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ABSTRACT The COVID-19 pandemic has triggered an urgent call to contribute to the fight against an

immense threat to the human population. Computer Vision, as a subfield of artificial intelligence, has

enjoyed recent success in solving various complex problems in health care and has the potential to contribute

to the fight of controlling COVID-19. In response to this call, computer vision researchers are putting

their knowledge base at test to devise effective ways to counter COVID-19 challenge and serve the global

community. New contributions are being shared with every passing day. It motivated us to review the recent

work, collect information about available research resources, and an indication of future research directions.

We want to make it possible for computer vision researchers to find existing and future research directions.

This survey article presents a preliminary review of the literature on research community efforts against

COVID-19 pandemic.

INDEX TERMS Artificial intelligence, COVID-19, computer vision, review, survey.

I. INTRODUCTION

COVID-19, known as an infectious disease is caused by

severe acute respiratory syndrome (SARS-CoV-2) [1] and

named coronavirus due to its visual appearance (under an

electron microscope) to solar corona (similar to a crown) [2].

The fight against COVID-19 has motivated researchers

worldwide to explore, understand, and devise new diagnostic

and treatment techniques to culminate this threat to our gen-

eration. In this article, we discuss how the computer vision

community is fighting with this menace by proposing new

types of approaches, improving efficiency, and speed of the

existing efforts.

The scientific response to combat COVID-19 has been

far quicker and widespread. A keyword search on PubMed

and the major open-access preprint repositories (arXiv,

bioRxiv and medRxiv) revealed that in 2019, 735 pub-

lished papers included the word ‘‘coronavirus’’. FIGURE 1

illustrates our findings. During the first half of 2020, this

number has increased a thirty-fold and rose to astounding
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21,806 articles. For comparison, the SARS pandemic, with

less than 10,000 confirmed infections and <1,000 deaths,

led roughly to a four-fold increase over two years (2002:

221 and 2004: 822). After the occurrence of MERS in 2012

(less than 3,000 confirmed infections and 1,000 deaths to

date) a doubling in coronavirus related papers over four years

(2011 to 2015) was observed.

The Economist has dubbed the current Herculean task

science of the times with the hope that such efforts would

help speed up the development of a COVID-19 vaccine [3].

Numerous approaches in computer vision have been pro-

posed so far, dealing with different aspects of combat the

COVID-19 pandemic. These approaches vary in terms of

their approach to the fundamental questions:

• How can medical imaging facilitate faster and reliable

diagnosis of COVID-19?

• Which image features correctly classify conditions as

Bacterial, Viral, COVID-19, and Pneumonia?

• What can we learn from imaging data acquired from

disease survivors to screen critical and non-critical ill

patients?
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FIGURE 1. A portrayal of current increase in research articles about coronavirus related research. Since their discovery in the early 1960s,
coronavirus research has increased substantially; especially after the SARS outbreak in 2002 made clear their pandemic potential. Previously,
the most productive full year was 2004 with 822 coronavirus papers. The SARS-CoV-2 pandemic has caused a leap, with 21,806 articles only in the
first half of 2020 (reference date for the analysis was 30 June 2020). Note that the y-axis is displayed in log-scale for visual clarity and that the
height of the coloured bars shows their relative contribution.

• How can computer vision be used to enforce social

distancing and early screening of infected people?

• How can 3D computer vision help to maintain health-

care equipment supply and guide the development of a

COVID-19 vaccine?

The answers to these questions are being explored, and

preliminary work has been done.

The contribution of this review article is as follows:

This review article classifies COVID-related computer vision

methods into broad categories and provides salient descrip-

tions of representative methods in each group. We aspire

to give readers the ability to understand the baseline efforts

and kickstart their work where others have left. Furthermore,

we aim to highlight new trends and innovative ideas to build a

more robust and well-planned strategy during this war of our

times.

Our survey will also include research articles in pre-print

format due to the time urgency imposed by this disease.

However, one limitation of this review is the inclusion of

the risk of lower quality and work without due validation.

Many of the works have not been put into the clinical trial

as it is time-consuming. Nevertheless, our intention here is

to share ideas from a single platform while highlighting the

computer vision community efforts. We hope that our reader

is aware of these contemporary challenges. This article is an

extended and revised version of the earlier preprint survey [4].

We follow a top-down approach to describe the research

problems that require urgent attention. We start with disease

diagnosis, discuss disease prevention and control, followed

by treatment-related computer vision research work.

We have organised the paper as follow: Section 2 describes

the overall taxonomy of computer vision research areas by

classifying these efforts into three classes. Section 3 pro-

vides a detailed description of each research area, rele-

vant papers, and a brief description of representative work.

Section 4 describes available resources, including research

datasets, their links, deep learning models, and codes.

Section 5 provides the discussion and future work directions

followed by concluding remarks and references.

II. HISTORICAL DEVELOPMENT

The novel coronavirus SARS-CoV-2 is the seventh member

of the Corona viridae family of viruses which are enveloped,

non-segmented, positive-sense RNA viruses [5]. The mortal-

ity rate of COVID-19 is less than that of the severe acute res-

piratory syndrome (SARS) and Middle East respiratory syn-

drome (MERS) coronavirus diseases (10% for SARS-CoV

and 37% for MERS-CoV). However, it is highly infectious,

and the number of cases is on continuous rise [6].

The disease outbreak first reported in Wuhan, the Hubei

province of China, after several cases of pneumonia with

unknown causes were reported on 31 December 2019.

