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a b s t r a c t

The current global health emergency triggered by the pandemic COVID-19 is one of the greatest
challenges we face in this generation. Computational simulations have played an important role to
predict the development of the current pandemic. Such simulations enable early indications on the
future projections of the pandemic and is useful to estimate the efficiency of control action in the
battle against the SARS-CoV-2 virus. The SEIR model is a well-known method used in computational
simulations of infectious viral diseases and it has been widely used to model other epidemics such as
Ebola, SARS, MERS, and influenza A. This paper presents a modified SEIRS model with additional exit
conditions in the form of death rates and resusceptibility, where we can tune the exit conditions in the
model to extend prediction on the current projections of the pandemic into three possible outcomes;
death, recovery, and recovery with a possibility of resusceptibility. The model also considers specific
information such as ageing factor of the population, time delay on the development of the pandemic
due to control action measures, as well as resusceptibility with temporal immune response. Owing
to huge variations in clinical symptoms exhibited by COVID-19, the proposed model aims to reflect
better on the current scenario and case data reported, such that the spread of the disease and the
efficiency of the control action taken can be better understood. The model is verified using two case
studies based on the real-world data in South Korea and Northern Ireland.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The coronavirus disease COVID-19 is a respiratory infection
disease caused by the novel coronavirus, SARS-CoV-2. The first
COVID-19 outbreak was reported in Wuhan of Hubei Province,
China at the end of December 2019. Within just two months,
the disease has rapidly spread across the world and it has been
declared a global pandemic in early March 2020. As of 20th
April 2020, the virus has affected close to 2.5 million people
with approximately 170,000 confirmed deaths across at least 184
countries [1].

The symptoms caused by the SARS-CoV-2 virus have large
variations with most people only experiencing mild to moderate
respiratory illnesses and only a smaller group of people would
develop complications of respiratory failure or acute respiratory
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distress syndrome. Based on clinical data reported from Wuhan

where the outbreak began, elderly patients have been identified

to have higher odds to experience severe symptoms with higher

mortality rate compared to people of younger age [2]. Study

also shows that up to approximately 80% of the people infected

with SARS-CoV-2 are asymptomatic carriers, i.e. they experience

no or mild symptoms but are still able to transport the virus

to others [3]. This has caused the detection and containment

of the SARS-CoV-2 virus to be much more challenging. As a

result, social distancing has been widely implemented in many

countries worldwide to slow down the transportation of the

virus through minimised human-to-human contact. Individuals

who have recovered from COVID-19 after experiencing mild or

moderate symptoms are more likely to develop temporary re-

sistance towards the virus and are unlikely to experience severe

respiratory illnesses [4]. However, in rare occasions, there have

been clinical findings showing that patients who have recovered

from the disease have been tested positive again. For instance, in

February 2020, a patient in Osaka, Japan, has been tested positive

towards the SARS-CoV-2 a few days after being discharged from

https://doi.org/10.1016/j.physd.2020.132599

0167-2789/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2020.132599
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132599&domain=pdf
mailto:mark.ng@ulster.ac.uk
mailto:m.gui@qub.ac.uk
https://doi.org/10.1016/j.physd.2020.132599


2 K.Y. Ng and M.M. Gui / Physica D 411 (2020) 132599

the hospital for treatment with the disease [5]. Due to very
limited knowledge on the immune response of humans to this
novel virus, the possibility of reinfection cannot be ruled out at
the moment.

Mathematical modelling and computational simulations have
played important roles in describing the dynamics of infectious
diseases using nonlinear systems so that their risks could be
better understood [6–11]. Most notably, the SEIR (Susceptible–
Exposed–Infected–Removed/Recovered) model has been widely
reported during the past decades in quantitative modelling stud-
ies of infectious epidemics/pandemics, such as the severe acute
respiratory syndrome (SARS) in 2002 [12], the influenza A (pH1N1)
pandemic in 2009 [13], the Middle East respiratory syndrome
(MERS) pandemic in 2013 [14], as well as the latest Ebola out-
break in 2018 [15]. The SEIR model represents a typical infectious
epidemic disease using four distinctive phases; susceptible (S)
represents the population that has yet to be infected by the virus;
exposed (E) represents the number of individuals exposed to the
virus; infected (I) models the number of people infected, have
demonstrated symptoms, and are able to spread the virus to
the people in the S compartment; and lastly, recovered/removed
(R) models the number of people who have recovered and are
assumed to have immune response towards the virus [16–19].
Thus, based on the model, the S compartment will slowly deplete
as the outbreak prolongs further, and the virus will eventually
die out due to insufficient population within the S compartment.
This compartmental modelling method allows transport of pop-
ulation from one compartment to another, where the disease
transmission rates with respect to time can be simulated.

