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Abstract—A novel coronavirus disease 2019 (COVID-19) was detected and has spread rapidly across various countries around the

world since the end of the year 2019. Computed Tomography (CT) images have been used as a crucial alternative to the time-consuming

RT-PCR test. However, puremanual segmentation of CT images faces a serious challenge with the increase of suspected cases,

resulting in urgent requirements for accurate and automatic segmentation of COVID-19 infections. Unfortunately, since the imaging

characteristics of the COVID-19 infection are diverse and similar to the backgrounds, existingmedical image segmentationmethods

cannot achieve satisfactory performance. In this article, we try to establish a new deep convolutional neural network tailored for

segmenting the chest CT images with COVID-19 infections.We first maintain a large and new chest CT image dataset consisting of

165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of the

infected lung can be enhanced by adjusting the global intensity, in the proposed deepCNN, we introduce a feature variation block which

adaptively adjusts the global properties of the features for segmenting COVID-19 infection. The proposed FV block can enhance the

capability of feature representation effectively and adaptively for diverse cases. We fuse features at different scales by proposing

Progressive Atrous Spatial Pyramid Pooling to handle the sophisticated infection areas with diverse appearance and shapes. The

proposedmethod achieves state-of-the-art performance. Dice similarity coefficients are 0.987 and 0.726 for lung andCOVID-19

segmentation, respectively. We conducted experiments on the data collected in China andGermany and show that the proposed deep

CNN can produce impressive performance effectively. The proposed network enhances the segmentation ability of the COVID-19

infection, makes the connection with other techniques and contributes to the development of remedying COVID-19 infection.

Index Terms—Coronavirus disease 2019 pneumonia, COVID-19, deep learning, segmentation, multi-scale feature

Ç

1 INTRODUCTION

IN December 2019, coronavirus disease 2019 (COVID-19), a
new febrile respiratory tract illness caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) was
detected. The typical onset symptoms of COVID-19 patients
are fever, cough, myalgia, dyspnea, and muscle aches.
Despite the imposition of strict quarantine rule to limit its
propagation, the COVID-19 infection has spread rapidly,
affecting countries worldwide. At the end of January 2020,
the World Health Organization (WHO) declared that
COVID-19 becomes a Public Health Emergency of Interna-
tional Concern [1]. As of 11 July 2020, the WHO reported
,14,246,629 worldwide cases with 592,690 deaths [2]. While
infection rates are decreasing in China, numbers of new
infections are still exponentially growing in many other
countries.

Reverse transcription polymerase chain reaction (RT-
PCR) is one of the standard diagnostic methods to detect
nucleotides from specimens obtained by oropharyngeal
swab, nasopharyngeal swab, bronchoalveolar lavage, or
tracheal aspirate [3]. However, recent reports have indi-
cated that the sensitivity of RT-PCR might not be high
enough for detecting COVID-19 [4], [5], which can possi-
bly be attributed to quality, stability and insufficient
viral material in specimens. On the other hand, since
chest Computed tomography (CT) images captured from
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COVID-19 patients frequently show bilateral patchy shad-
ows or ground glass opacity in the lung [6], CT has
become a vital complementary tool for detecting the lung
associated with COVID-19. Comparing to RT-PCR test,
chest CT is relatively easy to operate and has a high
sensitivity for screening COVID-19 infection [4]. There-
fore, CT could serve as a practical approach for early
screening and diagnosis of COVID-19 in China. However,
as the increment of confirmed and suspected cases of
COVID-19, manually contouring lung lesions is a tedious
and labor-intensive task. To speed up diagnosis and
improve access to treatment, developing a fast automatic
segmentation for COVID-19 infection is critical for the
disease assessment.

