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Abstract: Contrary to expectations that the coronavirus pandemic would terminate quickly, the
number of people infected with the virus did not decrease worldwide and coronavirus-related deaths
continue to occur every day. The standard COVID-19 diagnostic test technique used today, PCR
testing, requires professional staff and equipment, which is expensive and takes a long time to
produce test results. In this paper, we propose a feature set consisting of four features: MFCC,
∆2-MFCC, ∆-MFCC, and spectral contrast as a feature set optimized for the diagnosis of COVID-19,
and apply it to a model that combines ResNet-50 and DNN. Crowdsourcing datasets from Cambridge,
Coswara, and COUGHVID are used as the cough sound data for our study. Through direct listening
and inspection of the dataset, audio recordings that contained only cough sounds were collected
and used for training. The model was trained and tested using cough sound features extracted from
crowdsourced cough data and had a sensitivity and specificity of 0.95 and 0.96, respectively.

Keywords: AI diagnostics; COVID-19 screening; deep learning; speech recognition

1. Introduction

COVID-19 is an acute respiratory infection that develops from SARS-CoV-2, a new
type of coronavirus that was first reported in November 2019. This is a pandemic that
continues worldwide as of November 2022, with a cumulative number of confirmed cases
of 640 million and fatalities of 6.6 million. A characteristic of coronavirus is that it spreads
swiftly and readily. Consequently, studies are being actively conducted on how to analyze
how the coronavirus spreads and how to prevent its spread [1–3]. The omicron mutation,
which has a low fatality rate but a very high transmission rate, has become the dominant
variant. As the number of confirmed cases increases quickly, so do the numbers of severely
sick patients and fatalities. Additionally, even though the fatality rate is low, an infection
of COVID-19 may still be fatal for the elderly or those with underlying illnesses; thus,
it is crucial to stop the spread of the disease by obtaining early diagnosis and treatment.
The main route of infection is known to be droplets and respiratory secretions in the air
produced by infected individuals.

The most frequently used diagnostic test for COVID-19 is real-time reverse transcrip-
tion polymerase chain reaction (real-time RT-PCR), which is a technique for amplifying
and identifying a particular coronavirus gene [4]. Because it has the greatest sensitivity
and specificity and can detect even minute amounts of virus in a sample, this test method
is used as a worldwide standard. Its drawbacks include the need for specialized tools,
reagents, and skilled professionals, as well as the comparatively lengthy turnaround time
of roughly 24 h for diagnostic outcomes.

Worldwide studies are being performed to find ways other than genetic testing to
identify those who are COVID-19 positive. Chest X-ray or chest computed tomography
(CT) images have been offered as the input for deep learning models [5,6]. In a study that
used the fact that COVID-19 positive individuals have a specific volatile substance that

Appl. Sci. 2023, 13, 2378. https://doi.org/10.3390/app13042378 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042378
https://doi.org/10.3390/app13042378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2520-6681
https://doi.org/10.3390/app13042378
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042378?type=check_update&version=1


Appl. Sci. 2023, 13, 2378 2 of 13

is distinct from that of non-infected individuals, a COVID-19 detection scheme using the
olfactory abilities of dogs was proposed [7]. Another study proposed using heart rate, sleep
time, and activity data collected using wearable sensors to detect COVID-19 [8]. In a study
that examined correlations with positive COVID-19, from findings using 42 characteristics
that included fever, cough, chest CT, and body temperature, the characteristic that showed
the strongest positive correlation was cough [9]. Based on this, this study investigates a
method for identifying COVID-19-infected people using cough.

Many studies are being conducted to identify COVID-19 through cough sounds
in order to allow low-cost and quick large-scale diagnostic testing [10–23]. Respiratory
symptoms are one of the features of COVID-19 infection; hence, the data provided by the
sound of coughing is used. A sound contains many features [24], and so does the sound of
a cough. The deep learning model trained using these features can determine whether a
cough sound is from a COVID-19-infected individual.