In this work, we propose a modified SEIRS model based on the
Kermack–McKendrick model [20] with consideration for time de-
lay and resusceptibility to the virus after recovery. In this model,
the probability of a recovered patient to be reinfected with SARS-
CoV-2 is taken into consideration to predict the future projection
of COVID-19 cases. Resusceptibility is one of the crucial keys that
could possibility lead to a prolonged COVID-19 pandemic. Time
delay in the control action representing the time taken for the
authorities to act on the virus and also the duration of short-
term immunity after recovery, which may lead to resusceptibility,
are also considered in the model. The time delay factor is ap-
plied to enhance the robustness and accuracy of the model and
simulation, hence to better reflect on the timely situation with
specific measures to control the transmission of the disease. The
consideration for resusceptibility with time delay is an important
highlight in this paper as it has rarely been considered in the
SEIR models reported thus far [18,21,22]. Other than that, we also
included information such as demographic details for the ageing
population, who seem to experience a higher fatality rate due to
COVID-19 [23].

This paper is organised as follows: Section 2 introduces the
mathematical model; Section 3 presents the theoretical proofs
for the positivity, boundedness, and stability of the model, as
well as describes the model with time delay factors for the
control action and potential resusceptibility; Section 4 verifies the
proposed model and also provides some extensive results and
discussions on predictions using the model through case studies
based on real-world data; and Section 5 concludes the paper.
Appendix A presents the design of the simulation package using
the MATLAB/Simulink environment.

2. Modelling COVID-19 using modified SEIRS

First, let us consider the modified SEIRS model system below,

dS(t)

dt
= Λ − µS(t) − β(1 − σ )S(t)I(t) + Rs(t), (1)

dE(t)

dt
= β(1 − σ )S(t)I(t) − (µ + α)E(t), (2)

dI(t)

dt
= αE(t) − (µ + γ )I(t) − ∆I(t) (3)

dR(t)

dt
= γ I(t) − µR(t) − Rs(t), (4)

dD(t)

dt
= ∆I(t), (5)

where S(t), E(t), I(t), R(t), and D(t) represent the susceptible, ex-
posed, infected, recovered/removed, and deaths compartments,
respectively. It is established that S(t)+E(t)+ I(t)+R(t)+D(t) =

N(t), where N(t) is the total stock population. The constant Λ is
the birth rate in the overall population and µ is the death rate due
to conditions other than COVID-19. The parameter β is the rate
of transmission per S-I contact, α is the rate of which an exposed
person becomes infected, and γ is the recovery rate. Therefore,
the incubation and recovery times are τinc = 1/α and τrec = 1/γ ,
respectively. The constant σ is the efficiency of the control action
to reduce the infection rate and to flatten the curve. It has a
direct effect on the basic reproduction number R0, which will be
explained further later in this paper.

The parameter ∆ = δ [(1 − κold)Nold + (1 − κ)(1 − Nold)] comes
into effect in the worst case scenario where the patient does not
recover from the virus. We model the fatality rate with influence
of the fraction of elderly population (above 65 years of age)
within the community Nold, where the percentages of nonelderly
and elderly who recovered are κ and κold, respectively. The time
spent hospitalised or infected in fatal cases is τhosp = 1/δ. In this
paper, we establish that τhosp = τrec , assuming that patients spend
the same amount of time hospitalised or infected, whether they
recover from the virus or not.

The function Rs(t) represents the resusceptible stock, which
can be computed from the recovered population using

Rs(t) = ξR(t), (6)

where ξ is the percentage of the recovered population who
are resusceptible to the virus. The number of actual recovered/
removed cases with permanent immunity can then be written
using

Rc(t) = R(t) − Rs(t). (7)

In an ideal situation, population who recovered develop perma-
nent immunity against the virus, i.e. ξ = 0. As a result, (6)
becomes Rs(t) = 0 and subsequently, (7) becomes Rc(t) = R(t).

3. Positivity, boundedness, and equilibrium analysis of the

model

3.1. Positivity of the solutions

Lemma 1. The solutions to all subpopulations (S(t), E(t), I(t), R(t),
D(t)) in the system (1)–(5) are nonnegative for all time t ≥ 0
given any finite nonnegative initial conditions of (S(0) ≥ 0, E(0) ≥

0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0).