Recently, with the rapid development of artificial intelli-
gence [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], deep learning technology has been widely used in
medical image processing due to its powerful feature repre-
sentation. Several techniques based on deep learning have
been published to detect COVID-19 pneumonia from CT
images [19], [20], [21], [22]. Wang et al. [20] developed a
deep learning method that could extract COVID-19’s graph-
ical features to provide a clinical diagnosis ahead of the
pathogenic test. Ayrton [21] adopted the transfer learning
technique with ResNet50 backbone to detect COVID-19.
Wang et al. [19] introduced a deep convolutional neural
network design tailored, called COVID-Net, to detect
COVID-19 cases from chest radiography images. Gozes
et al. [23] presented a system that utilizes 2D and 3D deep
learning models, modified and adapted existing deep net-
work models, and combined them with clinical understand-
ing. Tang et al. [24] trained a random forest (RF) model to
assess the severity (non-severe or severe) based on quantita-
tive features. Shi et al. [25] proposed an infection Size Aware
Random Forest method (iSARF) for classification. Shan et al.
[26] developed a deep learning-based system for segmenta-
tion and quantification of infection regions from CT scans.
In summary, some deep learning-based methods have been
proposed to detect COVID-19 and viral pneumonia in chest
CT images. To our knowledge, however, only a few

publications have investigated the segmentation task for
COVID-19 chest CT images.

In this paper, we try to establish a new tailored deep con-
volutional neural network (CNN) for segmenting the chest
CT images with COVID-19 infections. Fig. 1 shows the chest
CT images with COVID-19 infection, which contain
ground-glass opacities (GGOs), areas of consolidation, and
a mix of both in all lung lobes. Most lesions were located
peripherally, with a slight preponderance of dorsal lung
areas. Due to the special structure and visual characteristics,
the boundaries of COVID-19 infection regions are difficult
to distinguish from the chest wall, making accurate segmen-
tation for COVID-19 infection regions difficult. We observe
that the boundaries of COVID-19 infection regions will be
revealed by adjusting different parameters of window
breadth and window locations in annotation processing, as
shown in Fig. 1, which can be beneficial for the COVID-19
infection image segmentation.

We propose a three-dimensional (3D) convolution-based
deep learning method for automatic segmentation of
COVID-19 infection regions as well as the entire lung from
chest CT images, referred to as COVID-SegNet. The pro-
posed method can be hugely beneficial for the early screen-
ing of patients with COVID-19. Inspired by the observation
in annotation processing, the boundaries of COVID-19
infection regions are highlighted by adjusting the window
breadth and window locations, we extend Squeeze and
excitation (SE) unit [27], named Feature Variation (FV)
block, for handling the confusing boundaries. The main
idea of the FV block is to implicitly enhance the contrast
and adjust the intensity in the feature level automatically
and adaptively for different images. Based on the captured
features of previous layers, the FV block employs channel
attention to obtain the global parameter to generate new fea-
tures. In addition to the channel attention, the FV block uses
spatial attention to guide the feature extraction from inputs
in the encoder. Aggregating these features can effectively
enhance the capability of feature representation for the seg-
mentation of COVID-19. Furthermore, we propose a Pro-
gressive Atrous Spatial Pyramid Pooling (PASPP) to handle
the challenging shape variations of COVID-19 infection
areas. PASPP consists of a base convolution module fol-
lowed by a cascade of atrous convolutional layers, which
uses multistage parallel fusion branches to obtain the final
features. Each atrous convolutional layer in PASPP only
uses atrous filters with a reasonable dilation rate to cover
different receptive fields. And by the progressively aggre-
gated information from atrous convolutional layers, the
information from multiple scales is effectively fused, which
further promotes the performance of COVID-19 pneumonia
segmentation.

The main contributions of the paper can be summa-
rized as:

� We propose a novel deep neural network (COVID-
SegNet) for the segmentation of COVID-19 infection
regions as well as the entire lung from chest CT
images.

� To address the key issue in the delineation of
COVID-19 infection regions, a specific block, called
Feature Variation (FV) block, is proposed to solve

Fig. 1. Chest CT images of three patients with laboratory proven COVID-
19 pneumonia. As shown in the top row, patchy ground-glass opacities
(GGOs) and areas of consolidation bilaterally exist in all lung lobes
(highlighted with red bounding box). It is hard to distinguish COVID-19
infection regions from the chest wall. COVID-19 infection regions’
boundaries are highlighted (as indicated by green bounding box) after
carefully adjusting the window breadth and window locations for each
CT image.
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the problem of difficulty distinguishing COVID-19
pneumonia from the lung.