Looking at previous studies that used cough sounds, the amount of data is not
large. Brown et al. [20] used only the Cambridge dataset [20], and Feng et al. [21]
used Coswara [25] and Virufy [26] as datasets to study a COVID-19 diagnostic model.
Fakhry et al. [22] used only the COUGHVID dataset [27]. In order to improve the stability
and accuracy of the results, the quantity and quality of data are very important. Therefore,
in this paper, all of the Cambridge, Coswara, and COUGHVID datasets were used, and a
high-quality dataset was built through preprocessing.

In addition, when selecting a feature set in previous studies, the model was trained
by combining several spectral-based features simply because it was a feature mainly used
in speech. In this study, we propose a feature set optimized for COVID-19 diagnosis. By
using the Bhattacharyya distance [28], which is a method of calculating the degree of
separation between classes, a feature set was constructed by obtaining features that can
discriminate well between the cough sounds of COVID-19-positive subjects and those of
negative subjects. As a result, the feature set was composed of mel frequency cepstral
coefficients (MFCC), ∆2-MFCC, ∆-MFCC, and spectral contrast. With this feature set and
a mel spectrogram as input, we trained a model [22] that combined ResNet-50 [29] and a
deep neural network (DNN), and the model achieved a 0.95 sensitivity and a 0.96 specificity.
The result showed improvement compared with previous studies.

The structure of this paper is as follows. The collection of three crowdsourcing datasets
is described in Section 2, along with an earlier study on models for diagnosing COVID-19
infections using each dataset. The current study’s database, database preparation, method
for determining the Bhattacharyya distance and creating the feature set, and model are
all covered in Section 3. The experimental results compared with previous studies are
presented in Section 4. How to apply the constructed model to an application is covered in
Section 5. The study’s findings and future directions are covered in Section 6.

2. Related Work
2.1. Cambridge

The Cambridge dataset [20] was collected using an Android/web application and
includes the participants’ cough, voice, and breath sounds as well as information on
their medical history and symptoms. Participants record three coughing sounds and
three breathing sounds after providing their age, gender, a brief medical history, and
any symptoms they may be experiencing. A total of 4352 users of the web app and
2261 users of the Android app each contributed to the dataset, resulting in 5634 samples
and 4352 samples, respectively. The participants’ gender distribution was as follows:
4525 males, 2056 females, 26 non-respondents, and 6 others. Through the process of directly
checking all the samples of COVID-19-positive test cases, 141 samples were retrieved.

Brown et al. [20] trained a classification model by extracting two types of features—
handcrafted features and features from transfer learning—from the Cambridge dataset.
Gradient boosting trees and support vector machines (SVMs) were used as a classification
model. Raw sound waveform data were resampled at a frequency of 22 kHz before
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handcrafted characteristics were extracted. Handcrafted features were extracted at the
frame level and segment level. A total of 477 handcrafted features were used, including
duration, MFCC, ∆-MFCC, ∆2-MFCC, onset, period, root mean square (RMS) energy,
roll-off frequency, spectral centroid, tempo, and zero-crossing. The features from transfer
learning used VGGish [30], which is a convolutional neural network designed for audio
classification based on raw audio input. VGGish is a model trained using a large YouTube
dataset, and the parameters of the model are public. A pre-trained VGGish model was
used to extract 256 dimensional features, and the sampling rate was 16 kHz. As a result of
training the SVM model by extracting two types of features using only the cough sound
data, the area under the ROC curve (AUC) was 0.82 and the sensitivity was 0.72.