A novel coronavirus was discovered as the causative

organism through in-depth sequencing analysis of sam-

ples of patient’s respiratory tract at Chinese facilities on

7 January 2020 [6]. The outbreak was announced as

a Public Health Emergency of International Concern on

30 January 2020. On 11 February 2020, the World Health

Organization (WHO) announced a name for the new coron-

avirus disease: COVID-19. It was officially being considered

pandemic after the 11 March announcement by WHO [7].

III. TAXONOMY OF KEY AREAS OF RESEARCH

In this section, we describe the classification of com-

puter vision techniques that try to counter the menace of

COVID-19. For better comprehensibility, we have classified

them into three key areas of research: (i) diagnosis and prog-

nosis, (ii) disease prevention and control, and (iii) disease

treatment and management. FIGURE 2 shows this taxonomy.

In the following subsections, we discuss the research fields,
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FIGURE 2. Classification of computer vision approaches for COVID-19 Control. Our survey classifies COVID-19 related computer vision
methods into three broad categories.

the relevant papers, and present a brief representative descrip-

tion of related works.

A. DIAGNOSIS AND PROGNOSIS

An essential step in this fight is the reliable, faster, and afford-

able diagnostic process that can be readily accessible and

available to the global community. According to Cambridge

dictionary [8], diagnosis is: ‘‘the making of a judgment about

the exact character of a disease or other problem, especially

after an examination, or such a judgment’’ and prognosis is

‘‘a doctor’s judgment of the likely or expected development

of a disease or of the chances of getting better’’.

Currently, Reverse transcriptase quantitative polymerase

chain reaction (RT-qPCR) tests are considered as the gold

standard for diagnosing COVID-19 [9]. During such a test,

small amounts of viral RNA are extracted from a nasal

swab, amplified, quantified. Virus detection is then per-

formed using a fluorescent dye. Although accurate, the test

is time-consuming, manual and requires biomolecular test-

ing facilities which limits its availability in large scales and

third-world countries. Care has to be taken in interpreting

negative test results. A meta-study estimated the sensitivity

over the disease process and found a maximal sensitivity

of 80%, eight days after infection [10]. Some studies have

also shown false-positive PCR testing [11].

1) COMPUTED TOMOGRAPHY (CT) SCAN

An alternative approach is the use of a radiology examination

that uses computed tomography (CT) imaging [12]. A chest

CT scan is a non-invasive test conducted to obtain a precise

image of a patient’s chest. It uses an enhanced form of X-Ray

technology, providing more detailed images of the chest than

a standard X-Ray. It produces images that include bones, fats,

muscles, and organs, giving physicians a better view, which

is crucial when making accurate diagnoses.

A Chest CT scan is of two types: namely high-resolution

and spiral chest CT scan [13]. The high-resolution chest CT

scan provides more than a slice (or image) in a single rotation

of the X-Ray tube. The spiral chest CT scan application

involves a table that continuouslymoves through a tunnel-like

hole while the X-Ray tube follows a spiral path. The advan-

tage of the spiral CT is that it is capable of producing a

three-dimensional image of the lungs.

Important CT features include ground-glass opacity, con-

solidation, reticulation/thickened interlobular septa, nod-

ules, and lesion distribution (left, right or bilateral lungs)

[14]–[17]. The most observable CT features discovered in

COVID-19 pneumonia include bilateral and sub pleural areas

of ground-glass opacification, consolidation affecting the

lower lobes. Within the intermediate stage (4-14 days from

symptom onset), crazy-paving pattern and possibly observ-

able Halo sign become important features as well [6], [11],

[12], [12], [14]–[18]. One case of CT images is shown in

FIGURE 3 that illustrates ground glass opacities and ground

halo features. As the identification of disease features is time-

consuming, even for expert radiologists, computer vision can

help by automating such a process.

2) REPRESENTATIVE WORK, EVALUATION AND DISCUSSION

To date, various CT-scanning automated approaches have

been proposed [8], [12]–[16], [18]–[27]. To discuss the

approach and performance of the computer vision CT-based

disease diagnosis, we have selected some recent representa-

tive works that provide an overview of their effectiveness.

It is worth noting that they have been presenting different per-

formance metrics and using a diverse number of images and
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FIGURE 3. CT images adapted from [6], [18] portray CT features related to COVID-19. Ground glass opacities (top) and ground glass halo (bottom).

datasets. These practices make their comparison very chal-

lenging. Some of the metrics include Accuracy, Specificity,

Sensitivity, Positive predictive value (PPV), Negative predic-

tive value (NPV), Area Under Curve (AUC), and F1 score.

A quick elucidation on their definition can be useful. The

accuracy of a method finds how correct the values are pre-

dicted. The precision finds the reproducibility of the mea-

surement; Recall presents how many of the correct results are

discovered while F1-score uses a combination of precision

and recall for a balanced average result.

The first class of work discussed here approaches diag-

nosis as a segmentation problem. Chen et al. [22] has pro-

posed a CT image dataset of 46,096 images of both healthy

and infected patients, labelled by expert radiologists. It was

collected from 106 patients admitted with 51 confirmed

COVID-19 pneumonia and 55 control patients. The work

used deep learning models for segmentation only so that

it could identify the infected area in CT images between

healthy and infected patients. It was based on UNet++

semantic segmentation model [23], used to extract valid areas

in the images. It used 289 randomly selected CT images

and tested it on other 600 randomly selected CT images.

The model achieved a per-patient sensitivity of 100%, speci-

ficity of 93.55%, the accuracy of 95.24%, PPV (positive

prediction value) of 84.62%, and NPV (negative prediction

value) of 100%. In the retrospective dataset, it resulted in a

per-image sensitivity of 94.34%, the specificity of 99.16%,

the accuracy of 98.85%, PPVof 88.37%, andNPVof 99.61%.