� We introduce Progressive Atrous Spatial Pyramid
Pooling (PASPP), which progressively aggregates
information and obtains more effective contextual
features.

� To train the proposed networks, we maintain a novel
and large dataset that consists of 165,667 chest CT
images from 861 patients with confirmed COVID-19,
which are annotated by experts. Ten cases captured
from Germany are also used to test the robustness of
the model.

2 MATERIALS

2.1 Dataset Introduction

This study was approved by the medical ethics committees of
the participating hospitals. Further consent was waived with
approval. In total, chest CT images of 861 patients with con-
firmed COVID-19 by RT-PCR are included in this study.
These CT imageswere acquired at 5 Chinese hospitals (Beijing
Tsinghua Changgung Hospital, Wuhan No.7 Hospital,
Zhongnan Hospital of Wuhan University, Tianyou Hospital
Affiliated to Wuhan University of Science & Technology,
Wuhan’s Leishenshan Hospital) between January 2 and
February 26, 2020. All imaging data were reconstructed by
using a medium sharp reconstruction algorithm with a thick-
ness of 0.625-10 mm (81 percent under 2 mm). To protect pri-
vacy, we deleted the personally identifiable information (PII)
from all CT scans. A total of 731 patient’s CT images were
randomly extracted for training. The remaining CT images of
130 patientswere used as the testing set.

2.2 Dataset Annotation

Although we captured enough data of the COVID-19 chest
CT images, accurate annotated labels are also indispensable.
To enable the model to learn on accurate annotations, we
build a team of six radiological experts with proficient anno-
tating skills to annotate the areas and boundaries of the lung

and COVID-19 infection regions. Also, the quality of the
final annotations is assessed by four senior radiologists with
frontline clinical experience of COVID-19. The failed case
will re-annotate by six radiological experts, and senior radi-
ologists rechecked the results. This process will continue
until all of them passed the back-to-back quality test within
the two groups.

3 METHOD

In this section, we start with the overview of the proposed
approach, then introduce the feature variation block and
progressive atrous spatial pyramid pooling block. We
briefly discuss the training strategy and implementation
details in the end.

3.1 Network Structure of COVID-SegNet

We present a unified high-accuracy network for the seg-
mentation of COVID-19 infection from chest CT images.
This network consists of two parts: Encoder and Decoder.
As shown in Fig. 2, the encoder with 4 layers (i.e. E1, E2, E3,
E4) obtains robust information via feature extractor and
PASPP. Each layer employs residual and FV blocks as the
basic operations for feature extractors, except the E4 layer.
The residual block adds up the input features and the
results after two convolutional layers, which effectively alle-
viates the vanishing gradient. To preserve multiple contex-
tual information and enlarge the receptive field, we use
PASPP with different dilate rates on the final E4 layer. After
obtaining the encoded features, the decoder tries to restore
the features to its original input size, which can remove the
information loss induced by down-sampling from Encoder.
The decoder has three layers (D3, D2, D1). Each decoder
layer allows the networks to gradually propagate the global
contextual information to a higher resolution layer. After a
sigmoid activation function, we obtain the final segmenta-
tion of COVID-19 infection regions. In addition, the skip
connection is adopted to concatenate the output features of
the encoder and input features of the decoder. In this paper,

Fig. 2. The architecture of the proposed COVID-SegNet. The network includes an encoder for feature extraction and a decoder for estimating the
segmentation results. The FV block is adopted to highlight contrast and position of COVID-19, the PASSP block is built based on progressively fusing
the output of different arous convolutional layers. The visualized final result is a presentation of the 3D segmentation of lung and the regions associ-
ated with COVID-19 infection.
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the main contribution is we improve the encoder by adding
FV block and PASPP block to better capture effective features.
The overview of these two blocks is as follows.

We introduce the architectures of FV block by consider-
ing a material fact, the boundaries of COVID-19 infection
regions are highlighted by adjusting the window breadth
and window locations. As shown in Fig. 3, the proposed FV
block includes three branches, i.e., contrast enhancement
branch, position sensitive branch, and identity branch. Spe-
cifically, the contrast enhancement branch learns a global
parameter via a channel attention unit to highlight useful
boundary information. The position sensitive branch obt-
ains a weight map by spatial attention unit to focus on the
COVID-19 regions. Finally, the FV block preserves more
useful information by fusing these refined features.

