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Abstract
The year 2020 will certainly be remembered in human history as the year in which humans faced a global pandemic that
drastically affected every living soul on planet earth. The COVID-19 pandemic certainly had a massive impact on human’s
social and daily lives. The economy and relations of all countries were also radically impacted. Due to such unexpected
situations, healthcare systems either collapsed or failed under colossal pressure to cope with the overwhelming numbers
of patients arriving at emergency rooms and intensive care units. The COVID -19 tests used for diagnosis were expensive,
slow, and gave indecisive results. Unfortunately, such a hindered diagnosis of the infection prevented abrupt isolation of
the infected people which, in turn, caused the rapid spread of the virus. In this paper, we proposed the use of cost-effective
X-ray images in diagnosing COVID-19 patients. Compared to other imaging modalities, X-ray imaging is available in most
healthcare units.Deep learningwas used for feature extraction and classification by implementing amulti-streamconvolutional
neural network model. The model extracts and concatenates features from its three inputs, namely; grayscale, local binary
patterns, and histograms of oriented gradients images. Extensive experiments using fivefold cross-validation were carried out
on a publicly available X-ray database with 3886 images of three classes. Obtained results outperform the results of other
algorithms with an accuracy of 97.76%. The results also show that the proposed model can make a significant contribution to
the rapidly increasing workload in health systems with an artificial intelligence-based automatic diagnosis tool.
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1 Introduction

The contagious severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) emerged in Wuhan, China near the
end of the year 2019. It was then declared as a pandemic by
WorldHealthOrganization (WHO)at the beginningofMarch
2020. Due to its rapid airborne transmission, the number of
infected cases of COVID-19 disease exceeded 82million and
the number of fatalities exceeded 1.7 million by the end of
the year 2020. These numbers tragically reached nearly 200
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million infections and 4.27million fatalities by the beginning
of August 2021.

Such a rapid increase in the number of cases by the pan-
demic surpassed the capacity of hospitals in many countries
both instrument-wise and staff-wise which put the whole
healthcare systems in jeopardy. Therefore, it was crucial to
be able to detect and isolate infected people in a fast, cheap,
and reliable manner. The real-time polymerase chain reac-
tion (RT-PCR) test is widely used for diagnosis. It has the
drawback of giving late results and it is also sometimes incon-
clusive in negative cases. On the other hand, it was clear that
even at the early stages of the infection, the chest imaging
was showing clear indications of the infection by COVID-19
which in turn helped to make faster and accurate decisions
by doctors/radiologists.

Based on these findings, many studies have been carried
out to automatically diagnose tomography and X-ray images
using image processing and artificial intelligence techniques.
Wehbe et al. [1] developed a system called DeepCOVID-XR
where they combined six different deep learningmodels with
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a binary classifier. They tested their system on a database
of 17,002 X-ray images with two classes (normal, COVID-
19). Al-Waisy et al. [2] had a preprocessing stage for their
model that they applied on a smaller database with 800
X-ray images. They fused the weighted decisions of the
two trained proposed models and managed to obtain very
high results. Their result is hard to be generalized due to
their small database. Researchers in [3] developed a CNN
model that extracted two types of features from the X-ray
images. These features were then fed to 4 different classi-
fiers before combining their outputs. The dataset contained
4600 X-ray images collected from different public databases
and achieved a very high accuracy rate. Ismael et al. [4] pro-
posed different deep learning-based approaches (deep feature
extraction, fine-tuning and end-to-end training) to classify
180 COVID-19 and 200 healthy chest X-ray images. They
obtained the highest result (94.7% accuracy score) with deep
features extracted from theResNet50model and SVMclassi-
fier. Alam et al. [5] used HOG and CNN as feature extractors
from X-ray images before fusing them. They used the fused
features to train a 2-class (normal, COVID-19) VGG classifi-
cation network. They achieved a 98.36% accuracy score with
fivefold cross-validation on a dataset consisting of a total of
5090 X-ray images which included 1979 COVID-19 positive
images.

The previously mentioned results worked on databases
with normal and COVID-19 classes. Other researchers con-
ducted their studies on databases with three classes, namely;
normal, COVID-19 and pneumonia. Togacar et al. [6] for
instance, used preprocessing fuzzy color technique. The orig-
inal images in a small database of 458 X-ray images with
295 COVID-19 positive images were used to construct and
stack new images. They combined the features obtained from
two different pre-trained networks using social mimic opti-
mization on the stacked dataset using three classes with an
SVM classifier. Abbas et al. [7] developed a system called
DeTraC where they used AlexNet for feature extraction and
transfer learning method with ResNet18 as a pre-trained net-
work. Their database originally had 196 X-ray images that
included 105 COVID-19 positive images. They increased
the images with augmentation to 1764 images. On the other
hand, Ozturk et al. [8] built a model named DarkCovidNet
which was inspired by the DarkNet. They tested their sys-
tem on a database of 1125 X-ray images which included 125
COVID-19 positive images. Moreover, Chowdhury et al. [9]
created a public COVID-19 X-ray images database of 3487
X-ray images by combining several public sources. They
used transfer learning on different pre-trained networks for
COVID-19 diagnosis with two and three classes. While, they
achieved the best performance with the CheXNet model on
original images and, on augmented images, theDenseNet201

model achieved the best performance. Later on, they enlarged
their database to a total of 3886 images.