The trained model from this study was deployed at the Ren-

min Hospital of Wuhan University (Wuhan, Hubei province,

China) to accelerate the diagnosis of new COVID-19 cases.

It was also open-sourced on the Internet to enable a rapid

review of new cases in other locations. A cloud-based

open-access artificial intelligence platform was constructed

to provide support for detecting COVID-19 pneumonia

worldwide. For this purpose, a website has been made

available to provide free access to the present model at

(http://121.40.75.149/znyx-ncov/index). TABLE 1 presents

a description of the representative techniques for CT based

COVID-19 diagnosis.

The second type of work considered COVID-19 as a binary

classification problem. Li et al. [24] proposed (COVNet),

to extract visual features from volumetric chest CT using

transfer learning on the RESNET50. Lung segmentation was
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TABLE 1. Representative works for CT based COVID-19 diagnosis.
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TABLE 1. (Continued.) Representative works for CT based COVID-19 diagnosis.

performed as a pre-processing task using the U-Net model.

It used 4356 chest CT exams from 3,322 patients from the

dataset collected from 6 hospitals between August 2016 and

February 2020. The sensitivity and specificity for COVID-19

are 90% (114 of 127; p-value<0.001) with 95% confidence

interval (CI) of [95% CI: 83%, 94%] and 96% (294 of

307; p-value<0.001) with [95% CI: 93%, 98%], respectively.

The model was also made available online for public use at

https://github.com/bkong999/COVNet.

The diagnosis problem was also approached as a

3-category classification task: distinguishing healthy patients

from those with other types of pneumonia and those with

COVID-19. Li et al. [24] used data from 88 patients diag-

nosed with the COVID-19, 101 patients infected with bac-

teria pneumonia, and 86 healthy individuals. It proposed

the DRE-Net (Relation Extraction neural network) based

on ResNet50, on which the Feature Pyramid Network

(FPN) [25] and the Attention module was integrated to rep-

resent more fine-grained aspects of the images. An online

server is available for online diagnoses with CT images at

http://biomed.nsccgz.cn/server/Ncov2019.

A recent landmark study was published by Mei et al. [27]

inNatureMedicine. In a cohort of 906 RT-PCR tested patients

(419 COVID-positive), a two-stage CNN was combined with

an MLP on clinical features (age, sex, exposure history,

symptoms) and the diagnostic performance was compared

to senior radiologists. A ‘‘slice selection CNN’’ was used to

select abnormal CT scans which were subsequently classi-

fied by the ‘‘disease diagnosis CNN’’. Interestingly, fusing a

512-dimensional vector of the CT scans with clinical features

yielded a joint model that significantly outperformed the

CNN-only model in ROC-AUC and specificity. On a test set

of 279 patients, the joint model surpassed senior radiologists

in ROC-AUC (0.92 vs. 0.84), while showingworse specificity

(83% vs. 94%) and statistically insignificant better sensitivity

(84% vs. 75%). The model also correctly identified 68% of

positive patients who exhibited normal CT scans according to

the radiologists. It hints toward the potential of deep learning
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FIGURE 4. Chest CXR of an elderly male patient ( Wuhan, China, who travelled to Hong Kong, China). Provided are three chest XR chosen out of the daily
chest CXR for this patient. The consolidation can be observed in the right lower zone on day 0 persist into day four, followed by novel consolidate
changes in the right mid-zone periphery and perihelia region. Such type of mid-zone change improved on the day seven-film. Image adapted from [41].

to pick-up complex, disease-relevant patterns that may stay

indiscernible for radiologists.

Due to limited time available for annotations and labelling,

weakly-supervised deep learning-based approaches have also

been developed using 3D CT volumes to detect COVID-19.

Zheng et al. [26] proposed 3D deep convolutional neural Net-

work (DeCoVNet) to Detect COVID-19 from CT volumes.

The weakly supervised deep learning model could accu-

rately predict the COVID-19 infectious probability in chest

CT volumes without the need for annotating the lesions for

training. The CT images were segmented using a pre-trained

UNet. It used 499 CT volumes for training, collected from

13 December 2019 to 23 January 2020, and 131 CT vol-

umes for testing, collected from 24 January 2020 to 6 Febru-

ary 2020. The authors chose a probability threshold of 0.5 to

classify COVID- positive and COVID- negative cases. The

algorithm obtained an accuracy of 0.901, a positive predic-

tive value of 0.840, and a high negative predictive value

of 0.982. The developed deep learning model is available at

https://github.com/sydney0zq/covid-19-detection.

3) X-RAY IMAGERY

One drawback of using CT imaging is the need for high

patient dose and enhanced cost [43]. The low availability

imposes Additional challenges for CT in remote areas and

the need of patient relocation and exhaustive disinfection

of the scanner rooms (several hours per day) that risk con-

tagion for staff and other patients [44]. These disadvan-

tages call into play chest X-Ray radiography (CXR) as a

preferred first-line imaging modality with lower cost and

a wider availability for detecting chest pathology. Digital

X-Ray imagery computer-aided diagnosis is used for differ-

ent diseases, including osteoporosis [45], cancer [46] and

cardiac disease [39]. However, as it is really hard to distin-

guish soft tissue with a poor contrast in X-Ray imagery, con-

trast enhancement is used as pre-processing step [47], [48].

Lung segmentation of chest X-Rays is a crucial and important

step in order to identify lung nodules and various segmenta-

tion approaches are proposed in the literature [49]–[52].