The PASPP block takes the featured extracted with FV
block as input and acquires semantic information with dif-
ferent receptive fields showing in Fig. 4. Although ASPP
has been proposed to capture global information for seman-
tic segmentation, we claim that aggregating information
progressively is a more reasonable approach to get effective
features. The PASPP block adopts atrous convolutions with
different dilation rates to obtain features with various
scales. The final output is generated straightforwardly to
assemble residual branches in parallel.

3.2 Feature Variation

As mentioned before, the boundaries of COVID-19 infection
regions are highlighted by adjusting the window breadth
and window locations. In Fig. 3, the designed FV block,
which includes contrast enhancement branch, position sen-
sitive branch and identity branch, tries to enhance the con-
trast of features and highlight the useful regions. Let Fvin
denotes the input feature, the features after 1� 1� 1 repre-
sent Fv1. The output feature Fvout is given as

Fvout ¼ Fvin þ Cov3ðConcaðCðFv1Þ; P ðFv1Þ; Fv1ÞÞ; (1)

where Cov3ð�Þ denotes the 3� 3� 3 convolutional layer,
Concað�Þ is the concatenation operation, Cð�Þ represents the
contrast enhancement branch, P ð�Þ is the position sensitive
branch. The form of residual learning in Eq. (1) implies that
the information from the early blocks can quickly flow to the
later blocks, and the gradient can be quickly back-propagated

to the early blocks from the later blocks [28]. The details of
each sub-module are as follows.

3.2.1 Contrast Enhancement Branch

To enhance the contrast of features, the contrast enhance-
ment branch Conð�Þ in Eq. (1) attempts to learn a global
parameter Fg for input feature Fv1 (See Fig. 3). The corre-
sponding function is given as

Fg ¼ FCðFCðGAP ðFv1ÞÞÞ; (2)

where FCð�Þ denotes the fully convolutional layer, GAP ð�Þ
represents global average pooling. The values of Fg is in the
range [0,1]. We obtain a channel weight map F 0

g via expan-
sion, thus the number of F 0

g is consistent with Fv1. Finally,
the output of contrast enhancement branch Fc can be formu-
lated as below:

FC ¼ F 0
g � Fv1: (3)

where� denotes the element-wise multiplication. Note that,
instead of calculating a sequence of weight for feature Fv1,
we generate one weight for all the features of Fv1. This pro-
cess is exactly corresponding to adjust the window breadth
and window locations. Thus we deem it has the ability to
generate enhanced features.

3.2.2 Position Sensitive Branch

The goal of the position-sensitive branch is to discard harm-
ful information and highlight the helpful features used to
segmentation COVID-19 infection. This branch P ð�Þ in
Eq. (1) is a small network. The architecture of the position-
sensitive branch is displayed in Fig. 3. The attention map A

is calculated using input feature Fv1 after two convolutional
layers. Each layer adopts 3� 3� 3 convolution. The two
convolutional layers are followed by a ReLU function and a
sigmoid function, respectively. In the end, the output of this
branch FP is obtained by element-wise multiplication
between Fv1 and the attention map

FP ¼ A� Fv1: (4)

The values in A are still in the range ½0; 1�. The attention map
has the same size as the input feature.

Fig. 3. FV block consists of a contrast enhancement branch, position-sensitive branch, and identity branch. The features from these branches are
concatenated to decrease the number of the channel via a 3� 3� 3 convolutional layer. The output features are obtained after residual learning with
input.
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3.3 Progressive Atrous Spatial Pyramid Pooling

In this subsection, we start with a preliminary knowledge of
atrous spatial pyramid pooling, then introduce the pro-
posed PASPP block.

