling and angiogenesis, and pro-inflam-
matory cytokine generation is prevented [67, 68].

Similar to glial activation, according to the results of 
Sholl analysis, the astrocytic activation occurred in the brain 
of COVID-19 group, which was characterized by decreased 
number of astrocytic branches, NND, arbor area, regularity 

Fig. 7  Hippocampal Golgi images and the changes in morphologi-
cal complexity of dendritic of pyramidal cells in COVID-19 subjects 
compared with control ones (a). COVID-19 changed the percent-
age of primary, secondary and tertiary arbors (b). Also, there is a 
significant decrease in number of spine (c) and pyramidal dendritic 

length (d) as a result of COVID-19. Asterisk (*) shows the difference 
between the COVID and the control group (*P < 0.05; **P < 0.01; 
***P < 0.001). The values were expressed as means ± SEM. The val-
ues were expressed as means ± SEM
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index, and process length, in addition to increased soma size. 
It was also observed that the number of primary and tertiary 
branches of astrocytes had increased. Astrocytes can gener-
ate immunoregulatory or pro-inflammatory mediators based 
on the polarization phenotype as well as microglia [68].

Astrocytes deform in conditions like CNS disorders or 
injury and are altered to reactive astrogliosis. This status is 
defined by elevated astrocytic structural protein expression 
of vimentin and protein of glial fibrillary. Morphological 
alterations include the proliferation and hypertrophy of the 
cell body and help the formation of astrocyte scar in the 
injured tissues [69, 70]. Alterations in molecular morphol-
ogy and expression of astrocytes measured by glial fibril-
lary acid protein (GFAP) may show the reactive astrogliosis 
severity, as a sign of CNS pathology [70]. Astrocytes defect 
in the early stage of injury like autoimmune encephalomy-
elitis and spinal cord injury that are associated with neuronal 
loss, exacerbated clinical results, blood brain barrier change, 
and neuroinflammation [71].

Inflammatory mediators produced by pro-inflammatory 
microglia, like TNF-α, IL-1α, C1q, and IL-1β, can activate 
pro-inflammatory astrocytes and stimulate a secondary 
inflammatory reaction [72, 73]. Harmful astrocytic signaling 
routes can be made by some other neurotrophins, cytokines, 
and sphingolipids (LacCer and sphingosine 1-phosphate) 
[71].

During neuroinflammation, astrocytes can upregulate 
tropomyosin receptor kinase B (TrkB) and the receptors 
for IL-17. Linking IL-17 to its receptors can lead to the 
generation of pro-inflammatory cytokines and uptake the 
nuclear factor κB (NFκB) activator 1 (Act1) [74]. TrkB-free 
conditioned mice may be safe against EAE-induced nerve 
damage, whereas TrkB stimulation by brain-derived neu-
rotrophic factor (BDNF) has destructive impacts on nerve 
cells in the brain [64, 75]. However, astrocytes and microglia 
have numerous reactive phenotypes that have an association 
with the stage and type of regional location and neurological 
diseases [76–78]. In addition, alterations in astrocyte and 
microglia phenotypes, absence of neuroprotective activities, 
and increased neurotoxicity are complex processes and may 
vary with the severity and stage of neurodegenerative dis-
orders. Thus, simple bipolar classification may not indicate 
the different phenotypes of astrocytes and microglia [76].

Immunohistochemical analysis against the cleaved cas-
pase-3 marker in the CA1 field of the hippocampus indicated 
the death of pyramidal cells in this field in the COVID-19 
group. Similarly, apoptosis of granular cells in this gyrus 
in the COVID-19 group was observed. It has been shown 
that neuroinflammation (following microglial and astrocytic 
activation) lead to ROS and oxidative stress are produced 
that begins the expression of IL-1β, phosphorylated-nuclear 
factor kappa B (p-NF-kB), and TNF-α, affecting the activity 

of hippocampal neuronal, causing lack of memory and learn-
ing, and neuronal apoptosis [79–81].