2.2. Coswara

A project named Coswara [25] was carried out in India to develop a tool for diagnosing
COVID-19 using audio recordings such as speech, breathing, and coughing. Worldwide
data were gathered with an easy-to-use, interactive user interface. Participants recorded
samples using a device microphone, such as a laptop or mobile phone, and provided
metadata using a web browser application. During recording, participants were instructed
to keep a distance of 10 cm between their mouth and the device. Nine audio samples
were recorded per person: cough sounds (deep and shallow), breathing sounds (fast and
slow), sustained vowel (‘eu’, ‘I’, ‘u’) pronunciation sounds, and counting sounds (slow and
fast). The participant’s age, gender, area, history of illness, and current state of health with
respect to COVID-19 were all included in the metadata. The sampling frequency of audio
samples was 48 kHz. Data from 2747 individuals were made public as of 24 February 2022.
Of these, 681 individuals had COVID-19-positive test results.

Feng et al. [21] used Virufy [26], a dataset collected under the supervision of medical
professionals in hospitals, along with the Coswara dataset, to study a COVID-19 diagnostic
model. In the Coswara dataset, only shallow cough recordings were used, and 200 samples
of healthy people’s data were randomly selected and used to balance the training data
set. The Virufy dataset consists of 16 recordings: 7 recordings from people diagnosed
with COVID-19 and 9 recordings from healthy people. The Coswara dataset was used
for training and the Virufy dataset was used for testing. First, silent recordings and
noise/speaking recordings were distinguished through the SVM model trained with the
energy features of each audio recording, and only the parts containing sound were extracted.
Features of the audio signal were then extracted: centroid, energy, entropy of energy,
spectral flux, MFCCs, spectral spread, and zero-crossing rate. A k-nearest neighbors (KNN)
model was used to distinguish conversational sounds from cough sounds in a recording,
and a new recording was created by connecting the cough sounds detected within one
recording. The next step was to train four models—the KNN, SVM, random forest, and
recurrent neural network (RNN)—to classify coughs in COVID-19-positive participants
and healthy individuals. As a result of testing with the RNN model, which had the best
results during the training process, the accuracy was 0.81 and the AUC was 0.79.

2.3. COUGHVID

The COUGHVID dataset [27] is a large publicly available cough sound dataset. The
dataset contains over 20,000 recordings and contains the labels COVID-19, symptomatic,
and healthy. Data collection was conducted using a web application from 1 April 2020
to 10 September 2020. After 10 s of cough sound recording for each person, participants
were asked to fill out and submit simple information, including age, gender, and current
condition. To remove non-cough recordings from the database, a cough detection model
was applied and the cough sound scores of all recordings were analyzed. The scores were
indicated by “cough_detected” in the metadata. Audio data were in the WEBM or OGG
format, and the sampling frequency was 48 kHz.
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Fakhry et al. [22] proposed a multi-branch deep learning network using the COUGHVID
dataset as a model for diagnosing COVID-19. Only data with a cough detection score of
0.9 or higher were used, and the filtered data were 4446 recordings from healthy people,
923 recordings from symptomatic people, and 380 recordings from people who tested
positive for COVID-19, for a total of 5749 audio files. In order to rectify the imbalance
in the number of data, they increased the number of COVID-19-positive recordings to
750 by adding Gaussian noise, pitch shifting, and shifting or increasing the time signal. By
selecting an equal number of recordings from symptomatic and healthy people, a total of
2250 audio samples were used. MFCCs and the mel spectrogram, which are commonly
used in audio classification and speech recognition, were used as acoustic features for the
network training. In addition, clinical features such as respiratory status or fever were
used as a one-dimensional vector of binary numbers. The MFCCs were input to a dense
layer of 256 and 64 nodes, and the mel spectrograms were input to a ResNet-50 that was
pre-trained on the ImageNet dataset. Clinical features were input to a dense layer of
8 nodes. The output values of all results were connected to form a combined multi-branch.
The sensitivity and specificity of this model were 0.85 and 0.99, respectively.