3.3.1 Atrous Spatial Pyramid Pooling

Global information captured by a large receptive field is
essential for medical semantic segmentation. To increase
the receptive field size and decrease the number of convolu-
tional layers, arous convolution was first proposed in [29] to
obtain enough global information while keeping the size of
the feature map unchanged. In one dimensional case, let y½i�
represents output and x½i� denotes input, atrous convolution
can be formulated as follows:

y½i� ¼
X

K

k¼1

x½iþ d � k� � w½k�; (5)

where K denotes the filter size, d represents the dilation
rate, and w½k� is the kth parameter of filter. A larger dilation
rate will capture a larger receptive field. To produce differ-
ent receptive fields, atrous spatial pyramid pooling takes
atrous convolutions with different dilation rates to generate
various scales. These features are concatenated together.
Thus the outputs are indeed a sampling of the input with
different scales information.

3.3.2 The PASPP Block

In the COVID-19 segmentation task, the infection regions
often have very different sizes (See Fig. 1). To alleviate this
dilemma, the features must be able to include different
receptive fields. For this goal, we employ ASPP in our net-
work and progressively fuse the features with different
receptive fields. The structure of PASPP is illustrated in
Fig. 4. Given the input feature of PASPP Fpin, we obtain
four features Fp1; Fp2; Fp3; Fp4 by four 1� 1� 1 convolu-
tional layers in parallel. Note that, compared to input fea-
tures, the number of the channel decreases to quarter after
each 1� 1� 1 convolutional layer (See the second column
in Fig. 4). Then each branch feeds the feature into different

atrous convolutional layer, respectively. The corresponding
function is given as

Fdt ¼ Covd3ðFptÞ; t ¼ 1; 2; 3; 4; d ¼ 2t�1; (6)

where Covd3 denotes the 3� 3� 3 atrous convolutional layer
with dilation rate d, Fdt represents the output feature of the
ith branch after Covd3. Sum the inputs of two adjacent atrous
convolution branches, and add the sum to the output of
each residual branch as the input of the subsequent layer. It
is formulated as below:

Fd0t ¼ Fdt þ Fp1 þ Fp2; t ¼ 1; 2

Fd0t ¼ Fdt þ Fp3 þ Fp4; t ¼ 3; 4;

�

(7)

where Fd0t denotes the output features of tth branch. To get
effective features, Fd0t; t ¼ 1; 2; 3; 4 will be progressively
aggregated based on adjacent features in parallel

Fd001 ¼ Cov1ðConcaðFd
0
1; Fd

0
2ÞÞ

Fd002 ¼ Cov1ðConcaðFd
0
3; Fd

0
4ÞÞ

�

: (8)

The Fd001 tends to fuse the information with small receptive
field, Fd002 prones to capture features with larger receptive
field. The channel’s number of Fd001 and Fd002 is half of the
input feature. All the information are assembled by

Fpout ¼ Cov1ðConcaðFd
00
1 ; Fd

00
2ÞÞ; (9)

where Fpout denotes the output features of PASPP block.

4 EXPERIMENTS

4.1 Dataset

The dataset used in this study consists of 165,667 annotated
chest CT images, with 861 patients confirmed COVID-19. A
total of 731 patient’s CT images are randomly extracted
with age for training. The remaining CT images of 130
patients are used as the testing set.

4.2 Evaluation Metrics

The screening performance of the proposed method is con-
ducted by the Dice similarity coefficient, sensitivity, and
precision. The Dice similarity coefficient (Dice) represents a
similarity metric between the ground truth, and the predic-
tion score maps [33]. It is calculated as follows:

DicðA;BÞ ¼
2jA \Bj

jAj þ jBj
; (10)

where A is the segmented infection region, B denotes the
corresponding reference region, jA \Bj represents the num-
ber of pixels common to both images. Sensitivity denotes
the number of correctly identified positives with respect to
the number of positives. Precision is the fraction of positive
instances among the retrieved instances.