All the accuracy results of the aforementioned researches
were promising and showed high potential for using X-ray
images for automatic and prompt diagnosis and detections
of the COVID-19 on the infected patients. In this paper, a
novel application of a 3-stream fusion-based deep learning
model is proposed for the detection of COVID-19 and Viral
Pneumonia based on chest X-ray images. We proposed a
model that uses deep learning by developing a 3-streamCNN
model. The CNN model extracts and concatenates the fea-
tures obtained from the grayscale, LBP, and HOG images
before using it for making a final decision.

The rest of the paper is organized as follows: Sect. 2
describes the database used and algorithms. Section 3
explains the methodology of the proposed system. Results
and findings are listed and discussed in Sect. 4. Finally, the
paper is concluded in Sect. 5.

2 Database and algorithms

2.1 Chest X-ray database

In this study, the COVID-19 radiography database v3 cre-
ated by Chowdhury et al. [9] was used. The database was
created using several sources [10–15]. There are a total of
3886 images in the COVID-19 Radiography dataset, includ-
ing 1200 Covid-19 positive, 1341 normal, and 1345 viral
pneumonia. Sample images from the database are given in
Fig. 1.

2.2 Local binary pattern LBP

Local binary pattern (LBP) is a powerful feature extraction
method for texture classification developed by Ojala et al.
[16]. In the LBP method, we consider a 3×3 window with
the pixel of interest being at the center. The intensity of the
center pixel of thewindow is considered as the threshold.This
threshold is then compared with the other eight neighboring
pixels’ intensity values. Each of the neighboring pixels will
obtain the value zero if its intensity is below the threshold
and the value one if its intensity is higher than or equal to
the threshold. The result will be a binary 8-bit code that can
be converted to a decimal value. The starting point of the
8-bit code is not important but it is essential to be consistent
for all pixels and all images. This decimal value (which is in
the range 0–255) will replace the value of the corresponding
center pixel. With the application of these steps on every
single pixel of the image, the LBP image can be obtained as
shown in Fig. 2.
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Fig. 1 Sample images from database. a Normal b COVID-19 c Pneumonia

Fig. 2 Calculation of the LBP image

Fig. 3 Calculation of feature descriptor, magnitude and direction of the
gradient

2.3 Histograms of oriented gradients HOG

The histograms of oriented gradients (HOG) is a gradient
calculation-based feature descriptor that was first used by
Dalal and Triggs in their study on human detection [17].
Accordingly, the gradient magnitude and direction of each
central pixel in the determined neighborhood are calculated
with the help of sliding windows on the image. First, the fea-
ture descriptor is obtained by taking the difference between
horizontal and vertical pixels neighboring the central pixel
(Fig. 3).

Using this feature descriptor, the magnitude (Eq. 1) and
direction (Eq. 2) values of each pixel of the image are cal-
culated. For the visualization of HOG, bin histograms are
created from line segments by using the magnitudes and
directions in the specified neighborhood and angle range.

Magnitude ofGradient �
√
(gx )2 +

(
gy

)2

�
√
(50)2 + (−50)2

� 70.71 (1)

Direction ofGraident � arctan

(
gy
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)

� arctan

(−50

50

)

� −45◦ (2)

3 Methodology

Images in the dataset are first resized to 224×224 pixels.
The local binary pattern (LBP) and histograms of oriented
gradients (HOG) features are then calculated. Since the size
of the virus-infected areas is relatively small compared to
chest images, 3×3 window size is preferred. For this reason,
eight neighboring pixels in LBP calculation, 3×3 neigh-
boring pixels, and nine angle ranges in HOG calculation
were assigned as parameter values. Sample images from
the dataset and its obtained LBP, HOG images are shown
in Fig. 4.

In this study, a multi-stream CNN with three inputs was
designed. The three inputs are the grayscale X-ray image,
the corresponding LBP, and HOG images. In the proposed
network, each of the three input images passes in parallel
through a Feature Extraction Module (FEM). The FEM con-
sists of five feature extraction layers (see Fig. 5).

