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Abstract

Chest X-rays are playing an important role in the testing and diagnosis of COVID-19 disease in the recent pandemic.

However, due to the limited amount of labelled medical images, automated classification of these images for positive and

negative cases remains the biggest challenge in their reliable use in diagnosis and disease progression. We implemented a

transfer learning pipeline for classifying COVID-19 chest X-ray images from two publicly available chest X-ray datasets1,2.

The classifier effectively distinguishes inflammation in lungs due to COVID-19 and Pneumonia from the ones with no

infection (normal). We have used multiple pre-trained convolutional backbones as the feature extractor and achieved an

overall detection accuracy of 90%, 94.3%, and 96.8% for the VGG16, ResNet50, and EfficientNetB0 backbones respectively.

Additionally, we trained a generative adversarial framework (a CycleGAN) to generate and augment the minority COVID-

19 class in our approach. For visual explanations and interpretation purposes, we implemented a gradient class activation

mapping technique to highlight the regions of the input image that are important for predictions. Additionally, these

visualizations can be used to monitor the affected lung regions during disease progression and severity stages.

Keywords Activation maps · COVID-19 · Deep neural networks · Transfer learning

1 Introduction

The 2019 novel Coronavirus (COVID-19) has become a

serious public health issue across the world and is approach-

ing approximately 7.759 million cases worldwide according

to the statistics of the European Centre for Disease Pre-

vention and Control on June 14th, 2020. The COVID-19
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infection may manifest itself as a flu-like illness potentially

progressing to acute respiratory distress syndrome. Despite

the worldwide research efforts over the past few months,

early detection of COVID-19 remains a challenging issue

due to limited resources and the amount of data available for

research. The gold standard screening method for COVID-

19 is the Reverse-Transcription Polymerase Chain Reaction

(RT-PCR). Chest radiography imaging is being used as an

alternative screening method and done in parallel to PCR

viral testing [23]. Additionally, false negatives have been

reported in PCR results due to insufficient cellular content

in the sample or time-consuming nature and inadequate

detection when there were positive radiological findings [3].

The accuracy of Chest X-ray (CXR) diagnosis of COVID-

19 infection strongly relies on radiological expertise due to

the complex morphological patterns of lung involvement

which can change in extent and appearance over time. If

these patterns are detected with high accuracy, it can enable

rapid triaging for screening, diagnosis, and management of

patients with suspected or known COVID-19 infection [16].

However, the limited number of trained thoracic radi-

ologists limits the reliable interpretation of complex chest

examinations, especially in developing countries. Deep

learning techniques, in the particular Convolutional Neural
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Networks (CNN), have been beating humans in various

tasks of computer vision and other video processing tasks

in recent years. Deep learning algorithms have already been

applied for the detection and classification of Pneumo-

nia [17, 25] and other diseases on radiography. Hence, it

has become the natural candidate for the analysis of CXR

images to address the automated COVID-19 screening.

Some recent transfer learning approaches presented in [4, 6,

8, 16, 23] applied to CXR images of patients has been show-

ing promising results in the identification of COVID-19.

In this paper, as an effort to improve the current COVID-

19 detection using a limited number of publicly available

CXR dataset, we devise and implement a CXR based

COVID-19 disease detection and classification pipeline

using a modified VGG-16, ResNet50 [11], and a recent

EfficientNetB0 [22] architecture. Following the trend from

the literature, for our research, we have assembled a three-

class labelled dataset with X-ray images from ‘normal’,

‘COVID-19’, ‘Pneumonia’ classes. “COVID-19 Image Data

Collection” [7] is currently serving as the main source

of COVID-19 CXR images at this stage. To enhance the

under-represented COVID-19 class, we train a generative

adversarial framework to generate synthetic COVID-19

images during our experiments. Our choice for the

convolutional backbone for this research is mostly driven

by their lightweight nature and their performance measures

in terms of accuracy, precision, and recall performances to

accurately detect COVID-19.