4.3 Implementation Details

The Parameters of the Network. For the proposed framework,
the encoding layers are residual blocks, FV blocks, PASSP
blocks, and downsampling, while the decoding layers are
residual blocks and deconvolution layers kernels with a
stride of 1/2. The last layer is a softmax activation function

Fig. 4. The structure of the PASPP block. We assemble two residual
branches in parallel and sum up the outputs from two 1� 1� 1 convolu-
tional layers, then the outputs of two branches are progressively
blended. Note that, compared to input features, the number of the chan-
nel decreases to quarter after each 1� 1� 1 convolutional layer.
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to produce the segmentation results. All layers use 3� 3� 3

kernels, if not specified otherwise. Each convolutional layer
is followed by batch normalization and ReLU. The channel
numbers are doubled each layer from 64 to 512 during
encoding and halved from 512 to 64 during decoding. We
set the combination of dice loss Ld and cross-entropy loss Lc

as the loss function using the ground-truth label map. The
final loss function is Ld þ 0:5 � Lc.

Training Details.We implement our COVID-SegNet using
Pytorch. For network training, we train all models from
scratch with random initial parameters. The entire models
are conducted on a server with six Nvidia TITAN RTX
GPUs with 24 GB memory. We randomly crop the 128�
128� 64 patches as the training samples. For optimization,
we use Adam optimizer by setting b1 ¼ 0:9, b2 ¼ 0:999, � ¼
10�8 and batch size is 2. In experiments, the initial learning
rate is 1e�4, and the learning rate decay of 1e�6. The pro-
posed network will perform both lung and COVID-19 seg-
mentation tasks.

4.4 Comparison With the State-of-the-Art Methods

We compare our COVID-SegNet against the previous
state-of-the-art methods on two datasets (the collected
domestic test set and Germany data). Specifically, we evalu-
ate the proposed method with FCN [30], UNet [31], VNet
[33] and UNet++ [32]. Note that all methods employ 3D con-
volution in the framework. The same training dataset and
setting are used for all methods.

4.4.1 Qualitative Results on the Domestic Datasets

We compare our method with several state-of-the-art meth-
ods on the test set (Figs. 5, 6 and 7), which contains some
challenging samples with different contrast and pathogenic
conditions.

� COVID-19 segmentation task: Figs. 5a, 5b, 5c, 5d, and 5e
illustrate the results of different methods, red line denotes

the COVID-19 segmentation result of ground truth. Since
the contrast (COVID-19 and lung) of this case is not
enough, these methods cannot obtain approving results.
The FCN method cannot obtain the whole edge of
COVID-19. The results of UNet++ and VNet are often sca-
ttered and overlook the overall structures of COVID-19.
The proposed method and UNet achieve better results;
however, UNet products flaw in the center of the lung
(white points in (b)). Since the proposed method employs
FV blocks which adaptively enhance the global contrast
of features, the proposed method can avoid the scattered
artifacts. In addition, the PASPP blocks further improve
the performance of our method. Fig. 5f represents the 3D
surface rendering of COVID-19 infection regions seg-
mented by our method.

Figs. 6a, 6b, 6c, 6d, and 6e display the example of low
contrast CT images, COVID-19 infection regions are simi-
lar with chest wall. Most of the methods can obtain mas-
sive structures of COVID-19. However, the proposed
method generates a more reasonable edge for infection
regions due to the contributions of FV blocks. Fig. 7
shows a different case captured from a non-severe
patient, but the COVID-19 infection regions still hard to
distinguish from the chest wall. Thus, the methods of
FCN, UNet++, VNet generate dissatisfying results. The
proposed method combined global and local information
effectively obtains well-pleasing segmentation results for
COVID-19 infection.

� Lung segmentation task: For the lung segmentation task,
we test the performance of the proposed network on the
test set. As shown in Fig. 8, (a)-(b) display the results
of different methods, (f) is the 3D surface rendering of
our method. From Fig. 8, we can easily observe that all
results can close to the precision like manually annotated.
UNet++ method often miss the boundary of the lung.
VNet method cannot generate a smooth margin for the
lung segmentation.

Fig. 5. Visual comparisons on the testing data for COVID-19 segmentation. (a)-(e) show the results of the state-of-the-art methods and the proposed
method, respectively. (f) is the 3D surface rendering of COVD-19 infections (severe) segmented by our method. The red arrows indicate the flows of
different methods. Ground truth is shown with the red line. Other methods are displayed in different colors.
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4.4.2 Qualitative Results on the Germany Data

To verify the generalization ability of all methods, we
use ten cases of data captured from Brainlab Co. Ltd. in
Germany to test the segmentation of COVID-19 infection
and the lung.