3. Proposed Method
3.1. Data

The cough sound databases of Cambridge [20], Coswara [25], and COUGHVID [27]
presented in Section 2 were used in the experimental data of this study. From the COUGHVID
data, only data with a cough detection score of 0.9 or higher were extracted based on
metadata that included score information in relation to the degree of cough sound detec-
tion. Because all three databases had more cough sound data from COVID-19-negative
participants than from positive individuals, only a portion of the cough sound data from
negative participants was used; this was conducted to balance the data. Due to the nature
of crowdsourced data, which is collected in various environments, it may contain data
that are difficult to use for a study. Therefore, the audio files were directly listened to and
inspected. Data were deleted through inspection in the following cases.

• The cough sound is quieter than the noise.
• The recording quality is too poor.
• Background noise (conversation, road noise, music, TV/radio, etc.) is mixed with the

cough sound.
• It is difficult to recognize the cough sound.

As indicated in Tables 1 and 2, 4200 audio files were inspected, and finally 2049 cough
sound audio files were selected. The selected database consisted of 1106 audio files of
cough sounds from COVID-19-positive participants, 530 audio files of cough sounds from
healthy people, and 413 audio files of cough sounds from people with symptoms.

Table 1. Number of audio files before inspection.

Cambridge Coswara COUGHVID Total

COVID-19 299 1336 441 2076
healthy 499 400 201 1100

symptomatic 295 428 301 1024

Table 2. Number of audio files after inspection.

Cambridge Coswara COUGHVID Total

COVID-19 247 656 203 1106
healthy 299 123 108 530

symptomatic 179 92 142 413
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3.2. Preprocessing

Because the data were collected in a variety of ways and in a wide range of environ-
ments, normalization was first performed to make the scale of the data uniform. Then,
a process of detecting only cough sounds in the data was carried out. Through this process,
unnecessary voices and other noises recorded during the data collection process were
removed, and only clear cough sounds, which are useful data for the study, were obtained.
The method used for cough detection was that described by Orlandic et al. [27]. In Figure 1,
cough detection was performed using one audio file as the original data, and the detected
cough segment is shown as an example.
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Figure 1. Performing cough detection: (a) Original audio file data; (b) detected cough segment 1;
(c) detected cough segment 2.

As shown in Figure 1, the part of the speech sound in the front part of (a) was not
detected. The cough recorded twice in succession was detected by dividing it into two
cough segments. Table 3 shows the number of cough segments from each database.

Table 3. Number of cough segments detected.

Cambridge Coswara COUGHVID Total

COVID-19 687 957 483 2127
healthy 627 285 255 1167

symptomatic 622 155 346 1123
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3.3. Feature Set
3.3.1. Audio Feature Vector

In this section, a feature set for this study was constructed. In addition to the spectral-
based speech features mainly used in speech research, several features were added and
used. Twelve features were used: chroma, onset, RMS energy, spectral bandwidth, spectral
centroid, spectral contrast, spectral flatness, spectral roll-off, MFCC, ∆-MFCC, ∆2-MFCC,
and zero-crossing rate. The 13th order MFCC was used as the MFCC. All features were
extracted using the librosa package [31] with a sampling frequency of 24,000 Hz. To form
the final feature set, features that were effective for detecting COVID-19 were selected from
among the 12 features. In order to do this, the Bhattacharyya distance [28], a method that
measures the separability of classes, was used.

3.3.2. Bhattacharyya Distance

The database was divided into two classes, positive and negative, to identify the
difference between COVID-19-positive data and negative data. Features were extracted
from the cough segment, and the separation between the two classes was calculated for
the same feature vector. Equation (1) is the formula for calculating the Bhattacharyya
distance, where µ1 and µ2 represent the averages of each class and ∑

1
and ∑

2
represent

the covariances of each class. The larger the difference between the two classes, the larger
the distance.