The remaining sections of this paper are organized as

follows. In Section 2, we review the current literature

on COVID-19 CXR image analysis using deep learning

methods. Design insights are derived from the review

of the related work and we describes the dataset for

the implemented network in this section. Section 3 gives

details on the proposed transfer learning architecture and

discusses the necessary settings, pre-trained backbones, and

procedural stages. The model performance is evaluated in

Section 4 where classification results in terms of recall,

precision and, overall accuracy are compared and contrasted

with concurrent methods reported in the literature. The

influence of model backbones on the training time, loss, and

model accuracy are also discussed in this section. We also

present a gradient class activation mapping (Grad-CAM)

technique to monitor affected lung regions during disease

progression for visual interpretation purposes. Finally,

conclusions are drawn in Section 5.

2 Related work and data pre-processing

Chest radiography is widely used for the detection and

classification of Pneumonia and other pulmonary diseases.

In the context of COVID-19 research, a closer look

at the literature showed increased use of CXR images

over CT scans due to potentially more data available

from various sources. However, accurate annotation and

analysis of radiography images require a radiology expert

which requires significant expertise and processing time.

To identify underlying features from radiography images

for the purpose of diagnostic analysis, a series of recent

studies showed promising results using state-of-the-art

computational and deep learning algorithms. In Section 2.1,

we review the current literature on COVID-19 CXR image

analysis using deep learning methods. We will derive design

insights regarding the dataset and model architecture from

the review of the related work. We then describe the datasets

in Section 2.2, along with the necessary pre-processing and

augmentation techniques in Sections 2.3 and 2.4.

2.1 Background: Deep learning for Chest X-ray
and COVID-19 diagnosis

Convolutional neural network architecture is one of the

most popular and effective approaches in the diagnosis of

COVD-19 from digitized images. Several reviews have been

carried out to highlight recent contributions in assembling

dataset to train models for COVID-19 detection. In [6],

a database of 190 COVID-19, 1345 viral Pneumonia, and

1341 normal chest X-ray images was introduced. Training

and validation on four different pre-trained networks,

namely, Resnet18, DenseNet201, AlexNet, and SqueezeNet

for the classification of two different schemes (normal

and COVID-19 Pneumonia; normal, viral Pneumonia, and

COVID-19 Pneumonia). The classification accuracy for

both schemes was 98.3% and 96.7% respectively. The

sensitivity, specificity, and precision values were also

reported.

In [12], a comparison among seven different well-known

deep learning neural network architectures were presented.

In the experiments, they use a small dataset with only 50

images in which 25 samples are from healthy patients and

25 from COVID-19 positive patients. In their experiments,

the VGG19 and the DenseNet201 were the best performing

architectures. In [23], an architecture called COVID-net is

created to classify X-ray images into normal, Pneumonia,

and COVID-19. Different from the previous work, they use

a much larger dataset consisting of 16,756 chest radiography

images across 13,645 patient cases. The authors report

an accuracy of 92.4% overall and sensitivity of 80% for

COVID-19.

In [8], a pre-trained ResNet50 model is fine-tuned for the

problem of classifying X-ray images into normal, COVID-

19, bacterial Pneumonia and viral Pneumonia. The authors

report better results when compared with the COVID-

net, 96.23% accuracy overall, and 100% sensitivity for

COVID-19. Nevertheless, it is important to highlight that
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the difference in [8] that it has an extra class than [23]

and the dataset consists of 68 COVID-19 radiographs

from 45 COVID-19 patients, 1,203 healthy patients, 931

patients with bacterial Pneumonia and 660 patients with

non-COVID-19 viral Pneumonia. Additionally, the test set

has only 8 COVID-19 instances for the claim of 100%

sensitivity to be generalized for a larger cohort. The

author in [16] employed a light-weight implementation of

a COVID-19 classifier and with an accuracy of 93.9%,

COVID-19 Sensitivity of 96.8%, and positive predictive

value of 100% using a flat version of EfficientNet backbone.