Each of the FEM layers consists of a convolution layer
with 3×3 filter size (has filter outputs of size 16, 32, 64, 128,
and 256, respectively, in each of the five layers of FEM), a
batch normalization layer (only at the first layer of FEM),
a ReLU activation layer, an average pooling layer with 2×
2 pool size and a dropout layer with 0.15 ratio (0.5 in the
last layer of FEM). Features obtained from the three separate
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Fig. 4 Images samples from dataset: a X-ray images b corresponding
LBP images c corresponding HOG images

Fig. 5 Feature Extraction Layer

outputs (features) of the final FEM layers are combined as a
single tensor at the concatenation layer.

The fused feature tensor passes to the classification mod-
ule, which consists of the Flattening layer, the Dense layer
of 512 neurons, the ReLU layer, the Dropout layer, and the
Dense layer of 3 neurons. The classification result is obtained
at the dense layer with the Softmax activation function. The
proposed CNN architecture is shown in Fig. 6.

4 Results and discussion

All codes in this study were written in Python and ran in
a Google Colaboratory environment. Tensorflow framework
and Keras libraries were used to define the CNN model. In
the proposed model, stochastic gradient descent was used as
an optimization algorithm and categorical cross-entropy is
used as a loss function. fivefold cross-validation was used to
test model performance. This method divides the database
into five equal subsets and each fold uses different subsets.
In this study, three of these subsets were used for training,
one for validation, and one for testing. Thus, all samples in
the dataset are used for training, validation, and testing of the
model (Fig. 7).

The model was trained using 25 iterations and 16 batch-
size. Figure 8 shows the accuracy and loss plot on model
training for 5th fold.

In each fold, the model is compiled and trained from
scratch. As a result, five different confusion matrices are
obtained from model testing results. Figure 9 shows the con-
fusion matrices obtained by evaluating the model on each
fold.

Using the results of these matrices, TP—true positives
(positive samples correctly predicted to be in their corre-
sponding class by the model), TN—true negatives (negative
samples correctly predicted to be in their corresponding
class), FP-false positives (negative samples incorrectly pre-
dicted to be in other classes), and FN-false negatives (positive
samples incorrectly predicted to be in other classes) were cal-
culated for each class. Afterward, the precision (Eq. 3), recall
(Eq. 4), specificity (Eq. 5), F1 Score (Eq. 6), and accuracy
(Eq. 7) of the proposed model were calculated.

Precision � TP

TP + FP
(3)

Recall � TP

TP + FN
(4)

Specificity � TN

TN + FP
(5)

F1Score � 2 × Precision × Recall

Precision + Recall
(6)

Accuracy � TP + TN

TP + TN + FP + FN
(7)
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Fig. 6 Architecture of the proposed 3-stream fusion-based CNN model

Fig. 7 Splitting the database into five subsets with fivefold cross vali-
dation

In the fivefold cross-validation, the performance scores
for each fold were calculated, and the average score was
taken at the end.Model performance scores such as precision,
recall, specificity, F1-score, and accuracy for each fold and
the corresponding average scores are given in Table 1.

In Table 2, a comparison of the results obtained using
the proposed algorithm against other most recent studies
on the diagnosis of COVID-19 is given. All results in this
table are conducted on public X-ray image databases with
three classes. Wang et al. [18] developed a deep convo-
lutional neural network called COVID-Net and achieved a
93.30% accuracy on a database of 13.975 X-ray images.
Chandra et al. [19] extracted 8196 features using three dif-
ferent feature extractors and used a meta-heuristic binary
grey wolf optimization approach for selecting the most
informative features. They passed the selected features to a
majority voting-based classifier ensemble of five benchmark
supervised classification algorithms and managed to achieve
93.41%accuracy on three classes.On the other hand, Ibrahim
et al. [20] used a pre-trainedAlexNetmodel on publicly avail-
able multiclass X-ray images and achieved a 94% accuracy
rate for three classes. Results in [21] show that they achieved

Fig. 8 Accuracy and loss plots on model training for 5th fold

a success rate of 94.2% with the developed 22-layer CNN
model.

Another CNNmodel named CFW-Net based on the chan-
nel feature weighting was developed by Wang et al. [22]
reached a 94.35% accuracy rate. Khan et al. [23] applied
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Fig. 9 Confusion matrices for each fold: a 1st Fold b 2nd Fold c 3rd
Fold d 4th Fold e 5th Fold

the transfer learning method with the Xception model on
a small dataset containing 284 COVID-19 positive images.
They achieved a 95% accuracy performance rate for three
classes which is not a high performance considering the size
of their database. Meanwhile, Asif et al. [24] trained the
Inception V3-based deep CNN model using a public dataset
containing 864 COVID-19 positive images and achieved a
96% success rate. Bayoudh et al. [25] developed a transfer
learning-based hybrid 2D/3DCNNarchitecture and achieved
a 96.91% accuracy rate. Pham [26] achieved the highest
performance with the AlexNet model reaching 97.59% for

three classes with 438 COVID-19 images. The study was
performed using a fine-tuning method with three different
pre-trained CNNs. It is clear that the proposed feature fusion-
based model in this study outperformed the other models
considering the size of the used database.