Furthermore, it has been revealed that neuroinflammation 
during AD leads to death of microglial cells from cleaved 
caspase-dependent apoptotic cells [69].

As a result, stereological analysis counting the number 
of CA1 neurons in the pyramidal layer of the hippocampus 
showed a significant drop in the COVID-19 group. The same 
drop was also observed in granular neurons of dentate in the 
COVID-19 group compared to the control. These findings 
point out to the detrimental effect of SARS-CoV-2-asso-
ciated glial activation and further neuroinflammation and 
cell death.

Analysis of the Voronoi tessellation to examine the spatial 
distribution of cells in the pyramidal layer of the CA1 hip-
pocampus depicted an alteration in the spatial distribution 
of cells in this hippocampal field. These alterations were as 
follows: due to the death of granular layer neurons, the spe-
cific space for each cell, mean of Voronoi polygon area, and 
spatial distribution of the neurons increased. Similar to CA1 
neurons, analysis of the Voronoi tessellation in the granular 
layer of the dentate gyrus also depicted an alteration in the 
spatial distribution of these cells. These findings are justified 
by higher rates of apoptosis due to COVID-19 infection and 
further stereological disturbances observed in these patients.

Adult neurogenesis is considered a multi-step, compli-
cated process involving new neuron formation in mamma-
lian brain from residential neural stem cells (NSCs) in two 
of the neurogenic niches in CNS: subgranular zone (SGZ) of 
the dentate gyrus (DG) of hippocampal formation and sub-
ventricular zone (SVZ) in lateral ventricles (LVs). Previous 
studies have shown that new neurons produced through this 
activity have an important role in hippocampus-dependent 
memory and learning such as orientation and spatial mem-
ory and also neuronal injury improvement [82]. Immunohis-
tochemical analysis was performed against the Ki67 marker, 
a marker of neurogenesis, in dentate gyrus. The dentate 
gyrus contains a population of neural stem cells that, by 
dividing and differentiating themselves, cause neurogenesis 
and memory.

Moreover, our analysis showed that neurogenesis was 
reduced in the COVID-19 group and that these neural stem 
cells may have undergone cell death. Adult neurogenesis 
might be affected by many extrinsic and intrinsic factors. 
Neurotrophins and growth factors, including BDNF, can 
stimulate neurogenesis, maturation, differentiation increas-
ing, and survival of NSCs proliferation. Neuroinflammation, 
which are caused by microglial activation and the release of 
inflammatory cytokines such as TNF-α, IL-6, and IL-1β, 
has been demonstrated to prevent neurogenesis and decrease 
NSCs proliferation. The behavioral consequence of this pro-
cess is a cognitive defect, caused by detriment to spatial 
memory and learning [83, 84]. Neural stem cell death as a 
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result of viral infections has been also reported in the olfac-
tory epithelium (OE) and olfactory bulb (OB) [85]. Experi-
mental investigations in rodents offer that the NSC mediated 
neurogenesis in OB and olfactory epithelium (OE) is vital 
for smell [86, 87], while the lack of olfactory neurogenesis 
as a result of pathogenic stimulus like oxidative stress and 
neuroinflammation is related to smell loss [88, 89]. It is note-
worthy that neurogenesis regulation in OB changes nega-
tively during viral infections and different neuropathogenic 
disorders such as PD [89–91]. Furthermore, Bassan et al. 
have demonstrated an association between adult neurogen-
esis and spatial memory neuroinflammation, in the STZ-ICV 
SAD model. Animals injected with streptozotocin demon-
strated abnormalities in short-term spatial memory in Y and 
OLT maze and disturbances in long-term spatial memory 
during the contextual fear ventilation test 30 days after toxin 
injection. Some papers have demonstrated enhancement in 
neuroinflammation in the STZ SAD model, which is caused 
by reactive gliosis and also an elevation in the proinflamma-
tory markers related to the cognitive decline [92–95].