A hierarchical version of EfficientNet was also reported

with 93.5% accuracy and COVID-19 sensitivity of 80.6%.

Some effort has been shown in [2] using a Decompose,

Transfer, and Compose (DeTraC ) architecture to deal with

any irregularities in the image dataset by investigating

class boundaries. A ResNet18 based shallow learning

mode was used to extract discriminating features in this

implementation. The research reported an accuracy of

95.12% (with a sensitivity of 97.91%, and a specificity

of 91.87%) in the detection of COVID-19 X-ray images

from normal, and severe acute respiratory syndrome

cases.

Having reviewed the related work, it is evident that

despite the success of deep learning in the detection

of Covid-19 from CXR and CT images, dealing with

class imbalance, effective fine-tuning and validation of

the models have not been explored. In this research, we

aimed to extend the development of automated multi-

class classification models based on chest X-ray images.

For that, we created a balanced dataset and implemented

an efficient and lightweight deep learning pipeline. We

developed a Generative Adversarial Network (GAN) to

generate synthetic COVID-19 data and finally, we fine-

tuned and optimized the hyper-parameters to improve the

performance of the model.

2.2 Dataset description

Following the trend of possible classes found in the liter-

ature, we have assembled a three-class dataset with labels,

normal - for healthy patients; COVID-19 - for patients with

COVID-19; and Pneumonia - for patients with viral and bac-

terial Pneumonia. Our main source of COVID-19 images

was from the “COVID-19 Image Data Collection” pub-

licly available on Github [7]. These anonymized COVID-19

images were acquired from websites of medical and scien-

tific associations and COVID related research papers. This

dataset is a constantly growing dataset and at the time of

reviewing this paper in June 2020, the dataset had in total

of 673 X-ray and CT images from 349 patients who were

affected by COVID-19 and other diseases, such as MERS,

SARS, and ARDS [3]. Figure 1 shows the percentage of

image distribution as per the diagnosis, where 69% of the

images had some form of COVID-19 findings. We have sep-

arated all the 202 Antero-posterior (AP) view of COVID-19

positive X-ray images from this dataset. The age group of

the patients that contributed most of the positive cases were

from 50 to 80 years old.

The ‘Normal’ and ‘Pneumonia’ classes for our exper-

iments are taken from the kaggle chest-xray-Pneumonia

dataset. We randomly selected 300 images for each of

the classes to avoid any drastic class imbalance (dataset

available at https://www.kaggle.com/paultimothymooney/

chest-xray-Pneumonia). There are several other publicly

available datasets of CXR images for normal, viral and bac-

terial Pneumonia such as the NIH Chest X-ray Dataset [13],

RSNA Pneumonia Detection Challenge dataset, and a more

recent COVIDx dataset from [23] which can be used for

training as well.

To be noted, we selected only a small number of images

for normal and Pneumonia as learning with an imbalanced

dataset could produce a biased prediction model towards the

classes with more samples. This made our original dataset

to be consisting of 802 CXR images. 80% of the dataset is

then separated as the training set, the remaining 20% of the

dataset contributing as the test set. A detailed division of

the dataset can be found in Table 1 and the associated code

for this research can be found at https://github.com/TZebin/

Covid-19-applied-Intelligence/tree/master/code.

2.3 Pre-processing: Image resize and normalization

Each image in the assembled dataset is resized to

224x224 pixels to reduce computation time and to maintain

consistency throughout our dataset. Additionally, to account

for the large variability of the image appearance (brightness

and contrast), depending on the acquisition source, radiation

dose, etc [9, 21], an image normalization stage has

been applied. This stage normalizes and scales the pixel

intensities to a range of [0, 255].

2.4 Image augmentation

To achieve robust and generalized deep learning models,

large amounts of data are needed. However, medical

imaging data is scarce and labelling the dataset is expensive.

We applied two different versions of the augmentation

technique on the dataset. In the first version, we applied

image augmentation techniques [19] such as random

rotation, width shift, height shift, horizontal, and vertical

flip operations using the ImageDataGenerator functionality

from the TensorFlow Keras framework [5, 10].

