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ABSTRACT
Early detection of COVID-19 positive people are now extremely needed and considered to be one of the
most effective ways how to limit spreading the infection. Commonly used screening methods are reverse
transcription polymerase chain reaction (RT-PCR) or antigen tests, which need to be periodically repeated.
This paper proposes a methodology for detecting the disease in non-invasive way using wearable devices
and for the analysis of bio-markers using artificial intelligence. This paper have reused a publicly available
dataset containing COVID-19, influenza, and Healthy control data. In total 27 COVID-19 positive and 27
healthy control were pre-selected for the experiment, and several feature extraction methods were applied
to the data. This paper have experimented with several machine learning methods, such as XGBoost, k-
nearest neighbour k-NN, support vector machine, logistic regression, decision tree, and random forest, and
statistically evaluated their perfomance using various metrics, including accuracy, sensitivity and specificity.
The proposed experiment reached 78 % accuracy using the k-NN algorithm which is significantly higher
than reported for state-of-the-art methods. For the cohort containing influenza, the accuracy was 73 % for
k-NN. Additionally, we identified the most relevant features that could indicate the changes between the
healthy and infected state. The proposed methodology can complement the existing RT-PCR or antigen
screening tests, and it can help to limit the spreading of the viral diseases, not only COVID-19, in the
non-invasive way.

INDEX TERMS artificial intelligence; COVID; signal processing

I. INTRODUCTION
The deadly coronavirus SARS CoV-2 belongs to the family
of coronaviridae, which has two subfamilies: Coronavirid
and Toroviridae. Those coronaviruses are known to be infec-
tious to for example, birds, and mammals including humans
[1]. The course of the disease varies significantly. It starts
with completely asymptomatic courses to mild, moderate,
or severe courses, which in many cases end in death. The
spectrum of the symptoms of Coronavirus is broad and
includes fever, cough, shortness of breath, hoarse voice,
abdominal pain, or chest pain [2], and infected individuals
may experience a rare loss of taste and smell [3]. The

disease may end with long-term complications such as inter
alia respiratory, neurological, cardiovascular problems, and
many other potential issues that have yet to be fully de-
scribed [4], [5], [6]. Some similarities in the development
of the COVID-19 pandemic and epidemics of severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS) have been observed [7].

The average incubation period of COVID-19 currently
ranges from 2 to 11 days [8]. The major disease transmis-
sion of the virus occurs through social contact, particularly
through face-to-face exposure, coughing, sneezing, or dur-
ing talking, [9]. The combination of the high reproduction
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number of the disease, high portion of asymptotic or mild-
symptom cases in the population, long prodromal stage,
during which the patient is infectious but with no visible
symptoms and infection fatality rate 1.04 % [10] has led
to 108 million cases and 2.4 million deaths worldwide by
02/2021 [11].

According to the Johns Hopkins University, more than 2
million deaths occurred in the world since the outbreak of this
pandemic [11]. The most accurate diagnostics for the disease
are imaging technologies, which can achieve an accuracy of
nearly 100 % [12]. The most popular diagnostic method
(among others) is the reverse transcription-polymerase chain
reaction (RT-PCR) [1]. PCR-tests showed a sensitivity of
77,7 % and specificity of 98,8 % [13]. Pharyngeal RT-PCR
tests showed the sensitivity of 78.2 % and specificity of 98.8
%. Although these methods are relatively accurate, they are
often used after the onset of the disease for confirmation.
Unfortunately, the disease was proven to be the most commu-
nicable 2 days before and 1 day after the onset of the disease
symptoms [14].

In [15], the authors presented the disease stages of
COVID-19. They distinguished between the early stage of
infection (stage I), the pulmonary phase (stage II), and the
hyper-inflammation phase (stage III). The detection of the
disease in the prodromal stage would have the most signif-
icant impact, since it reflects the phase in which the person
is infectious but, she/he feels healthy, which leads to social
contacts and spreading of the disease to other people [14].
The authors indicated that symptoms in this phase, included
dry cough, fever, and mild constitutional symptoms. The
detection of the virus in this stage minimise contagiousness,
preventing the development of further complications and
reducing the duration of the disease [15]. The risk factors for
this disease are old age, civilization diseases, and renal and
hepatic dysfunctions [8].

Vaccination is currently considered one of the most
promising ways to fight the disease. Until this, the most
effective methods to prevent the infections are mask wearing,
social distancing, keeping hygienic practices, handwashing,
applying quarantine, and disinfection. These methods are
considered the most effective for fighting this mortal disease
[16], [7].

Detection of the disease two days before the onset of the
disease is very important. During those (on average) two
days, a person is not aware of the infection which causes
communication of the disease at the workplace, to family
members, and to other possible social contacts. Unfortu-
nately, such early detection is not an easy task since the
disease symptoms are difficult to be recognized.