Proof. Firstly, it is established that all subpopulations (S(t), E(t),
I(t), R(t),D(t)) defined by the system (1)–(5) are continuously
differentiable. As such, if all subpopulations have nonnegative
initial conditions, and that if any of the subpopulations is zero
at time t = ti ≥ 0, its derivative is nonnegative by inspection.
Assume that S(0) ≥ 0, S(t1) = 0, and Rs(t1) ≥ 0 at time instant
t = t1. Then, we can rewrite (1) using

dS(t1)

dt
= Λ + Rs(t1) ≥ 0,
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where we can establish that S(t+1 ) ≥ 0 and hence, S(t) is non-

negative for all time t ≥ 0. Next, assume that E(0) ≥ 0, E(t2) =

0, S(t2) ≥ 0, and I(t2) ≥ 0 at time instant t = t2. We can rewrite

(2) using

dE(t2)

dt
= β(1 − σ )S(t2)I(t2) ≥ 0,

so that E(t+2 ) ≥ 0 and hence, E(t) is nonnegative for all time t ≥ 0.

Assume that I(0) ≥ 0, I(t3) = 0, and E(t3) ≥ 0 at time instant

t = t3. Eq. (3) then becomes

dI(t3)

dt
= αE(t3) ≥ 0,

where we can establish that I(t+3 ) ≥ 0 and hence, I(t) is nonneg-

ative for all time t ≥ 0. Assume that R(0) ≥ 0, R(t4) = 0, and

I(t4) ≥ 0 at time instant t = t4. Eq. (4) can be rewritten using

dR(t4)

dt
= γ I(t4) ≥ 0,

so that R(t+4 ) ≥ 0 and hence, R(t) is nonnegative for all time t ≥ 0.

Finally, assume that D(0) ≥ 0, D(t5) = 0, and I(t5) ≥ 0 at time

instant t = t5. We can then rewrite (5) using

dD(t5)

dt
= ∆I(t5) ≥ 0,

where we can establish that D(t+5 ) ≥ 0 and hence, D(t) is

nonnegative for all time t ≥ 0.

It can be seen that since none of the subpopulations would

have a negative derivative at any time instant of t = ti when all

other subpopulations are nonnegative, then it can be concluded

that all subpopulations are nonnegative for all time t ≥ 0. As a

result, given that N(t) = S(t)+ E(t)+ I(t)+ R(t)+D(t), the stock

population N(t) is also nonnegative for all time t ≥ 0. Hence, the

proof is complete. □

3.2. Boundedness of the solutions

Lemma 2. The stock population N(t) is finitely upperbounded for

any nonnegative initial conditions.

Proof. The dynamics of the stock population can be written using

dN(t)

dt
=

dS(t)

dt
+

dE(t)

dt
+

dI(t)

dt
+

dR(t)

dt
+

dD(t)

dt
,

= Λ − µ(S(t) + E(t) + I(t) + R(t)),

= Λ − µ(N(t) − D(t)). (8)

Assuming that N(t) ≫ D(t), and since Lemma 1 has estab-

lished that all subpopulations are nonnegative and given that all

parameters are assumed to be positive, then (8) becomes

dN(t)

dt
≈ Λ − µN(t). (9)

We can then deduce that

dN(t)

dt
≤ Λ − µN(t), (10)

where an integration of the inequality (10) yields

N(t) ≤ N(0)e−µt +
Λ

µ

(

1 − e−µt
)

≤ max

(

N(0),
Λ

µ

)

,

for all time t ≥ 0. As a result, the stock population is finitely

upperbounded and hence, the proof is complete. □

3.3. Disease-free equilibrium

Lemma 3. The disease-free equilibrium EDFE is locally asymptoti-
cally stable if the basic reproduction number R0 < 1.

Proof. The disease-free equilibrium can be obtained by equating
equations (1)–(4) to zero, hence satisfying

Λ − µS(t) − β(1 − σ )S(t)I(t) + Rs(t) = 0, (11)

β(1 − σ )S(t)I(t) − (µ + α)E(t) = 0, (12)

αE(t) − (µ + γ )I(t) − ∆I(t) = 0, (13)

γ I(t) − µR(t) − Rs(t) = 0, (14)

of which the disease-free equilibrium is given by EDFE = (Λ/µ,
0, 0, 0). Eq. (5) can be removed from this analysis without loss of
generality as other equations do not depend on it. It can then be
shown that the Jacobian for (1)–(4) at EDFE is written using

JDFE =

⎡

⎢

⎢

⎣

−µ 0 −
βΛ(1−σ )

µ
ξ

0 −(µ + α)
βΛ(1−σ )

µ
0

0 α −(µ + γ + ∆) 0
0 0 γ −(µ + ξ )

⎤

⎥

⎥

⎦

. (15)

The characteristic equation can subsequently be obtained by
subtracting λ from the diagonal elements and then computing the
determinant, which yields

(−µ − λ)(−(µ + ξ ) − λ)f1(λ) = 0, (16)

where

f1(λ) = (−(µ + γ + ∆) − λ)(−(µ + α) − λ) −
αβΛ(1 − σ )

µ
. (17)

The first two eigenvalues in (16) can be easily computed to be
λ1 = −µ, λ2 = −µ − ξ , and that they are negative. As for the
remaining eigenvalues, they can be found by solving the quadratic
f1(λ) in (17), which can be expended and represented using

a1λ
2 + a2λ + a3 = 0,

where

a1 = 1,

a2 = 2µ + γ + α + ∆,

a3 = (µ + γ + ∆)(µ + α) −
αβΛ(1 − σ )

µ
.