DB =
1
8
(µ2 − µ1)

T
[

∑1 +∑2
2

]−1

(µ2 − µ1) +
1
2

ln

∣∣∣∑1 +∑2
2

∣∣∣
|∑1 |

1/2 |∑2 |
1/2 (1)

Table 4 presents the results for the Bhattacharyya distance sorted in descending order.
The feature with the largest difference between the two classes was MFCC, with a value of
0.207171, and the feature with the smallest difference was onset with a value of 0.002387.
The final feature set to be used in this study consisted of the top four features: MFCC,
∆2-MFCC, ∆-MFCC, and spectral contrast.

Table 4. Bhattacharyya distance of each feature.

Feature Bhattacharyya Distance

MFCC 0.207171
∆2-MFCC 0.149195
∆-MFCC 0.099828

Spectral Contrast 0.090616
Chroma 0.063358

Spectral Flatness 0.057523
Spectral Bandwidth 0.046912

Spectral Roll-Off 0.032971
RMS Energy 0.018301

Spectral Centroid 0.016368
Zero-Crossing Rate 0.002629

Onset 0.002387

3.4. Model

In this study, a model combining ResNet-50 and a DNN proposed by Fakhry et al. [22]
was used. ResNet-50 is a convolutional neural network composed of 50 layers that allows
for stable learning while the depth of the model increases. The DNN is an artificial neural
network (ANN) that consists of several hidden layers between the input layer and the
output layer. The mel spectrogram image obtained from the cough segment was input to
ResNet-50, the feature set was input to the DNN, and the inputs were trained.

In the first branch, ResNet-50 was trained with the mel spectrogram image of (224,
224, 3) as the input. In ResNet-50, an image of size (224, 224, 3) went through multiple
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convolutional, activation, and pooling layers to reduce the size of the image while extracting
features. This process was repeated multiple times, with each iteration reducing the size of
the feature map while increasing the number of filters used by the network. The output
of the final pooling layer was a tensor with size (7, 7, 2048), which represented a compact
representation of the input image. The output went through global average Pooling and
global max pooling separately. The global pooling layer is a method of replacing values
of the same channel with one average or maximum value. Overfitting can be prevented
because the parameters are reduced. If an input of size (height, width, channel) passes
through the global pooling layer, it becomes (1, 1, channel). The two outputs obtained
through this process were connected after batch normalization and dropout were performed.
In batch normalization, the activations of each neuron in a layer are normalized using
the mean and standard deviation of the activations in a subset of the training data. The
normalized activations are then scaled and shifted using learned parameters. In dropout,
neurons are randomly dropped out during each iteration of training, with a specified
probability. These processes help to ensure that the network will be able to generalize new
data well, while still being able to learn effectively from the training data. The second
branch took a 46-dimensional feature set as input. The feature set was input to a dense layer
consisting of 256 nodes, and batch normalization and dropout were performed. The output
became the input to a dense layer with the same number of nodes, and batch normalization
and dropout were performed once more. The above process was performed in the same
way for the dense layer consisting of 64 nodes to obtain another output. The two outputs
were then connected. The outputs obtained through the first branch and the second branch
were connected and became the input to the dense layer, and batch normalization and
dropout were performed. Finally, the sigmoid function was used to calculate the value, to
distinguish whether the input was the cough sound of COVID-19-positive individual or
negative individual. Figure 2 shows the flow chart of the model.
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4. Experiment

In the experimental step, we carried out a procedure to verify that the feature set
proposed in this study and the combined model of Resnet-50 and DNN were effective
at detecting COVID-19. The experiment was conducted by using a combination of the
various datasets and feature sets. For example, for the same database, the results of
training using ‘A feature set’ and the results of training using ‘B feature set’ were compared.
The hyperparameters used in the experiment were set to optimizer Adam, learning rate
0.001, and epoch 50. The experimental results of this study were compared with those of
previous studies.