Nowadays, Generative adversarial networks (GAN) offer

a novel method for data augmentation. Hence, we have

used a CycleGAN [26] architecture for increasing the
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Fig. 1 COVID-19 Image Data

Collection: Image distribution as

per diagnosis (69% COVID)

under-represented COVID-19 class images (described as

version 2 for augmentation in Table 1). Utilizing the

normal class from our dataset, we trained the CycleGAN

to transform normal images into COVID-19 images. As

a proof-of-concept at this stage, we have generated 100

synthetic COVID-19 images to add to our original training

dataset. Figure 2 shows a few examples of the original and

generated images side-by-side. After 5000 iterations of the

generator and discriminator training, we have achieved near

realistic generated CXR images, though there are shape

deformations seen in some cases. To be noted, the dataset

after augmentation is still quite small, hence we employed

Table 1 Dataset settings and other parameters

Settings Description

Original Chest X-ray (CXR) COVID-19: 202; Normal: 300; Pneumonia: 300

Pre-processing Intensity normalization, class-label encoding

Training set division (80%) COVID-19: 162; Normal: 240; Pneumonia: 240

Test set division(20%) COVID-19: 40; Normal: 60; Pneumonia: 60

Augmentation version1 (v1): Random rotation, width shift, height shift, horizontal flip

version2 (v2): 100 CycleGAN synthesized image for COVID-19, followed by augmentation steps in v1

Validation set 5-fold cross-validation on the augmented training set

Pre-trained base models:

VGG16 Fixed-size kernel; parameter: 138M, Input shape: 224, 224, 3

Resnet50[11] Residual connections; 26M, Input shape: 224, 224, 3

EfficientNetB0 [22] Mobile inverted bottleneck Convolution with depth, width, and resolution; parameter: 5.3M, Input shape:

224, 224, 3
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Fig. 2 Generated images from CycleGAN for the underrepresented COVID-19 class

five-fold cross-validation during training to avoid the over-

fitting of the model and the validation set served as a

checkpoint for us to the trained model’s performance to

unseen data.

3Model architecture

We implemented the COVID-19 disease detection pipeline

using an adapted Convolutional Neural Network architec-

ture and trained it in the feature representation transfer

learning mode. This section gives details on the pro-

posed transfer learning architecture and discusses the nec-

essary settings, pre-trained backbones, and fine-tuning

stages.

3.1 Transfer learning stages

We effectively used a pre-trained VGG16, ResNet50,

and EfficientNetB0 as our feature extractor. As all these

backbones were pre-trained on huge ImageNet dataset, it

has learned a good representation of low-level features like

spatial, edges, rotation, lighting, shapes, and these features

can be shared across to enable the knowledge transfer

and act as a feature extractor for new images in different

computer vision problems. As in our case, the new images

have different categories from the source dataset, the pre-

trained model is used to extract relevant features from these

images based on the principles of transfer learning. We used

TensorFlow, Keras, PyTorch, Scikit-learn, and OpenCV

libraries in Python for generating various functionalities of

the pipeline. Figure 3 shows an illustration of our proposed

pipeline for COVID-19 chest X-ray classification.

3.2 Pre-trainedmodel backbone and network head
removal

We removed the network head or the final layers of the pre-

trained model that was initially trained on the ImageNet

dataset. This stage is crucial as the pre-trained model was

trained for a different classification task. The removal of

network head removed weights and bias associated with the

class score at the predictor layers. It is then replaced with

new untrained layers with the desired number of classes in

the new dataset. We adjusted a three-class network head

for the COVID-19 dataset for three possible labels, namely,

normal - for healthy patients, COVID-19 - for patients with

COVID-19, and Pneumonia - for patients with non-COVID-

19 Pneumonia.

3.3 Fine-tuning

At the initial stage, we froze the weights of the earlier layers

of the pre-trained backbone to help us extract the generic

low-level descriptors or patterns from the chest X-ray image

data. In the convolutional networks we used, the first few

layers learn very simple and generic features that generalize

to almost all types of images. As we went higher up, the

features are increasingly more specific to the dataset on

which the model was trained. The goal of fine-tuning is

to adapt these specialized features to work with the newly

fed COVID-19 dataset, rather than overwrite the generic

learning.