For the disease-free equilibrium to be stable, i.e. all eigenval-
ues are negative, it is required that

αβΛ(1 − σ )

µ
− (µ + γ + ∆)(µ + α) < 0,

αβΛ(1 − σ )

µ(µ + γ + ∆)(µ + α)
< 1.

As such, the basic reproduction number with the control ac-
tion is defined using

R0 =
αβΛ(1 − σ )

µ(µ + α)(µ + γ + ∆)
, (18)

where for a disease-free system that is locally asymptotically
stable, we need to ensure that R0 < 1 while an unstable EDFE
would translate to R0 > 1. Hence, the proof is complete. □

Should there be no control action taken, i.e. σ = 0, then the
basic reproduction number in (18) becomes

R0 =
αβΛ

µ(µ + α)(µ + γ + ∆)
,

which is similar to other models found in the literature [6,9,10].
See [24] and the references within for a brief study on using
control theory to fight COVID-19.
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3.4. Endemic equilibrium

Lemma 4. The endemic equilibrium EEE is locally asymptotically

stable if the basic reproduction number R0 > 1.

Proof. Let us assume that the system (1)–(4), which other than
the disease-free equilibrium has a unique equilibrium at EEE =

(S∗, E∗, I∗, R∗) such that

S∗ =
Λ

µR0

, (19)

E∗ =
µΛ(µ + γ + ∆)(µ + ξ )(R0 − 1)

αβΛ(1 − σ )(µ + ξ ) − αµγ ξR0

, (20)

I∗ =
µΛ(µ + ξ )(R0 − 1)

βΛ(1 − σ )(µ + ξ ) − µγ ξR0

, (21)

R∗ =
µγΛ(R0 − 1)

βΛ(1 − σ )(µ + ξ ) − µγ ξR0

. (22)

It can be seen that the model has no positive endemic equilibrium
if R0 < 1 since E∗, I∗, and R∗ would be negative, which indicate
an unrealistic biological system. If R0 = 1, then we would have
the disease-free equilibrium EDFE discussed earlier in Section 3.3.
Hence, for a positive endemic equilibrium system, we would
require that R0 > 1.

For the stability analysis of the endemic equilibrium, we use
the Jacobian for (1)–(4) at EEE , which is written using

JEE =

⎡

⎢

⎣

−(µ + ηI∗) 0 −ηS∗ ξ

ηI∗ −(µ + α) ηS∗ 0
0 α −(µ + γ + ∆) 0
0 0 γ −(µ + ξ )

⎤

⎥

⎦
,

(23)

where η = β(1−σ ). The characteristic equation can subsequently
be obtained by subtracting λ from the diagonal elements and then
computing the determinant, which yields

(−(µ + ξ ) − λ)(−λ3 + b1λ
2 − b2λ + b3) − αγ ηξ I∗ = 0, (24)

where

b1 = −(µ + ηI∗) − (µ + α) − (µ + γ + ∆),

= −3µ − α − γ − ∆ − ηI∗,

b2 = (µ + ηI∗)(µ + α) + (µ + ηI∗)(µ + γ + ∆)

+ (µ + α)(µ + γ + ∆) − αηS∗,

= 3µ2 + 2µα + 2µγ + 2µ∆ + αγ + γ∆

+ ηI∗(2µ + α + γ + ∆) − αηS∗,

b3 = −(µ + ηI∗)((µ + α)(µ + γ + ∆) − αηS∗) − αη2S∗I∗,

= −(µ + ηI∗)(µ2 + µ(α + γ + ∆) + α(γ + ∆)) + µαηS∗.