� COVID-19 segmentation task: Fig. 9 shows the compari-
sons on the chest CT images on the Germany data. The
intensity of COVID-19 infection regions is very similar
to that of the lung, which is a very challenging example.
As displayed in Fig. 9, all state-of-the-art methods (i.e.
FCN, UNet, UNet++, VNet) generate perishing and over-
segmentation. Different from others, the proposed methods

can obtain perfect results, which like a manual annota-
tion (See Fig. 9e). The 3D surface rendering of the propo-
sed method is shown in Fig. 9f, from which we can see
that the small COVID-19 infection regions also can be
segmented.

� Lung segmentation task: The segmentation results of all
methods on the Germany data are shown in Fig. 10. Most of
all methods can generate a distinct outline of the lung. How-
ever, our method has a stronger segmentation ability from
the regions marked with the red arrow than other state-of-
the-art methods. These perfect results demonstrate the
effectiveness of the FV and PASPP blocks.

Fig. 6. Typical infection segmentation results of CT scans of COVID-19 patient (severe). The contrast of this case is too low to segment COVID-19
infection. The proposed method can still handle this difficulty sample. The red arrows indicate the flows of different methods. Ground truth is shown
with the red line. Other methods are displayed in different colors.

Fig. 7. Comparisons on the chest CT example of non-severe infection COVID-19 on the test set. The infection regions are not easy to peel from the
chest wall. The red arrows indicate the flows of different methods. Ground truth is shown with the red line. Other methods are displayed in different
colors.
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4.4.3 Quantitative Results

To avoid the bias due to the data splitting way and random
issues, we repeat to train and test model for 5 times. Based
on the ground truths manually contoured by the radiology
experts, we conduct the evaluations and comparisons to
evaluate the accuracy of segmentation quantitatively. The
results are reported in Table 1, which includes lung segmen-
tation and COVID-19 infection segmentation.

For the segmentation of COVID-19, as shown in
Table 1, the results of the proposed method achieves best
in all the metrics. Thanks to the FV and PASPP block,
the COVID-SegNet can effectively segment COVID-19

infection regions and significantly improve the segmenta-
tion performance over the UNet by 3.8 percent in terms
of Dice. All these metrics demonstrate the effectiveness of
our model.

For the lung segmentation task, the average Dice similar-
ity coefficient is 0.987. The average sensitivity and precision
are 0.986 and 0.990, respectively. Although the existing
methods have achieved enough promotion and the perfor-
mance is hard to improve, the proposed COVID-SegNet still
surpasses state-of-the-art methods on the term of precision.
We consider these results are attributed to the contributions
of the proposed FV and PASPP blocks.

Fig. 8. Visual comparisons on the testing data for lung segmentation. (a)-(e) show the results of the state-of-the-art methods and the proposed
method, respectively. (f) is the 3D surface rendering of lung segmented by our method.

Fig. 9. Comparisons on the chest CT example of non-severe infection COVID-19 on the Germany data. The red arrows indicate the flows of different
methods. Ground truth is shown with the red line, and the results of other methods are displayed with different colors.
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4.5 Ablation Studies

As shown in Table 2, the baseline model is a UNet struc-
ture with 4 layers in the encoder. We conduct the contrast
enhancement branch (CEB), position-sensitive branch (PSB),
and FV block, respectively. In addition, we also replace CEB
with the original channel attention block (CAB, removed
the global parameter in CEB) to verify the function of global
contrast enhancement. For verifying the PASPP block,
we use ASPP and ResASPP, which removes the concatena-
tion in PASPP to prove the advantage of possessively fusing
features.

4.5.1 Study on the FV Block

The quality of the FV block, which is the combination of the
contrast, global and position information, is critical for
enhancing the ability of accurate COVID-19 segmentation.
In this section, we first evaluate the performance of the con-
trast enhancement branch (CEB) from both lung and
COVID-19 segmentation. Then, we study the function of the
position sensitive branch (PSB). All the comparisons are

both performed on two tasks (lung and COVID-19 segmen-
tation). All the results in Table 2 demonstrate the effective-
ness of the FV blocks.