The common availability of wearables in the population
makes them an ideal intelligent screening tool. These de-
vices allow continuous monitoring of various physiological
parameters, such as heart rate (HR), heart rate variability
(HRV), resting heart rate (RHR), respiration rate (RR), skin
temperature, and oxygen saturation (SpO2) [17].

This paper provides a comprehensive overview of recent

progress in the area of wearable technologies for e-health and
COVID-19 use cases. It also introduces a novel methodology
based on artificial intelligence, with wearable sensor signal
analyses, and proves that these devices can be used for early
detection with interesting accuracy. For the statistical evalu-
ation, 27 samples of COVID-positive cases and 27 healthy
control cases were used. The paper also includes the results
of the univariate tests conducted to identify the feature of
importance. We tested a few classifiers in real time allowing
us to identify those that would achieve the highest prediction.
A significant advantage of this work is that it takes into
consideration the important parameters related to the disease,
that is, the incubation period and the highest contagiousness
period thus ensuring, the reduction of disease contagiousness
as much as possible.

• Creation of the methodology which is able to detect
COVID-19 disease in the early stage

• The usage of wearable devices and machine learning
allows created solution serve as potential screening test

• The consideration of the parameter such as incubation
period and the highest contagiousness interval should
reduce the most efficiently the number of new infected
people

• Identification what kind of the features are indicators of
being contagiousness in the early stage of the COVID-
19 disease

• Extension of the original work into classification prob-
lem, with success of 78 % accuracy for k-NN

The rest of this paper is structured as follows. Section
II describes related works. Section III - introduces the ex-
periment, described the data, the methodology of feature
extraction, metrics used for evaluation - based support system
methodologies, and machine learning and statistical eval-
uation methodologies. Section IV presents the results and
describes the research outcomes of this work. The discussion,
which explains how to understand the results, is described in
Section VII. The paper is concluded in Section VII.

II. RELATED WORKS
The coronavirus was announced by the WHO relatively re-
cently, on 29 December 2019. Thus, resources amount the
virus are still scant, and the behavior of this virus under
various circumstances is still waiting exploration. Wearable
sensors have seen significant improvements in their quality,
accuracy, and reliability. Due to their broad availability in
the population, they have opened new possibilities for their
utilization.

Early detection of COVID-19 can significantly decrease
the reproduction number and prevent spreading the infection
to other people. Unfortunately, this very challenging, since,
no visible symptoms are observed within approximately two
days before onset the disease.

The most characteristic symptoms of COVID-19 after
onset are currently considered a fever, fatigue, and dry
cough [16]. Other symptoms, are nasal congestion, pains,
aches, colds, dyspnoea, diarrhoea, sore throat, unusual loss
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of smell and taste, headaches, and sometimes also trembling.
Unfortunately, these symptoms, especially visible ones, are
useless for early detection. However, even slight changes in
related physiological signals can be identified as for detection
markers.

In [18], changes in several other biomarkers during
COVID-19 were examined. For the evaluation - a wearable
ring (in particular, Ourora) was used. The device measured
inter alia the heart rate, heart rate variability, respiratory rate,
and temperature. An interesting finding was that 38 out of
50 participants developed temperature anomalies, that were
measurable before other symptoms. The temperature proved
to be statistically more significant than other metrics. Some
reports have proven a strong correlation between fever and
cardiac rhythm [19]. Increase in HR has been reported as
8.5 beats per minute on average per 1 ◦C. This correlation
is measurable especially during resting heart rate (RHR). A
possible reason for this could be that the sensors of wearables
are more accurate at resting time. This change was observed
not just during the development of COVID-19 but also during
the development of other influenza diseases. Unfortunately,
other factors also have an impact on the increase in RHR,
including short sleep.

In December 2020, a study was published [20] that con-
firmed that these correlations could also be valid for COVID-
19. The authors tried to detect the disease in the pre-
symptomatic stage using the smartwatches that are available
on the market (only those gathered by Fitbit were selected).
The data were collected on a per-minute basis. Anomaly
detection was was still relatively low (63 %) for COVID-19
cases. The results were validated on a database containing
114 samples, that were available online. The features were
based on heart rate and the number of steps.

A few studies have also a tempted to detect infection
from sleep activity patterns measured by wearable devices.
The data for the experiment were collected from approx-
imately 5300 subjects using smartwatches such as Fitbit,
Apple Watch, or Garmica. Thirty-two of the participants
were diagnosed with COVID-19. In 63 % of COVID-19
cases, some anomalies were found in the records, which was
significantly more frequent than in the rest of the data. The
authors proposed two approaches: the abnormal resting heart
rate (RHR-Diff) - based approach and the heart rate-to-steps
(HROS-AD algorithms) - based approaches. The RHR-Diff
approach was based on standardized residuals and a 28-day
sliding window. The second approach used, the HROS was
computed by dividing the heart rate by the number of steps.
One-hour intervals were compared using Gaussian density
estimation (HROS-AD algorithm). The CuSum method was
an online version based on the cumulative statistics. For
this algorithm, a 28 day time-frame was adopted and the
deviations of the elevated residual RHRs were evaluated. Un-
fortunately, the specificity of the methods was not provided,
which is very important for this kind of study.