CXR examinations show consolidation in COVID-19

infected patients. In one study at Hong Kong [41], three

different patients had daily CXR, two of them showed pro-

gression in the lung consolidation over 3-4 days. Further CXR

examinations show improvement over the subsequent two

days. The third patient showed no significant variations over

eight days. However, a similar study showed that the ground

glass opacities in the right lower lobe periphery on the CT are

not visible on the chest radiograph, which was taken 1 hour

apart from the first study. FIGURE 4 illustrates a scenario

with three chest XR chosen out of the daily chest CXR for a

patient. The consolidation can be observed in the CSR image.

In a large-scale study of 636 ambulatory COVID-19 patients,

Weinstock et al. found that 58% of CXRwas normal and 89%

were normal or mildly abnormal [53]. Interstitial changes

(24%) and GGOs (19%) were the most prominent symp-

toms, and abnormalities were most prevalent in the lower

lobe (34%). While the sensitivity of CXR is significantly

lower than for CT, the American College of Radiology (ACR)

recommends to conduct CXR with portable devices and only

if ‘‘medically necessary’’ for better radiological analysis. It

moreover firmly advises to not use any imaging technique

for COVID-19 diagnosis but instead suggests biomolecular

tests [54]. In the realm of AI,

Various CXR-related automated approaches are proposed.

The following section discusses the most salient work, while

TABLE 2 presents a more systematic presentation of such

methods.

4) REPRESENTATIVE WORK, EVALUATION AND DISCUSSION

To date, many deep learning-based computer vision models

for X-Ray COVID-19 were proposed. One of the most sig-

nificant development is the model COVID-Net [58] proposed
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TABLE 2. Representative work for X-Ray based COVID-19 diagnosis.

byDarwin AI, Canada. In this work, human-driven principled

network design prototyping is combinedwithmachine-driven

design exploration to produce a network architecture for

the detection of COVID-19 cases from chest X-Ray. The

first stage of the human-machine collaborative design strat-

egy is based on residual architecture design principles. The

dataset used to train and evaluate COVID-Net is referred

to as COVIDx [58] and comprise a total of 16,756 chest

radiography images across 13,645 patient cases. The pro-

posed model achieved 92.4% accuracy 80% sensitivity for

COVID-19 diagnosis.

The initial network design prototype makes one of three

classes: a) no infection (normal), b) non-COVID19 infec-

tion (viral and bacterial), and c) COVID-19 viral infec-

tion. The goal is to aid clinicians to decide better which

treatment strategy to employ depending on the cause of
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FIGURE 5. Architectural diagram of COVID-Net [42]. We can observe High architectural diversity and selective long-range connectivity.

infection since COVID-19 and non-COVID19 infections

require different treatment plans. In the second stage,

data, along with human-specific design requirements, act

as a guide to a design exploration strategy to learn and

identify the optimal macro- and microarchitecture designs

to construct the final tailor-made deep neural network

architecture. The proposed COVIDNet network diagram

is shown in FIGURE 5 and available publicly at https://

github.com/lindawangg/COVID-Net.

Hemdan et al. [59] proposed the COVIDX-Net based

on seven different architectures of DCNNs; namely

VGG19, DenseNet201 [60], InceptionV3, ResNetV2,

InceptionResNetV2, Xception, and MobileNetV2 [61].

These models were trained on COVID-19 cases pro-

vided by Dr Joseph Cohen and Dr Adrian Rosebrock,

available at https://github.com/ieee8023/covid-chestxray-

dataset [62]. The best model combination resulted in

F1-scores of 0.89 and 0.91 for normal and COVID-19 cases.

Similarly, Abbas et al. [63] proposed a Decompose, Trans-

fer, and Compose (DeTraC) approach for the classifi-

cation of COVID-19 chest X-Ray images. The authors

applied CNN features of pre-trained models on ImageNet

and ResNet to perform the diagnoses. The dataset con-

sisted of 80 samples of normal CXRs (with 4020 x

4892 pixels) from the Japanese Society of Radiologi-

cal Technology (JSRT) Cohen JP. COVID-19 image data

collection, available at https://githubcom/ieee8023/covid-

chestxray-dataset [62]. This model achieved an accuracy

of 95.12% (with a sensitivity of 97.91%, a speci-

ficity of 91.87%, and a precision of 93.36%). The

code is available at https://github.com/asmaa4may/DeTraC

COVId19.

Ghoshal and Tucker et al.. [57] introduced Uncertainty-

Aware COVID-19 Classification and Referral model with

the proposed Dropweights based on Bayesian Convolutional

Neural Networks (BCNN). For COVID-19 detection to be

meaningful, two types of predictive uncertainty in deep learn-

ing were used on a subsequent work [64]. One of it is Epis-

temic, or Model uncertainty accounts for the model param-

eters uncertainty as it does not take all of the aspects of the

data into account or the lack of training data. The other is

Aleatoric uncertainty that accounts for noise inherent in the

observations due to class overlap, label noise, homoscedastic

and heteroscedastic noise, which cannot be reduced even if

more data were to be collected. Bayesian Active Learning by

Disagreement (BALD) [65], is based on mutual information

that maximizes the information between model posterior and

predictions density functions approximated as the difference

between the entropy of the predictive distribution and the

mean entropy of predictions across samples.

A BCCN model was trained on 68 Posterior-Anterior

(PA) X-Ray images of lungs with COVID-19 cases from

Dr Joseph Cohen’s Github repository [62], augmented the

dataset with Kaggle’s Chest X-Ray Images (Pneumonia)

from healthy patients. It achieved 88.39% accuracy on the

available dataset. This work additionally recommended visu-

alisation of distinct features, as an additional insight to point

prediction for a more informed decision-making process.

It used the saliency maps produced by various state-of-the-art

methods, e.g. Class Activation Map (CAM) [66], Guided
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Backpropagation, and Guided Gradient, and Gradients to

show more distinct features in the CSR images.