Context information is of great significance for segment-
ing the confusing boundary and position of COVID-19
infection regions. To verify the performance of CEB, we
employ the original channel attention block (CAB) to
replace the CEB and PSB in the FV block. From Table 2, we
can see that the ASPP improves the segmentation perfor-
mance over the UNet4. The reason is that the features have
redundant information. However, the performance is fur-
ther improved when we replace the CAB with CEB. Since
the CAB merely learns the weights for each channel, the
CEB uses global information to guide feature enhancement,
which proves the ability of the CEB.

For PSB, it is actually a spatial attention module which
has proved the effectiveness in many tasks. This branch
focuses on the positions of features that are helpful to
detect and segment COVID-19 infection regions. As we
expected, the network with PSB generates satisfying
numerical results. Combining these two branches in par-
allel, we obtain the FV block, which consists of global
(ECB) and local (PSB) information to improve the seg-
mentation task.

4.5.2 Study on the PASPP Block

PASPP consists of multiple atrous convolutional layers with
different dilation rates and progressive concatenations. In
this part, we conduct experiments to study how different
settings of PASPP influence the performance quantitatively.
We compare the PASPP block with Efficient Spatial Pyra-
mid (ESP) [34], original ASPP and modified ResASPP
(removed progressive concatenations). The results are
reported in Table 2, from which we obtain several conclu-
sions. First, progressively fusing strategy is very effective
for COVID-19 segmentation. We deem the reason is differ-
ent scale features should not be fused at once for the

Fig. 10. The lung segmentation results of different methods on the Germany data. The red arrows indicate the flows of different methods. Ground
truth is shown with the red line, other methods are displayed with different colors.

TABLE 1
Quantitative Comparison Between Our Method and Others on

the Proposed Test Dataset

Tasks Metrics FCN UNet VNet UNet++ Ours

COVID-19 Dice 0.659 0.688 0.625 0.681 0.726
Sensitive 0.719 0.736 0.744 0.735 0.751
Precision 0.597 0.662 0.603 0.719 0.726

Lung Dice 0.865 0.987 0.983 0.986 0.987
Sensitive 0.986 0.987 0.974 0.988 0.986
Precision 0.983 0.984 0.989 0.985 0.990

Resources Time(s) 8.63 9.27 9.40 10.26 9.33
Parameters(M) 18.7 22.9 24.5 33.8 27.3

All values are the average across all test data.
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sophisticated COVID-19 segmentation. With the progres-
sively fusing, the adjacent information can better supple-
ment the missing details. Second, compared with ESP,
ASPP, and ResASPP, since the ResASPP includes residual
learning, it obtains reasonably high performances. This
implies that the information from the early blocks can
quickly flow to the output of atrous convolutional layers,
and the gradient can be quickly back-propagated to the
early blocks from the atrous convolutional layers. Third, the
ASPP significantly improves the segmentation performance
over the UNet4.

In general, to extract compacted features and obtain
semantic information from COVID-19 CT images, we insert
FV blocks into the encoder and employ PASPP for enlarging
the receptive fields. As reported in Table 2, the proposed
network not only achieves the best performance on lung
segmentation but also on COVID-19 segmentation.

5 CONCLUSION

In this paper, we designed and evaluated a three-dimen-
sional deep learning model, called COVID-SegNet, for seg-
menting lung and COVID-19 from chest CT images.
Inspired by contrast enhancement methods and ASPP, the
proposed network includes feature variation and progres-
sive ASPP blocks, which are beneficial to highlight the
boundary and position of COVID-19 infections. These
results demonstrate that the convolutional network-based
deep learning technology has the ability to segment
COVID-19 from CT images. We were able to collect a large
number of CT images from 5 hospitals, which included 861
patients with confirmed COVID-19. More importantly, we
manually annotated these data by senior annotators. These
contributions prove the prospect of improving diagnosis
and treatment for COVID-19. In the future, we will extend
the number of CT images from patients through multi-cen-
ter collaborations.
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