In the feature extraction experiment, we only trained a

few layers on top of a base model. The weights of the pre-

trained network were not updated during training. At this

stage a newly added network head or a classifier is added
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Fig. 3 Transfer learning

architecture with pre-trained

convolutional backbone for

COVID-19 chest X-ray

classification

with the desired number of classes, and trained for adapting

the weights according to the new patterns and distributions.

One way to increase performance even further is to train (or

“fine-tune”) the weights of the top layers of the pre-trained

model alongside the training of the classifier we added. This

stage forces the weights to be tuned from generic feature

maps to features associated specifically with the dataset.

The training of the model has been done offline on

an Ubuntu machine with Intel(R) Core i9-9900X CPU @

3.50GHz, 62GB memory and a GeForce RTX 2060 GPU.

All the models were trained for 50 epochs, fine-tuned with

an Adam optimizer with a learning rate of 0.0001, Batch

size of 8, and a categorical cross-entropy. To be noted, five-

fold cross-validation is used during training to avoid the

over-fitting of the model.

4 Results andmodel evaluation

The main objective of our proposed architecture is to

show that the pipeline we assembled, will maximize

detection accuracy and minimize any false categorized

COVID-19 cases. To assess the performance of the

models and as a design guide for opting a backbone, we

compared the training time, loss performance, and model

accuracy of the VGG16, ResNet50, and EfficientNetB0

model backbones on the training set in Section 4.1. In

Section 4.2, the model performance is evaluated in terms of

recall, precision, and overall accuracy. These matrices are

compared and contrasted with concurrent methods reported

in the literature in Section 4.3. In Section 4.4, we present

Grad-CAM activation maps to monitor affected lung regions

during disease progression for visual explanations purposes.

4.1 Training loss and accuracy

Figure 4 shows the change in loss function for the three

convolutional models we experimented with during this

research. We trained each model for 50 epochs. When the

model was trained with the originally assembled three-

class dataset, after traditional augmentation, the model

with VGG16(v1) backbone took the longest time during
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Fig. 4 Comparative loss function on the training dataset

training to reach an accuracy of 0.93. The VGG16(v2) is

the same model trained with an enhanced version of the

original dataset, where the under-represented COVID-19

class is enhanced by 100 more synthetic images generated

with a CycleGAN. The training loss seemingly reached the

threshold loss value within 10 epochs in this case. The

realistic augmentation in the COVID-19 class definitely

has increased the model’s accuracy by almost 3%. A

further improvement is achieved when the backbone was

replaced with ResNet50 and EfficientNetB0, with the

EffiecientNetB0 being the fastest. To be noted, each epoch

for the given training dataset and computational setup took

about 18 seconds with 232 ms/step for a batch size of 8 and

a learning rate of 0.0001. The EfficientNetB0 also achieved

the best accuracy with the squeeze-and-excitation(SE)

optimization stage included in its architecture.

4.2 Model evaluation on the test dataset

If True Positive (TP ) is the number of COVID-19 classified

rightly as COVID; True Negative (TN ) is the number

of normal CXR images rightly classified normal; False

Positive (FP ) is the number of normal events misclassified

as COVID-19 and non-Covid Pneumonia and False

Negative (FN ) is the number of COVID-19’s misclassified

as normal or Pneumonia, we can define accuracy, recall, and

the precision of a model can be defined using the following

equations [20].