A Capsule Network-based Framework called

COVID-CAPS [67] is proposed for the Identification of

COVID-19 cases from X-ray Images. A lightweight deep

neural network (DNN) based mobile app is proposed in [68]

that can process noisy images of chest X-ray (CXR)

for point-of-care COVID-19 screening and is available

at url:https://github.com/xinli0928/COVID-Xray. A 3-step

approach to fine-tune a pre-trained ResNet-50 architecture

to improve model performance is proposed by [58]. Similar

other works are proposed recently [69]–[71].

To the best of our knowledge, [72] reported the

largest dataset including 144,167 images from 750 patients

(400 COVID patients). As deep-learning models are

data-hungry andmost other projects perform transfer learning

on extremely small datasets (often < 1000 images), this

is a remarkable project and a first step towards signifying

more realistic and clinically relevant performance estimates.

The classifier achieves a sensitivity of 95% and a specificity

of 93%. Besides, a segmentation model is trained with the

deep supervision strategy and shown to identify lesion areas

of the positive predictions. One drawback of the work is that

the models operate autonomously and the lesions identified

by the segmentation model may by no means have been

relevant for the positive prediction of the classifier.

5) ULTRASOUND IMAGING

Lung ultrasound (LUS) is evolved over the last few years to

its theoretical and operative aspects. One of the character-

istic features of LUS is its ability to define the alterations

affecting the ratio between tissue and air in the superficial

lung [55], [78].

The practical advantages of LUS are numerous: US devices

are portable, bringing along the salient benefit of performing

a point-of-care LUS at the patient’s bedside or even home that

can easily be repeated for monitoring purposes. LUS mini-

mizes the requirement for transferring the patient, controlling

the potential risk of further infection and spreading it among

health care personnel.

In contrast to CT and X-Ray, US is non-irradiating, and

the instruments are cheap and thus highly available even

outside developed countries [79]. However, ultrasound is

operator-dependent and to follow standardized protocols for

LUS like the BLUE protocol [80], experienced technicians

are desired. This is boon and bane: While conducting a full

LUS can take a few minutes and cause significantly higher

portions of data than other modalities, the auto-correlation is

exceptionally high and diagnostic patterns are visible only in

few frames. LUS was repeatedly shown superiority to CXR

for diagnosing pulmonary diseases (for review see [81]),

especially in resource-limited settings [82]. For COVID-19,

LUS patterns are correlated to disease stage, comorbidities

and severity of pulmonary injury [83] and most dominantly

include B-lines, vertical artifacts that range from the pleu-

ral deep into the lung [84]. Importantly, LUS was lately

reported higher sensitivity and equal specificity than CXR

in diagnosing COVID-19 [85]. In a comparison of LUS to

CT, it was shown that for all typical features of LUS in

COVID-19 patients, analogs to known patterns in CT scans

could be found [86]. FIGURE 6 illustrates the detection

of COVID-19 from ultrasound images. While LUS is used

commonly as a first-line examination method in European

countries like Italy [87], it is not mentioned in the ACR rec-

ommendations as clinical practice for COVID [54]. Besides,

some articles argued that LUS can assist early diagnosis

and assessment of COVID and even found better sensi-

tivity of LUS in detecting certain features [88]. This has

caused a vivid debate on the role of LUS for the COVID

pandemic [89]–[92].

6) REPRESENTATIVE WORK, EVALUATION AND DISCUSSION

Since LUS is a less established practice for examining

COVID-19 patients, less clinical data is recorded and pub-

licly available. It is presumably a primary reason why fewer

computer vision projects focus on it, despite the advocacy of

recent trends in medicine (see above).. TABLE 3 presents a

more categorical presentation of such methods.

Preliminary investigations for clarifying the diagnostic and

prognostic role of LUS in COVID-19 are underway. Com-

puter vision on ultrasound imaging became increasingly pop-

ular in the last years [93], but comparably little work has been

done on LUS.

The first work to apply computer vision on ultra-

sound probes of COVID-19 patients was POCOVID-Net,

a deep convolutional neural network with a VGG back-

bone [94]. POCOVID-Net introduced an LUS dataset

that initially consisted of 1103 images (654 COVID-

19, 277 bacterial pneumonia, and 172 healthy con-

trols), sampled from 64 videos. As of July 2020,

the dataset contains ∼150 videos and ∼50 images, resem-

bling the largest publicly available dataset of LUS:

https://github.com/jannisborn/covid19_pocus_ultrasound.

Besides, the trained models were deployed and can be freely

used at: https://pocovidscreen.org. On the initial dataset,

POCOVID-Net reports a video accuracy of 92% and a sensi-

tivity and specificity of 96% and 79% for COVID-19 respec-

tively. It accounts for a preliminary proof-of-concept that

COVID-19 can be automatically distinguished from other

pulmonary conditions through LUS, and it opens a branch

to follow up on the granularity of the differentiation.

On the updated POCOVID-Net dataset, performance could

be improved with an accuracy of 94%, sensitivity and speci-

ficity of 98% and 91% in a 5-fold cross-validation on LUS

videos [95]. This work utilizes Bayesian deep learning to

compute uncertainty estimations that are deemed crucial for

medical imaging [96]. [95] then demonstrated how epistemic

uncertainty estimations (measured by Monte Carlo dropout)

could let the model self-recognize low confidence situations.

Additionally, the authors computed and validated CAMs

with the help of medical experts and found that the model

learns in a completely unsupervised fashion to highlight lung
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FIGURE 6. Detection of COVID-19 from ultrasound images: Ultrasound imagery is widely available and accessible throughout the world and therefore,
can be a valuable tool for monitoring disease progression. Adapted from [55].