Assuming that αγ ηξ I∗ ≪ (−(µ+ξ )−λ)(−λ3 +b1λ
2 −b2λ+

b3), then the characteristic equation in (24) becomes

(−(µ + ξ ) − λ)(−λ3 + b1λ
2 − b2λ + b3) ≈ 0. (25)

It is obvious that the first eigenvalue is λ1 = −µ−ξ . It can also be
shown that in order for the remaining eigenvalues to be negative
such that the endemic equilibrium is locally asymptotically stable,
i.e. b1 < 0, b2 > 0, and b3 < 0, we would require that R0 > 1
while an unstable EEE would translate to R0 < 1. Hence, the proof
is complete. □

For the remaining of this paper where we verify the model
and perform predictions using real-world data in Section 4, and
also for the model used in the simulation package presented in
Appendix A, we assume a closed population with negligible birth
and death rates, i.e. Λ/µ ≈ 1, Λ ≈ 0, µ ≈ 0. Time delay

factors are also considered for the control action taken as well
as resusceptibility. As a result, the system (1)–(5) becomes

dS(t)

dt
= −β(I(t)S(t) − σ I(t − τσ )S(t − τσ )) + Rs(t, τξ ), (26)

dE(t)

dt
= β(I(t)S(t) − σ I(t − τσ )S(t − τσ )) − αE(t), (27)

dI(t)

dt
= αE(t) − γ I(t) − ∆I(t), (28)

dR(t)

dt
= γ I(t) − Rs(t, τξ ), (29)

dD(t)

dt
= ∆I(t). (30)

and hence, the basic reproduction number in (18) becomes

R0 =
β(1 − σ )

γ + ∆
. (31)

The time delay τσ = τpre−σ + τpost−σ indicates the time taken
for the control action to take effect in flattening the infection
curve, where τpre−σ ≥ 0 represents the time to initiate the control
action after the first confirmed case at t = 0, and τpost−σ ≥ 0
represents the time after the control action has been initiated
but before the effects are evidenced in the outputs of the system.
In practical scenarios, τpost−σ can be used to model the delay for
the population to effectively respond to the rules introduced by
the control action, such as social distancing, self-isolation, and
lockdown.

The function Rs(t, τξ ) represents the resusceptible stock with
the consideration for temporal immunity, of which we can then
rewrite (6) using

Rs(t, τξ ) = ξR(t − τξ ), (32)

where the time delay τξ ≥ 0 represents the duration of temporal
immune response of the recovered population. Hence, we can
also update the expression for the number of recovered cases
introduced in (7) using

Rc(t) = R(t) − Rs(t, τξ ). (33)

In an ideal situation where population who recovered develop
permanent immunity against the virus, ξ = 0 and τξ → ∞. As a
result, (32) becomes Rs(t, ∞) = 0 and subsequently, (33) can be
rewritten as Rc(t) = R(t).

The block diagram of the proposed SEIRS model with time
delay is shown in Fig. 1. The system with time delay is assumed
to be stable and will exhibit similar disease-free equilibrium
and endemic equilibrium properties as the system without time
delay provided that the time delay parameters are nonnegative,
i.e. τσ ≥ 0, τξ ≥ 0. Detailed discussions on the theoretical
stability analysis of SEIR and similar epidemic models with time
delay can be found in studies such as [19,25–27].

4. Case Studies

4.1. Case Study 1: Verification using data in South Korea

South Korea is used as a case study due to the amount of
data available given that it is one of the first few countries to be
directly affected by the virus outside of China. Its first confirmed
case was reported on 20th January 2020 [28]. The other reason
is that South Korea is also one of the very few countries that
managed to effectively flatten the infection curve and it has set
itself apart from others in leading the fight against COVID-19,
at least for the moment. For example, the country started vigor-
ous testing among its population with contact tracing, especially
those of confirmed and suspected cases during the early stage of
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Fig. 1. The block diagram of the proposed SEIRS system used in the simulation

package.

the epidemic. The government accomplished this by maintaining
a public database keeping track of mobile phones, credit cards,
and other data of patients who tested positive [29]. Also, on
16th March 2020, the authorities in the country began screening
every person, both domestic and international, who arrived at its
airports.

As of 20th April 2020, there have been 10,674 confirmed cases
and 236 fatalities in South Korea [1]. As a result, we used the
following parameters for our simulation. First, we assumed that
the population of South Korea to be approximately N = 51.5×106

with an elderly population of about 15% (Nold = 0.15) [30]. We
then set the percentage of recovery to be 98% (κ = 0.98) for the
general public [1] and a fatality rate of 8% ((1 − κold) = 0.08)
for the elderly [31]. We then assumed the incubation time and
recovery time to be τinc = 5.1, and τrec = 18.8, respectively
in accordance with [32]. The basic reproduction number was set
to R0 = 5.1 (95% CI: 4.97–5.23) based on the early growth-
rate of the epidemic in South Korea. The initial infected and
exposed cases were assumed to be I(0) = 4 and E(0) = 20I(0),
respectively. See Table 1. Fig. 2a shows the results of the initial
fitting of the model based on the data in South Korea while Fig. 2b
shows the projections of the model when no control action is
taken. There are some minor discrepancies between the modelled
values and the real-world data during the initial stage of the
simulation as seen in Fig. 2a. This is absolutely reasonable and

Table 1

Initial parameters used to fit the model to the data in South Korea.