– Accuracy: It is an indicator of the total number of

correct predictions provided by the model and defined

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

. (1)

– Recall and Precision: Two of the most commonly used

performance measures, precision and recall measures

are defined as follows:

Precision or positive predictive value =
TP

TP + FP

. (2)

Recall or Sensitivity =
TP

TP + FN

. (3)

Our results show accurate model performance with an

overall detection accuracy of 90.0%, 94.3%, and 96.8%

for our exemplar VGG16, ResNet50 and EfficientB0 back-

bones respectively on the fixed test set of 40 COVID-19, 60

Normal and 60 CXR images for the Pneumonia class. We

presented the confusion matrix plot for the three backbone

models under consideration in Fig. 5. The rows correspond

to the predicted class (Output Class) and the columns cor-

respond to the true class (Target Class). The diagonal cells

in the confusion matrix correspond to observations that are

correctly classified (TP and TN ’s). The off-diagonal cells

correspond to incorrectly classified observations (FP and

FN ’s). The number of observations is shown in each cell.

4.3 Comparison with other approaches

We have summarized a class-wise recall, precision, and

accuracy performances from various experiments in Fig. 6.

Table 2 showed a comparison of overall accuracy and

COVID-19 precision performances with concurrent pro-

posed approaches from the literature. As seen from our

results presented in Table 2, for the VGG16 model, when

the under-represented COVID-19 class is enhanced by 100

more synthetic images generated with a CycleGAN, there

was a 2% improvement in overall accuracy from 0.88 to

0.90. The precision performance for the COVID-19 class

has been improved from 0.88 in VGG16 (v1) to 0.93 in

VGG16 (v2) through the addition of these realistically

augmented COVID-19 data. When comparing this to the

VGG16 model performance presented in Luz et al.[16],

with a COVID-19 class data the precision value reported

was 0.636. This showed a clear improvement, though the

datasets used for training are not directly comparable. The

VGG16 model, when saved for the inference stage, has a

memory footprint of 57 megabytes with 14.7 million param-

eters. For the ResNet50 base model, the overall accuracy

has improved to 94.3% due to a larger number of fea-

tures extracted by the model, leading to a better distinction

between class. This model, when serialized and saved, has a

memory footprint of 97 megabytes with 23.7 million param-

eters. In the approach presented in [8] with ResNet50, the

accuracy achieved is 96.23%, which is slightly higher than

the value we achieved. However, in their test dataset, there

were only 8 instances for the COVID-19 class in a four-

class classification scenario, the value may not be robust and

generalized for different class distribution.
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Fig. 5 Confusion matrix and overall accuracy of three backbone models used in this research

Our experimentation with the EfficientNetB0 base model

has achieved a 96.8% overall accuracy, with a COVID-

19 class precision value of 1 and a recall value of 0.975.

When compared to the COVIDNet-CXR model proposed

by Wang et al [23], the values were 0.909 and 0.968

respectively. Our version of EfficientNetB0 has higher

precision, which is critical as the goal is to be able

to detect as many positive COVID-19 cases to reduce

the community spread. Using the same backbone, the

EffcientNetB3 proposed by Luz et al[16] has shown a

precision of 100% for the COVID-19 class, while the

overall accuracy is lower than the EffcientNetB0 version

we implemented. To be noted, the EffcientNetB3 model

has 12.3 million parameters whereas EffcientNetB0 has 5.3

million parameters, contributing a lighter memory footprint

(21 megabytes) than its scaled B3 version. Additionally,

the depth, width, and resolution scaling in the EfficientNet

architecture seemingly outperformed both VGG and ResNet

architecture. The EfficientNetB0 also achieved the best

accuracy with the squeeze-and-excitation(SE) optimization

in our experiments .

4.4 Coarse region localizationmapwith gradient
class activation

For visual explanations and interpretation purposes, we

visualized the regions of the input image that are important

for predictions. For this, we implemented a gradient class

activation mapping (Grad-CAM) technique [18] in the

pipeline to produce a coarse localization map of the

highlighted regions.