TABLE 3. Representative works for infected disease prevention and control.

consolidations (94% sensitivity) and, to a lesser extent,

A-lines (62%).

The CAMs were overall found helpful for diagnosis by the

experts. However, it leaves room for improvement in B-line

detection. Interestingly, the performance could be mildly

improved when the classifier was coupled with the segmen-

tation model by [97].

The named work by [97] introduced a rich stack of CNN

models for segmentation and severity assessment of COVID-

19 patients. Based on ∼1000 images from convex probes

of 33 patients, an ensemble of 3 segmentation models (UNet,

UNet++ and Deeplabv3+) is shown to reliable extract both,

A-lines and COVID biomarkers (accuracy 96%, binary dice

score 0.75). Besides, they classify COVID severity on four

levels (0 to 3). They introduce a so-called regularised spa-

tial transformer network that performs a weak localization

by extracting two transformed image sections that, ideally,

should contain pathological artifacts. Their model achieves

a precision of 70% and a recall of 60% on the four-class

classification. However, despite the authors claim to release

a dataset of 277 LUS videos from 35 patients with a total

of almost 60,000 frames, to date, only 60 videos can be
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FIGURE 7. Temperature screening in process with thermal imagery of a subject who is talking on a mobile phone; (a) after 1 min of talking and (b) after
15 min of talking. It shows that the temperature of the encircled region increased from 30.56 to 35.15 C after 15 min of talking. The temperature of the
region around the ear (indicated by an arrow) elevated from 33.35 to 34.82C. A similar system can be used for COVID-19 related fever screening.Adapted
from [56].

accessed (after the account request is manually approval).

No annotations are available for those videos, rendering a

validation of the results effectively impossible.

As B-lines are maybe the most critical LUS feature in

COVID patients, [98] presented a specialized approach for

line artifact quantification that utilizes a non-convex reg-

ularization technique dubbed Cauchy proximal splitting.

This technique outperforms state-of-the-art B-line identifi-

cation [99] and detects 87% of the B-lines in 9 COVID-19

patients, reducing the error margin by 40% compared to [99].

Since ultrasound equipment is small and portable options

are available (POCUS devices), the impact of web-

independent, on-device analysis is high, especially since LUS

belongs to the standard repertoire even in remote medical

facilities.

Future projects could, for example, improve the mediocre

results found in an ablation study with mobile-friendly

CNNs [95] to facilitate on-device processing.

B. PREVENTION AND CONTROL

WHO has provided some guidelines on infection prevention

and control (IPC) strategies for use when infection with a

novel coronavirus is suspected [104]. Major IPC tries to

control transmission in health care settings that include early

recognition and source control and applying standard pre-

cautions for all patients. It also includes implementation of

additional empiric precautions like airborne precautions for

suspected cases of COVID-19, implementation of adminis-

trative controls, and use of environmental and engineering

controls. Computer vision applications are providing valuable

support for the implementation of IPC strategies.

1) REPRESENTATIVE WORK, EVALUATION AND DISCUSSION

Protective techniques to control the virus spread in the

early stage of disease progression were considered very

early, as the usage of masks. Some countries like China

implemented it as a control strategy at the start of the epi-

demic. Computer vision-based systems greatly facilitated

such implementation.

Wang et al.. [100] proposed the Masked Face Recogni-

tion approach using a multi granularity masked face recog-

nition model, resulting in 95% accuracy on a masked face

image dataset. The data was made public for research and

provided three types of masked face datasets, including

Masked Face Detection Dataset (MFDD), [105], Real-world

Masked Face Recognition Dataset (RMFRD) and Simu-

lated Masked Face Recognition Dataset (SMFRD) [106].

A similar strategy is the use of Infrared thermography.

It can be used as an early detection strategy for infected peo-

ple, especially in crowns like passengers at an airport-various

medical applications of infrared thermography re sum-

marised by Lahiri et al. [56], including fever screening.

Somboonkaew et al. [107] introduced a mobile platform that

can be used for an automatic fever screening system using

forehead temperature. Ghassemi et al. [108] has discussed

the best practices for standardized performance and testing

of infrared thermographs. An Infection Screening System

based on Thermography and CCD Camera is proposed by

Negishi et al. [109] with Good Stability and Swiftness for

Non-contact Vital-Signs Measurement by Feature Matching

and MUSIC Algorithm. Earlier for SARD spread control.

A computer vision system to help in fever screening by

Chiu et al. [102] was used in earlier outbreaks of SARS. From

13 April to 12 May 2003, 72,327 patients and visitors passed

through the only entrance allowed at TMU-WFH where a

thermography station was in operation. FIGURE 7 illustrates

the use of thermal imagery for temperature screening.

Additional miscellaneous approaches for prevention and

control are also worth noting. An example is pandemic drones

using remote sensing and digital imagery, which were recom-

mended for identifying infected people. Al-Naji et al. [110]

have used such a system for remote life sign monitoring in
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FIGURE 8. Visualizations shown by using different saliency maps that provide additional insights diagnosis. These maps help to identify the areas of
activation that can lead to disease progression monitoring and severity detection. Adapted from [57].

disaster management in the past. A similar application is to

use vision-guided robot control for 3D object recognition

and manipulation. Moreover, 3D modelling and printers are

helping to maintain the supply of healthcare equipment in

this troubled time. Pearce [101] discusses RepRap-class 3-D

printers and open-source microcontrollers. The applications

are relevant since mass distributed manufacturing of ventila-

tors has the potential to overcome medical supply shortages.