4.1. Evaluation Index

Accuracy, sensitivity, specificity, and precision, which are frequently used to evaluate
the performance of classification models, were used to evaluate the training results. The
focus was on sensitivity and specificity, which are primarily considered when measuring
the reliability of the actual COVID-19 test diagnosis method. Figure 3 is a confusion matrix
used to calculate the above indicators.
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Sensitivity is the ratio of data predicted as positive (TP) to the actual positive class
(TP + FN), and specificity is the ratio of data predicted as negative (TN) to the actual
negative class (FP + TN). A high sensitivity means that there is a low probability of a false
negative, i.e., a low probability of a positive being falsely classified as negative.

4.2. Results

The results of each study are shown in Table 5 (a) to (d) show the results using the
LSTM model and the ResNet-50 model, not the model proposed in this study. (a) and
(b) are the results of Son [23] using COUGHVID data, and (c) and (d) are the results
using the dataset constructed in this study. (e) to (i) are the results verifying the feature
set we proposed. All used a model that combined ResNet-50 and DNN. (e) is the result
of study by Fakhry et al. [22], using 13 MFCCs and a mel spectrogram as features from
the COUGHVID dataset only, and the accuracy, sensitivity, and specificity was 0.89, 0.93,
and 0.86, respectively. (f) is the result of Son et al. [23], using seven features (13 MFCCs,
spectral centroid, spectral bandwidth, spectral contrast features, spectral flatness, spectral
roll-off, and chroma), and a mel spectrogram. The accuracy, sensitivity, and specificity of
Son’s study were 0.94, 0.93, and 0.94, respectively. (g) to (i) are the experimental results
obtained in this study, and the model was trained using data from Cambridge, Coswara,
and COUGHVID. (g) is an extension of only the database in Fakhry’s study, with the others
remaining the same. The result had an accuracy of 0.93, a sensitivity of 0.93, a specificity of
0.93, and a precision of 0.93. (h) shows the model trained with the feature set proposed by
Son’s study, and the result gave an accuracy of 0.92, a sensitivity of 0.90, a specificity of 0.94,
and a precision of 0.90. (i) is the method proposed in this study. The model was trained
using the configured feature set, MFCC, ∆-MFCC, ∆2-MFCC, and spectral contrast. The
result had an accuracy of 0.96, a sensitivity of 0.95, a specificity of 0.96, and a precision of
0.95. This performance showed a better result than the previous studies mentioned above.
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Table 5. Comparison of the results.

Database Feature Set Model
Performance

Accuracy Sensitivity Specificity

(a) COUGHVID MFCC LSTM 0.62 0.60 0.62
(b) COUGHVID Spectrogram ResNet-50 0.88 0.90 0.88

(c) Cambridge + Coswara
+ COUGHVID MFCC LSTM 0.62 0.58 0.67

(d) Cambridge + Coswara
+ COUGHVID Spectrogram ResNet-50 0.91 0.87 0.93

(e) COUGHVID [22] ResNet-50 + DNN 0.89 0.93 0.86
(f) COUGHVID [23] ResNet-50 + DNN 0.94 0.93 0.94

(g) Cambridge + Coswara
+ COUGHVID [22] ResNet-50 + DNN 0.93 0.93 0.93

(h) Cambridge + Coswara
+ COUGHVID [23] ResNet-50 + DNN 0.92 0.90 0.94

(i) Cambridge + Coswara
+ COUGHVID

Proposed feature
set + spectrogram ResNet-50 + DNN 0.96 0.95 0.96

To statistically verify the above results, a statistical analysis method was used. For the
results of (e) to (i), which are experiments using the proposed model, one-way analysis
of variance (ANOVA) was used to confirm whether the differences in performances are
statistically significant. Table 6 shows the ANOVA results. The p-value was 0.0205, which
is less than 0.05. This indicates that the difference in performance between each experiment
is statistically significant.

Table 6. Results of ANOVA.