Previous investigations have also exhibited a reduction in 
neurogenesis in the STZ model related to amyloid pathol-
ogy [96], or oxidative stress [97], however the effect of neu-
roinflammation on neurogenesis and subsequent cognitive 
decline in the STZ model has not been well defined [83].

Golgi staining in the CA1 field of the hippocampus for 
pyramidal neurons revealed that the length of dendrites 
decreased in the CA1 pyramidal neurons in the COVID-19 
group. On the other hand, the number of dendritic spines has 
decreased in the COVID-19 group. This decreased dendritic 
length and number of dendritic spines indicates a reduction 
in synaptic plasticity and consequently memory impairment 
in the COVID-19 group. In addition, results of Sholl analysis 
showed a reduction in the number of cellular branches of 
pyramidal neurons. This finding is justifiable by downregu-
lation of ACE2 as a result of SARS-CoV-2 infection. In the 
case of the brain ACE2 system, the main impacts in the brain 
could be associated with the Ang (1–7)/Mas system. Most 
of the mediating effects of Ang (1–7) in the brain are prob-
ably based on the Mas receptor activation, because to the 
best of our knowledge, Mas is mainly expressed in the CNS 
in various adult brains [98]. These regions include regions 
related to olfaction or associated with the limbic system 
like the amygdala or the hippocampal formation. Mas has 
been reported to influence neuronal excitability in the brain 
[99], and the elimination of Mas has an effect on behavior 
[100]. In 2005, Ang(1–7) hippocampal long-term potentia-
tion (LTP) was found to be increased by the Mas receptor 
[101], exhibiting that Ang(1–7) / Mas signaling affects neu-
ronal plasticity. In addition, Mas receptor defects influence 
adult neurogenesis in the hippocampus, and a morphological 
association of hippocampal neuronal plasticity processes is 
related to memory and learning [102].

Moreover, it has been demonstrated that Ang (1–7)/Mas 
dependent alterations in neuronal plasticity may lead to 
behavioral changes. For example, it has been exhibited that 
the integrity of Ang (1–7)/Mas axis is needed to express 
the memory of object recognition, since Mas removal or 
occlusion in the CA1 region within the hippocampus, this 
type of memory will be disrupted in mice [103]. Ang (1–7) 
also affect anxiety-related behaviors. One study explained 
central injection of Ang (1–7) causes anxiolytic-like impacts 
in the enhanced plus maze [104]. In another investigation, 
a reduction in anxiety-like manner has been found in trans-
genic rats with chronic overgeneration of Ang (1–7) [105], 
the ACE2 system plays a special role in neuronal plasticity 
and neuronal excitability in limbic system which is associ-
ated with changed mechanisms in behavior, memory, and 
learning [106].

In summary, it can be concluded that memory impairment 
may be a long-term neurological complication of COVID-
19, which can be a predisposing factor for neurodegenera-
tive disorders such as AD or other types of dementia. This 
memory impairment is mainly caused by neuroinflammation 
and further oxidative stress, which are mainly due to micro-
glial and astrocytic activation. Such long-term neurological 
sequelae may also occur as a result of other viral infections 
and through a similar mechanism. For instance, the risk of 
parkinsonism has been reported to be higher in the survivors 
of influenza, which, similar to SARS-CoV-2, was responsi-
ble for a huge pandemic in the last century [107]. In order 
to establish immune barriers, it is necessary to encourage 
people to get vaccinated. When supplies are limited, dis-
tributing doses to the same number of people is a better 
strategy for limiting SARS-CoV-2 transmission. Despite 
vaccination, non-pharmaceutical intervention (NPI) is still 
needed for the prevention of worldwide outbreaks [108]. In 
sum, it seems necessary to prioritize research aimed at the 
study of long-term neurological sequelae, in order to rapidly 
develop preventive strategies.
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