Lastly, germ scanning is an essential step against combating

COVID-19. Hay and Parthasarathy [103] has proposed a

convolutional neural network for germ scanning such as the

identification of bacteria Light-sheet microscopy image data

with more than 90% accuracy.

C. TREATMENT AND CLINICAL MANAGEMENT

Although various attempts and claims of vaccinations devel-

opment are announced in the media, however, there is no

agreed and widely used treatment for disease caused by the

virus at the moment. However, many of the COVID-19 symp-

toms can be treated.depending on the clinical condition of the

patient. An improvement in clinical management practices

is possible through automating various practices with the

help of computer vision. One example is the classification

of patients based on the severity of the disease and advising

them appropriate medical care. FIGURE 8. provides a sce-

nario of progression and severity monitoring by using differ-

ent saliency maps that provide additional insights diagnosis.

These maps help to identify the areas of activation that can

lead to disease progressionmonitoring and severity detection.

FIGURE 9 illustrates the Corona score calculation on a 3D

model of patients CT images for patient disease progression.

It is one of the ways infected areas can be visualised, and

disease severity can be predicted for better disease manage-

ment and patient care. TABLE 4 presents a more categorical

presentation of such methods.

1) REPRESENTATIVE WORK, EVALUATION AND DISCUSSION

An essential part of the fight against the virus is clinical

management, which can be done by identifying patients that

are critically ill so that they get immediate medical attention

or ventilator support. A disease progression score is recom-

mended to classify different types of infected patients in [35].

It is called ‘‘corona score’’ and is calculated bymeasurements

of infected areas and the severity of disease from CT images.

The corona score measures the progression of patients over

time, and it is computed by a volumetric summation of the

network-activation maps.

MacLaren et al. [111] supports that radiological evi-

dence can also be an essential tool to distinguish criti-

cally ill patients. Wang et al. [112] used depth camera

and deep learning as abnormal respiratory patterns classifier

that may contribute to the large-scale screening of people

infected with the virus accurately and unobtrusively. Res-

piratory Simulation Model (RSM) is developed to control

the gap between scarce real-world data and a large amount

of training data. They proposed GRU neural network with
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FIGURE 9. Method of corona score calculation for patient disease progression monitoring is illustrated. It is one of the ways infected areas can be
visualised, and disease severity can be predicted for better disease management and patient care. [35].

TABLE 4. Representative works for infected disease treatment and progression monitoring.

bidirectional and attentional mechanisms (BI-AT-GRU)

to classify six clinically significant respiratory patterns

(Eupnea, Tachypnea, Bradypnea, Biots, Cheyne-Stokes,

and Central-Apnea) to identify critically ill patients. The

proposed model can classify the respiratory patterns with

accuracy, precision, recall, and F1 of 94.5%, 94.4%, 95.1%,

and 94.8%, respectively. Demo videos of this method

working in situations of one subject and two subjects

can be accessed online (https://doi.org/10.6084/m9.figshare.

11493666.v1).
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The CoV spike (S) glycoprotein is the main target for vac-

cines, therapeutic antibodies, and diagnostics that can guide

future decisions. The virus connects to host cells through

its trimeric spike glycoprotein. Using biophysical assays,

Wrapp et al. [113] illustrated that this protein binds to their

common host cell receptor at least ten times more tightly than

the corresponding spike protein of severe acute respiratory

syndrome (SARS)-CoV. Protein X-ray crystallography can

discover the atomic structure of molecules and their func-

tions. It can further facilitate scientists to design new drugs

targeted to that function. MAchine Recognition of Crystal-

lization Outcomes (MARCO) [114] initiative has introduced

deep convolutional networks to achieve an accuracy of more

than 94% on the visual recognition task of identifying protein

crystals. It uncovers the potential of computer vision and deep

learning for drug discovery.

Quantitative structure-activity relationship (QSAR) analy-

sis has perspectives on drug discovery and toxicology [115].

It employs structural, quantum chemical and physico-

chemical features calculated from molecular geometry as

explanatory variables predicting physiological activity. Deep

feature representation learning can be used for QSAR anal-

ysis by incorporating 360◦ images of molecular confor-

mations. Uesawa [116] has proposed QSAR (Quantitative

structure-activity relationship) analysis using deep learning

using a novel molecular image input technique. Similar tech-

niques can be used for drug discovery to pave the way for

vaccine development for COVID-19.

IV. DATASET AND RESOURCES

A. CT IMAGES

• COVID-CT-Dataset [117] - The University of San Diego

has released a data set with 349 CT images containing

clinical findings of COVID-19. It claims to be the largest

of its kind. To demonstrate its potential, an AI model is

trained, achieving 85% accuracy. The data set is avail-

able at https://github.com/UCSD-AI4H/COVID-CT.

• An image-based model working with CTs for

COVID-19 diagnosis can be found at https://github.com/

JordanMicahBennett/SMART-CT-SCAN_BASED-

COVID19_VIRUS_DETECTOR/.

B. CX-RAY IMAGES

• COVID-19 Radiography database [118] - A team of

researchers from Qatar University, Doha, and the Uni-

versity of Dhaka, Bangladesh, along with collabora-

tors from Pakistan and Malaysia with medical doctors

have created a database of chest X-Ray images for

COVID-19 positive cases along with Normal and

Viral Pneumonia images. In the current release,

there are 219 COVID-19 positive images, 1341 nor-

mal images and 1345 viral pneumonia images. The

authors said that they would continue to update

this database as soon as new X-Ray images for

COVID-19 pneumonia patients. The project can be

found at GitHub with MATLAB codes and trained

models: https://github.com/tawsifur/COVID-19-Chest-

X-Ray-Detection. The research team managed to clas-

sify COVID-19, Viral pneumonia and Normal Chest

X-Ray imageswith an accuracy of 98.3%. This scholarly

work was submitted to Scientific Reports (Nature), and

the manuscript was uploaded to ArXiv. Please make sure

to give credit while using the dataset, code and trained

models.