Parameter Value

Stock population, N 51.5×106

Fraction of elderly population, Nold 0.15

Percentage of recovery, κ 0.98

Fatality rate for elderly, 1 − κold 0.08

Incubation time, τinc 5.1 days

Recovery time, τrec 18.8 days

Basic reproduction number, R0 5.1 (95% CI: 4.97–5.23)

Initial infected cases, I(0) 4

Initial exposed cases, E(0) 80

acceptable while modelling an actual epidemic as most countries
are still coming to terms with the virus during the first month
and the data do not usually represent the actual number of cases
due to lack of testing for confirmed cases.

Once we have the initial fitting of the model, we introduced
control action in line with the mitigation and preventive mea-
sures taken by the government. Due to the aforementioned vig-
orous testing, contact tracing, and isolation efforts taken, we
assumed that the control action has an efficiency of 88% (σ =

0.88). As a result, the reproduction number could be reduced to
R0 ≈ 0.61. We also assumed that there was a time delay of 30
days since the first confirmed case before the control action was
introduced (τpre−σ = 30) and a further delay of approximately 13
days before the control action could be properly executed in the
community (τpost−σ = 13). Fig. 3 shows the simulation results;
Fig. 3a shows that the trajectory of the modelled infected and
death cases matches the real-world data after the control action
was introduced. Fig. 3b shows the simulation results until the
model stabilises assuming no subsequent control action being
taken to further reduce the reproduction number. Comparing
Fig. 3b with Fig. 2b, the peak of the number of infected cases could
be reduced from about 19 million cases to about 7500 cases.

Subsequently, beginning 20th March 2020, stronger infectious
disease control measures for travellers coming from overseas
were enforced, where all Koreans and foreigners with residence
in Korea arriving from all countries would be subject to self-
quarantine for 14 days upon entry. All short-term travellers will

Fig. 2. Subfigure (a) shows the initial fitting of the model onto the data in South Korea and subfigure (b) shows the projections of the model when no control action

is taken.
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Fig. 3. The projections of the model onto the data in South Korea when control action with an efficiency of 88% is taken. Subfigure (a) shows the projections during

the first 100 days while subfigure (b) shows the projections until the system achieves stability.

Fig. 4. The projections of the model onto the data in South Korea when a second control action with an efficiency of 50% is taken. Subfigure (a) shows the projections

during the first 100 days while subfigure (b) shows the projections up till 300 days.

also be ordered to self-quarantine with exceptions for some lim-
ited special cases [33]. Around the same time, the Korea Centres
for Disease Control and Prevention (KCDC) also started advising
all people in the country to observe an ‘‘Enhanced Social Distanc-
ing Campaign’’ [34]. Inducing these control actions into the model
produces the results shown in Fig. 4. The second control action
adds another efficiency of 50%, hence bringing the reproduction
number further down to R0 ≈ 0.31.

4.1.1. Simulation with resusceptibility

One of the many uncertainties about COVID-19 is whether
patients who have recovered from the virus will be reinfected
in the future. There have been reports in the news that patients
who recovered from the virus were tested positive for a second

time after being cleared of the virus [5,35,36]. On the other hand,
most health authorities believe that patients who recovered may
develop an immunity towards the virus. However, it is not sure
if the said immunity is short-term or long-term. Hence, further
research is required to provide clinical proofs to this hypothesis.

As such, we repeated the simulation for the Case Study on
South Korea without control action, but with the inclusion of
a possibility of resusceptibility. Here, we assumed that 1% of
the patients who recovered are resusceptible towards the virus
(ξ = 0.01), where the patients develop temporal immunity
of τξ = 0, 30, 90, 360 days, respectively after recovering from
the initial infection of the virus. Fig. 5 shows the simulation
results, where the first infection spikes shown in all subfigures
are synonymous to the result presented in Fig. 2b. The subsequent
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Fig. 5. Trajectories for the infected and fatalities in South Korea due to resusceptibility where it is assumed that 1% of the recovered cases are reinfected after a

time span of temporal immunity of (a) 0 day, (b) 30 days, (c) 90 days, and (d) 360 days, respectively. However, these results only apply assuming that if there is

no control action being taken to flatten the curve.

infection spikes are the result of resusceptibility, depending on
the period of temporal immune response. The results show new
surges in infection cases after the specific τξ in each case, which
diminish over time as more people develop immunity towards
the virus. Interestingly, for the result shown in Fig. 5d where τξ =

360 days, it could also be used to reflect on the situation where
the virus may exhibit similar characteristics as the seasonal flu
or the pandemic influenza A (pH1N1) that it is most likely active
during certain seasons of the year, e.g. autumn/winter for the
seasonal flu and spring/summer for the pH1N1, in which case an
annual vaccine administration is necessary [37,38].