Degrees of Freedom Sum of Squares Mean Square Error F Value p-Value

group 4 0.006493 0.001623 4.775 0.0205

Residuals 10 0.003400 0.000340

Thereafter, as a post hoc analysis, differences between performances were confirmed
using the Bonferroni multiple comparison analysis method. It was executed using R studio,
which is widely used for data analysis and statistical computing. Figure 4 shows the
Bonferroni correction results. The performances of (e) to (i) are divided into groups a, ab,
and b, and the difference between the performances is visualized.
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5. COVID-19 Detecting Application

We developed an application using the proposed model so that it could be used
to diagnose COVID-19 in many people. An application for Android, which is a mobile
operating system based on open-source software produced and released by Google, was
produced. Figure 5 shows the execution process of the developed application.
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When the application is executed and recorded, the recording is transmitted to the
server using Transmission Control Protocol (TCP)/Internet protocol (IP) socket communi-
cation. The user’s voice is recorded as a binary pulse-code modulation (PCM) file using the
Android AudioRecord API [32]. In order for the user to play and listen to the recorded file
in the application, the AudioTrack API [33] provided by Android was used. The recording
format is designated as a sampling rate of 48 kHz, stereo channels, PCM 16 bit. The main
screen of application, the screen during recording, and the screen when the recorded voice
is transmitted to the server and processed are all shown in Figure 6.
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during processing.

After receiving the data, the server converts it to a mono-channel WAV file, which is
the same format used by the database data used in this study. Then, the cough segment is
extracted through the preprocessing process described in Section 3.1. The extracted cough
segments are input into the trained model to measure a COVID-19 diagnosis prediction
value, and the result is transmitted to the application. There are three types of results: posi-
tive, negative, and retry. A retry occurs when a cough is not detected during preprocessing.
The application shows the diagnosis result screen based on the results transmitted from the
server. Figure 7 shows a screen displaying diagnostic results from the application.
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6. Conclusions

In this study, we proposed a COVID-19 diagnostic model and its application based on
an artificial intelligence (AI) model with optimized feature vectors using cough sounds. The
Bhattacharyya distance was used to measure the separability of features from COVID-19-
positive cough data and negative cough data. MFCC, ∆-MFCC, ∆2-MFCC, spectral contrast,
chroma, spectral flatness, spectral bandwidth, spectral roll-off, RMS energy, spectral cen-
troid, zero-crossing rate, and onset showed high values, in that order. The highest-valued
MFCC had a value of 0.207171. Subsequently, ∆2-MFCC had a value of 0.149195, ∆-MFCC
had a value of 0.099828, and spectral contrast had a value of 0.090616. These top four
features made up the feature set that this study proposed. After training the combined
ResNet-50 and DNN model, the result had an accuracy of 0.96, a sensitivity of 0.95, a speci-
ficity of 0.96, and a precision of 0.95. Using this model, an application for Android was
developed so that many people could use it for COVID-19 testing. The COVID-19 test
model using cough sounds, the result of this study, has a simpler procedure and lower cost
than the polymerase chain reaction (PCR) test that analyzes genes. Moreover, it is expected
that this application will be a useful tool for those who are unable to do a PCR test, as it is
difficult to insert a cotton swab into the nasopharynx due to anatomical or medical issues.
In future studies, the model can be upgraded by using not only cough sound data but also
clinical information data, including information on fever, headache, and other symptoms.
In addition, if more quality cough sound data are collected and utilised, improved results
can be expected.
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Abbreviation
AI Artificial intelligence
ANN Artificial neural network
ANOVA Analysis of variance
AUC Area under the ROC curve
CT Computed tomography
DNN Deep neural network
FN False negative
FP False positive
IP Internet protocol
KNN K-Nearest neighbors
MFCC Mel frequency cepstral coefficients
PCM Pulse code modulation
PCR Polymerase chain reaction
RMS Root mean square
RNN Recurrent neural network
ROC Receiver operating characteristic
RT-PCR Reverse transcription polymerase chain reaction
SVM Support vector machine
TCP Transmission control protocol
TN True negative
TP True positive
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