• COVID-19 Image Data Collection [62]- An initial

COVID-19 open image data collection is provided by

Joseph Paul Cohen. all images and data are released

under the following URL https://github.com/ieee8023/

covid-chestxray-dataset.

• COVIDx Dataset [42] - This is the release of the

brand-new COVIDx dataset with 16,756 chest radiog-

raphy images across 13,645 patient cases. The current

COVIDx dataset is constructed by the open-source chest

radiography datasets at https://github.com/ieee8023/

covid-chestxray-dataset and https://www.kaggle.com/c/

rsna-pneumonia-detection-challenge. It is a combina-

tion of data provided by many parties: the Radiological

Society of North America (RSNA), others involved in

the RSNA Pneumonia Detection Challenge, Dr Joseph

Paul Cohen, and the team at MILA, involved in the

COVID-19 image data collection project for making

data available to the global community.

• Chest X-Ray8 [119] - The chest X-Ray is one of

the most commonly accessible radiological examina-

tions for screening and diagnosis of many lung dis-

eases. A tremendous number of X-Ray imaging studies

accompanied by radiological reports are accumulated

and stored in many modern hospitals’ Picture Archiv-

ing and Communication Systems (PACS), available at

https://nihcc.app.box.com/v/ChestXray-NIHCC).

C. OTHER IMAGES

• Lung ultrasound dataset [94] - An open data col-

lection initiative similar of LUS, similar to the one

by Cohen et al. for CT and CXR. The growing

database is continuously updated and while it par-

tially collects data from dispersed public sources it

also releases unpublished clinical data. The dataset is

thought to facilitate differential diagnosis from LUS

and provides 4 classes (healthy, bacterial pneumo-

nia, COVID-19 and non-COVID viral pneumonia. As

of July 2020, the dataset contains ∼150 videos and

∼50 images resembling the largest publicly available

dataset of LUS: https://github.com/jannisborn/covid19

_pocus_ultrasound.

• Masked Face Recognition Datasets [100] - Three types

of masked face datasets were introduced, including

Masked Face Detection Dataset (MFDD), Real-world

Masked Face Recognition Dataset (RMFRD) and Sim-

ulated Masked Face Recognition Dataset (SMFRD).

MFDD dataset can be used to train an accurate masked

face detection model, which serves for the subsequent
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masked face recognition task. RMFRD dataset includes

5,000 pictures of 525 people wearing masks and

90,000 images of the same 525 subjects without

masks. To the best of our knowledge, this is currently

the world’s largest real-world masked face dataset.

SMFRD is a simulated masked face data set covering

500,000 face images of 10,000 subjects. These datasets

are available at https://github.com/X-zhangyang/Real-

World-Masked-Face-Dataset.

• Thermal Images Datasets - There is no dataset

of thermals for high fever screening. However,

a fully annotated thermal face database and its

application for thermal facial expression recogni-

tion were proposed by Kopaczka [120]. Informa-

tion on further ideas of related data that can be

figured out by using such systems is available at

http://www.flir.com.au/discover/public-safety/thermal-

imaging-for-detecting-elevated-body-temperature/.

V. DISCUSSION AND FUTURE WORK

Overall, it is encouraging that the computer vision research

community had a massive response in return to the call for

fighting COVID-19 epidemic. Data was collected and shared

in a short time, and researchers proposed various approaches

to address different challenges related to disease control.

It became possible due to recent success in the field of

deep learning and artificial intelligence.Web repositories like

GitHub and ArXiv have contributed significantly to the rapid

sharing of information. However, the impact of this research

work is limited due to lack of clinical testing, fair evaluation

and appropriate imaging datasets.

We argue that COVID-19 research landscape is quite broad

that covers more than imaging and becomes beyond the scope

of computer vision research. Similarly, we did not include

any machine learning or signal processing work that does

not include imaging modality. Most of the research work is

performed around disease diagnosis problem with various

performance metrics and without clinical trials that make it

hard to compare their performance.

Similarly, various research datasets have been released for

research purpose since the outbreak of the epidemic. How-

ever, these datasets can offer only limited scope and problem

domains. For instance, for disease progression, often mul-

tiple images related to single patients are required with the

timeline. Similarly, to evaluate different imaging modalities,

researchers require multimodal imaging data related to the

same patient that is not yet available for research purposes.

The future work includes the fair performance comparison of

different approaches, collection of a vast universal dataset and

benchmark. We hope that the collective efforts of computer

vision community like Imagaenet challenge can fill up this

gap.

VI. CONCLUDING REMARKS

In this article, we presented an extensive survey of

computer vision efforts and methods to combat the

COVID-19 pandemic challenge and also gave a brief review

of the representative work to date. We divide the described

methods into four categories based on their role in disease

control: Computed Tomography (CT) scans, X-Ray Imagery,

Ultrasound imaging and Prevention and Control. We pro-

vide detailed summaries of preliminary representative work,

including available resources to facilitate further research and

development. We hope that, in this first survey on Computer

vision methods for COVID-19 control with extensive bibli-

ography content, one can find give valuable insight into this

domain and encourage new research. However, this work can

be considered only as an early review since many computer

vision approaches are being proposed and tested to control

the COVID-19 pandemic at the current time. We believe

that such efforts will be having a far-reaching impact with

positive results to periods during the outbreak and post the

COVID-19 pandemic.
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