4.2. Case Study 2: Prediction using data in Northern Ireland

Given the location of which this research is based, data in
Northern Ireland is used for prediction study of the model. The
reports on confirmed and death cases are published daily since
24th March 2020 by the Northern Ireland Public Health Agency
(PHA) via their Daily COVID-19 Surveillance Reports [39]. The first
confirmed case was recorded on 27th February 2020, and as of
20th April 2020, the total number of confirmed cases stood at
2728 with 207 fatalities.

We used the parameters in Table 2 for the initial fitting of
the model based on the data from PHA on the initial growth-rate
of the epidemic in Northern Ireland. Fig. 6a shows the results

Table 2

Initial parameters used to fit the model to the data in Northern Ireland.

Parameter Value

Stock population, N 1.88×106

Fraction of elderly population, Nold 0.18

Percentage of recovery, κ 0.94

Fatality rate for elderly, 1 − κold 0.12

Incubation time, τinc 5.1 days

Recovery time, τrec 18.8 days

Basic reproduction number, R0 5.0 (95% CI: 4.85–5.15)

Initial infected cases, I(0) 3

Initial exposed cases, E(0) 60

of the initial fitting, with Fig. 6b depicting the projections of

the infected and deaths if no control action is taken. We then

simulated the model based on the control action carried out;

most schools in Northern Ireland were closed beginning 18th

March 2020 followed by a national lockdown initiated by the

United Kingdom government on the 23rd March 2020. As such,

we set τpre−σ = 20 (20 days) to correspond to said dates since

the first confirmed case, and assuming that it took a further

approximately 12 days for the public to respond to these control

actions, i.e. τpost−σ = 12, we obtained the simulation results as

shown in Fig. 7. The results show that in order for the model to

follow the projected trajectories of the data from PHA in Fig. 7a,
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Fig. 6. Subfigure (a) shows the initial fitting of the model onto the data in Northern Ireland and subfigure (b) shows the projections of the model when no control

action is taken.

Fig. 7. The projections of the model onto the data in Northern Ireland when control action with an efficiency of 45% is taken. Subfigure (a) shows the projections

during the first 70 days while subfigure (b) shows the projections until the system achieves stability.

the control action has to achieve an efficiency of about 45% (σ =

0.45), which indicates that the reproduction number could be

reduced to R0 ≈ 2.75. Comparing Fig. 6b with Fig. 7b, the peak

of the number of infected cases could be reduced from 650,000

cases to 350,000 cases.

4.2.1. Further control action to meet critical Care Capacity

However, based on the results shown in Fig. 7, it is essential

to further flatten this curve due to the limit of about 330 critical

care beds available in Northern Ireland (100 initial setup + 230 in-

troduced by the newly built Nightingale hospital) [40]. According

to the Intensive Care National Audit & Research Centre (ICNARC)

with its ‘‘Report on 2249 patients critically ill with COVID-19’’

dated 4th April 2020, about 6% of those tested positive for the

SARS-CoV-2 required critical care [41]. Meanwhile in Italy, as of

29th March 2020, up to 12% of all positive cases were admitted to

the intensive care unit (ICU) [42]. As such, should we assume that

approximately 10% of those tested positive in Northern Ireland

would require ICU admission, then the peak of the infection curve

should not exceed 3300 cases, i.e. more control actions have to be

taken to reduce the peak of 350,000 cases as seen in Fig. 7b.

Therefore, on day 38, which is about one week after the

infection curve started to flatten due to the first control action, a

second control action was introduced into the model. This second

control action also reflects on the announcement made by the

United Kingdom government in early April 2020 to allow police

officers to enforce social distancing measures. Assuming that this

second control action results in a further efficiency of 66%, the
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Fig. 8. Subfigure (a) shows the initial projections of the infected and cumulative deaths curves in Northern Ireland after the second control action with an efficiency

of 66% was introduced on day 38 of the model. Subfigure (b) shows the remaining projections of the model.

reproduction number could then be reduced to R0 ≈ 0.93, and
that it would take another 7 days for the public to fully respond
to the control action, we could observe the results as shown in
Fig. 8. With the initiation of the second control action, it can be
seen in Fig. 8a that the peak in the infection curve is now reduced
to 3500 cases. As such, the critical care capacity should be able to
meet the demand for treatment based on the same assumption
made earlier in this section, where it is estimated about 10% of the
infected cases are admitted to the ICU. Another observation worth
noting is that the number of deaths in the worst case scenario
has also been reduced to about 3000 cases. See Fig. 8b. This
value echos the projection made by the government in Northern
Ireland that COVID-19 could lead to 3000 deaths during the first
wave [43].