In Fig. 7, activation map for the three classes in our

dataset is shown. The first row of Fig. 7 represents

the original images, whereas the first column presents a

healthy chest X-ray sample, the second shows the data

from a patient with Pneumonia, and the third one, from a

patient with COVID-19. The rightmost CXR taken on the

patient shows bilateral patchy ground-glass opacity. These

visualizations can be used to monitor affected lung regions

during disease progression and severity stages. In Fig. 8,

for a patient’s X-ray in ICU-care at day 3, 7 and 9, the

coarse localization map showed increased inflammation

indicating disease severity. There are multi-focal patch,

Fig. 6 Class-wise recall,

precision and accuracy

comparison for the three

backbone models
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Table 2 Class-wise precision performance comparison with other deep learning techniques in literature with our findings for COVID-19 detection

Backbone Accuracy COVID-19 Normal Pneumonia

Concurrent proposed approach:

VGG16 [16] 0.77 0.636 – –

COVIDNet-CXR Small [23] – 0.964 0.898 0.947

Flat - EfficientNetB0 [16] 0.90 1.0 – –

Flat - EfficientNetB3 [16] 0.939 1.0 – –

COVIDNet-CXR Large [23] 0.943 0.909 0.917 0.989

COVIDNet-CXR3-A[23] – 0.979 0.921 0.903

ResNet18 [2] 0.951 0.918 0.943 –

Our results:

VGG16 (v1 Augmentation) 0.88 0.82 0.84 0.98

VGG16 (v2 GAN Augmentation) 0.90 0.93 0.87 0.96

Resnet50 (v2 Augmentation) 0.943 0.97 0.93 0.96

EfficientNetB0 (v2 Augmented) 0.968 1.0 0.96 0.96

nodular consolidations, and ground-glass opacity around the

right mid to lower lung zone observed on day 9. Though

clinical symptoms such as consolidations and ground-glass

opacity [15] are more accurately recognizable in Computed

Tomography (CT) scans, CXR images could still provide

a coarse and cheap bed-side indication of such symptoms

if these visualizations are enhanced by labels and clinical

notes from radiologists and domain experts.

5 Conclusion

Deep learning applied to chest X-rays of patients has

shown promising results in the identification of COVID-

19. In this research, we experimented on lightweight

convolutional network architecture with three backbones

(VGG-16, ResNet50, and EfficientNetB0 pre-trained on

ImageNet dataset) for detecting COVID-19 and associated

Fig. 7 Activation map visualization for the three classes under consideration. The First column presents a healthy chest X-ray sample, the second,

from a patient with Pneumonia, and the third one, from a patient with COVID-19, visualizing highly affected regions in red
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Fig. 8 Coarse activation map visualization for a patient’s X-ray in ICU-care at day 3, 7 and 9, visualising increased inflammation (e.g.

consolidations and ground-glass opacity) indicating disease severity

infection from chest X-ray images. Experiments were

conducted to evaluate the convolutional neural networks

performance on the traditionally augmented dataset and on

an extended version of the dataset that utilized application

of generative adversarial network-based augmentation using

CycleGAN. Even with a limited number of images in the

COVID-19 class, promising results achieved by the network

on the test dataset with a recall value of over 90% and a

precision value of over 93% for all the three models. We

would like to emphasize on the fact that it will be possible to

improve the training accuracy, sensitivity, and detection rate

with more images and new data collected for the COVID-19

class. Our results also indicated the application of generative

adversarial network-based augmentation techniques can

contribute to accuracy improvement and can produce a more

generalized and a robust model.

In future, if clinical notes and other metadata such

as need for intubation and supplemental oxygen are

provided, it is possible to train mixed image and metadata

models. These mixed models could provide prognostic

and severity predictions [7, 23] and be highly useful for

risk stratification, patient management, and personalized

care planning in this critical resource-constrained pandemic

scenario. All models developed in this work have a memory

footprint below 100 megabytes. Hence, another future

direction from this research will be extending the model

implementation on conventional smartphone processor to do

fast and cheap on-device inference [14]. To provide a proof

of concept of transferring the capability of deep learning

models on mobile devices, we would like to build on our

previous experience in transferring such models using the

TensorFlow lite (TFlite) library [1, 24].
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