The performance of deep learning models is highly pro-
portional to the size of the database. As the database size
increases, the stability of the model is positively affected.
In the early days of the pandemic, it was not possible to
reach many publicly available images. Later on, with the
spread of the pandemic in all countries and the increase in
the number of infected people, more images began to be
shared. Accordingly, this enabled researchers to train their
models using thousands of COVID-19 positive raw images
instead of hundreds. Taking this into consideration, some of
the high results obtained at the early stages of the pandemic
based on small-sized databases such as in [6, 7] cannot be
reliable. The performance reported on such databases should
be evaluated on larger databases. Otherwise, the findings of
these studies cannot be generalized.

A comparison of the proposed 3-stream fusion-based
CNN model against 1-stream CNN models is presented in
Table 3. 1-stream CNN model uses only one of the 3 images

Table 1 Fivefold
cross-validation model
performance scores

Precision (%) Recall (%) Specificity (%) F1-score (%) Accuracy (%)

1st Fold 98.10 98.07 99.06 98.07 98.07

2nd Fold 97.44 97.43 98.68 97.43 97.43

3rd Fold 97.94 97.94 98.90 97.94 97.94

4th Fold 97.84 97.81 98.85 97.81 97.81

5th Fold 97.56 97.55 98.72 97.56 97.55

Average 97.78 97.76 98.84 97.76 97.76

Table 2 Comparison of studies with 3-class public datasets for COVID-19 detection

Refs Total/positive samples Validation Precision (%) Recall (%) Specificity (%) F-Score (%) Accuracy (%)

[6] 458/295 – 98.89 98.33 99.69 98.57 99.27

[7] 196/105 – – 97.91 91.87 – 95.12

[8] 1125/125 Fivefold 89.96 85.35 92.18 87.37 87.02

[9] 3487/423 Fivefold 96.61 96.61 98.31 96.61 97.74

[18] 13,975/358 – 93,56 93.33 – – 93.30

[19] 2346/434 – – – – – 93.41

[20] 7431/371 – – 91.30 84.78 – 94.00

[21] 2100/500 Fivefold 94.04 92.5 94.56 91.32 94.20

[22] 6252/412 – 96.52 94.33 97.17 95.41 94.35

[23] 1251/284 Fourfold 95.00 96.90 97.50 95.60 95.00

[24] 3550/864 – – – – – 96.00

[25] 3440/754 – – 98.33 98.68 – 96.91

[26] 3124/438 – 98.55 95.45 97.76 96.90 97.59

Proposed 3886/1200 Fivefold 97.78 97.76 98.84 97.76 97.76
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Table 3 Comparison between
the proposed 3-stream
fusion-based CNN model and
the corresponding 1-stream
versions

3-Stream network 1-Stream networks

grayscale LBP HOG

Training time (min) 3.55 1.56 1.52 1.80

Prediction time (sec/image) 0.0029 0.0011 0.0011 0.0011

Loss rate 0.07 0.11 0.11 0.12

Accuracy rate 97.76 95.80 95.67 95.31

(grayscale, LBP or HOG image) as input to the model. The
training of the fusion-based model and average prediction is
taking relatively longer time than the 1-stream CNNmodels.
Time consumption for training the model should not be an
issue due to the fact that the process is one-time off-line pro-
cess. One the other hand, the proposed 3-stream fusion-based
model recorded better loss rate and accuracy.

5 Conclusions

In this paper, we proposed a deep learning-based diagno-
sis of COVID-19 on possibly infected patients using chest
X-ray images. Besides the availability of X-ray imaging in
most healthcare units, the other test techniques were expen-
sive and gave late, and sometimes inconclusive, results.
The proposed approach designed a 3-stream convolutional
neural network (CNN) that extracts and concatenates fea-
tures obtained from grayscale X-ray, LBP, and HOG images.
The fivefold cross-validation experiments carried out on a
large chest X-ray database with three classes showed that
our proposed approach outperformed the recently developed
algorithmswith accuracy reached 97.76%.High results, from
other studies, obtained using small databases were listed
in Table 2 but were not taking into consideration. This is
because such results using small databases cannot be reli-
able and cannot be generalized. Our results showed that the
proposed model can make a significant contribution to the
rapidly increasing workload in health systems with a deep
learning-based automatic diagnosis tool. Moreover, having a
standard benchmark database that can be used by researchers
to evaluate and compare their work against others will be of
great value. It will make it easier to evaluate proposed algo-
rithmsobjectivelywithout any biasing.Also, larger databases
will help to obtain reliable and trustworthy results and find-
ings.
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