5. Conclusion

This paper has presented a robust model for COVID-19 based
on a modified SEIRS method to include considerations for the
ageing population, and time delay for control action as well
as resusceptibility of the recovered population due to temporal
immunity. Two case studies using real-world data were presented
in this research; the first case for verification of the model based
on the data in South Korea including a study on the possibility of
resusceptibility of recovered population; and the second case for
prediction study of the model using data and up-to-date control
action and related events in Northern Ireland. The simulation
results from the case studies have clearly shown that the time
of which the control action is taken and also the time for the
public to properly respond to such intervention measures are
critical in helping to flatten the curve. Also, until a time where
a vaccine is developed and made available to the general public,
the possibility of resusceptibility, no matter how small, will lead
to subsequent waves of infections in the future depending on the
time of temporal immunity. A simulation package was developed
using the MATLAB/Simulink environment to ease understanding
on the spread of the virus as well as the efficiency that needs to
be achieved by the control action in order to successfully flatten
the infection curve to not overload the healthcare capacity.

Interesting future research and expansion of the model include
but not limited to the predictions for the occupancy of ICU beds,
the effects of easing control action on R0 and hence, the time of
which control action has to be reinstigated, as well as specific
subregions analysis such as demographic information to model
the transmission of the virus among subregions in the country to
cater for population movements and travels.
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Appendix A. Description of the simulation package

Fig. A.9 shows the graphical user interface (GUI) of the sim-
ulation package developed using the MATLAB/Simulink environ-
ment. Users can use this interface to set preferred settings for the
simulation and also to view simulation results. The simulation kit
can be downloaded from https://github.com/nkymark/COVIDSim.

A.1. Establishing simulation settings

At the top section of the GUI are some interactive interfaces
available for the user to set key simulation settings, which include
the following:

• General Settings:

– Stock Data: Use this to load real-world data of select
countries. The data are obtained from [1].

– Stock Population: The stock population N is entered
here.

– Recovered Cases: Use this to set the percentage of re-
covered cases κ .

– Elderly Population: Use this to set the fraction of elderly
population (above 65 years of age) Nold.

– Elderly Fatality Rate: Use this to set the fatality rate
(1 − κold) for the elderly population.

https://github.com/nkymark/COVIDSim
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Fig. A.9. The main graphical user interface of the simulation package in MATLAB. 1⃝ Load real-world data for the selected country. 2⃝ Set the stock population N

for simulation. 3⃝ Set the percentage of recovered cases κ . 4⃝ Set the fraction of elderly population Nold . 5⃝ Set the fatality rate for the elderly population (1−κold).
6⃝ Computed values for β, α, and γ using values entered for R0, τinc , and τrec . 7⃝ Set the simulation time in days. 8⃝ Set the value for the basic reproduction

number R0 . 9⃝ Set the initial number of infected cases I(0). 10⃝ Set the incubation time τinc . 11⃝ Set the recovery time τrec . 12⃝ Settings for resusceptibility, including

the percentage of resusceptible cases ξ and duration of temporal immunity τξ . 13⃝ Settings for control action, including the efficiency rate σ as well as the time

delay during pre- and post-control action, τpre−σ and τpost−σ , respectively. 14⃝ Reset the GUI and clear all plots. 15⃝ Run the simulation. 16⃝ Recreate the graphs on

external MATLAB figure windows. 17⃝ Graphical plots from the simulation (left figure for overall simulation while right figure compares initial projections of the

model with real-world data).

– SEIR Parameters: Use this to set the values for R0, τinc,

τrec , the initial infected cases I(0), and the simulation

time.

• Resusceptibility Settings:

– Resusceptible Cases: Use this to set the percentage of

recovered cases who are resusceptible.

– Duration of temporal immunity: Use this to set the time

of short-term immune response τξ , assuming there is

no permanent immunity after recovery.

• Control Action Settings:

– Control Action Efficiency: Use this to set the percentage

of control action efficiency σ .

– Pre-action Time Delay: Use this to set the time delay

τpre−σ for the control action to be introduced after the

first confirmed case.

– Post-action Time Delay: Use this to set the time delay

τpost−σ to mimic the time it takes for the population to

respond to the control action.

A.2. Simulation results

The simulation results are displayed at the bottom section of

the GUI. The plot on the right shows the initial fit of the model

using the settings established in Appendix A.1 onto the real-world

data of the select country, while the plot on the left shows the

simulation results until the simulation stop time.
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