The above-described works focused on wearables at the
person-level. Some studies have been built on these works,

extending them to the analysis of the development of the
pandemic trend, the so-called crowd-level analysis.

One such work is presented in [19]. The authors proposed
a simple system for alerting physiological anomaly detection
based on variance in sleep patterns and RHR computed from
photoplethysmography (PPG) wearable data. The records
of 1.3 million users were collected from Huami devices.
The deviation from the mean and average values was taken
into consideration for the analysis. Although, this system
was not good enough for a common disease detection, a
methodology for the pandemic was developed using this
system. For this reason, CDNet architecture was used, which
is a heterogeneous neural network regression model. CDNet
consists of two neural networks: CatNN and DenNN. It
contains sparse categorical features (holiday activity, season,
and weather) and dense numerical features (historical physio-
logical anomaly rate, historical officially reported COVID-19
rate, and active user density). The simulation was performed
for North China, Central China, South China, and South-
Central Europe. The detected physiological anomaly rate
was compared with COVID-19 infection rate using Pearson’s
correlation. The highest correlation among the set of Chinese
cities was observed for Foshan as 0.81. Average value among
all cities was 0.68. Nevertheless, the capability to predict
such disease shows some limits, in particular there is sus-
picion that to local events change people’s common rhythm,
and there were problems regarding individual variability.

In another work, the researchers analysed the influence
of respiration rate together with oxygen saturation (SpO2)
gathered from wearable smartwatches on COVID-19 [21].
The statistical analysis was evaluated with chi-square distri-
bution and independent t-test based measures on pre-selected
208 cases. The authors demonstrated that there were no
significant differences between gender and IoT factors based
on chi-square distribution.

In [22], the methodology was based on the wearable
device (Empatica E4) and on neural networks. The device
allows analysis of a broader spectrum of signals, for example
the galvanic skin response (GSR), the inter-beat interval
(IBI), skin temperature, pulse oximeter, and blood pressure.
A questionnaire with information about the occurrence of
symptoms was also included to obtain. Parameters such as
age, gender, weight, height, habits, and addiction to smoking
and drinking. All data were used during the NN training
[22]. The cohort included 87 subjects: 30 were HC, 27
asymptomatic COVID-19 cases and 30 symptomatic cases.
The data were divided into 15 s windows. However, the
details of the procedure are not provided in the article. The
CovidDeep - a four-layer neural network, was introduced and
used for the detection of COVID-19 cases. The architecture
consists of data pre-processing, synthetic data generation
with the TUTOR framework, architecture pre-training, grow-
and-prune synthesis with a decision tree (DT) and random
forest. This combination of data contains some hardly col-
lectible data in reality. Common smartwatches do not provide
as many spectra of data as Empatica offers, and, the number
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of its users is significantly lower than, that of Fitbit or Apple
Watch [22]. In another study, symptoms such as respiration
rate detected by wearables were analysed [23]. The cohort of
271 (81 positive cases and 190 negative cases) was evaluated
with the WHOOP strap algorithm. Here, the median value
of respiration per minute was collected during night which
was regarded as the respiration rate. A total of 20 % of
COVID-19 subjects were recognised 2 days before the clear
onset of the disease, while 80 % of COVID-19 subjects were
unfortunately detected 3 days after the onset. These results
were achieved with the use of a gradient boosting classifier.
The outcome of 80 % is a relatively high number; however,
the most important in screening tests, are early symptoms -
during the prodromal stage [23].

The variance in respiration rate was examined together
with heart rate and heart rate variability in [24] using Fitbit.
The methodology used achieved 0.77 ± 0.03 area under the
curve (AUC) trained on NN. Nonetheless, the sensitivity was
47 % and specificity 95 %. The number of positive partic-
ipants was 1181, and 13662 were negative. The following
parameters were extracted: Shannon entropy of the nocturnal
RR series, the mean nocturnal heart rate during non-Rapid
Eye Movement (NREM) sleep, and the estimated mean res-
piration rate during deep sleep. During pre-processing, the
physiological signals were normalised using z-score. A com-
bination of parameters, including age, gender, and BMI, were
fed into the convolutional neural network. It was found that
the heart rate in combination with respiration rate increased
during the illness, and the heart rate variability decreased.

An interesting work [25] studied differences between
cases: the outbreak of the pandemic (6270), the actual
COVID-19 cases (230), and influenza non-COVID-19 cases
(426) by using smartwatches. The authors found a higher
intensity and variety in symptoms in COVID-19 cases com-
pared to normal influenza. A few symptoms, as chest pain,
anosmia, and shortness of breath, were commonly observed
in COVID-19 cases, of course, these are not early markers of
the disease. Based on the wearables’ analyses, a reduction in
the number of daily steps for a longer period was treated as
the symptom of "long COVID". Hence, the wearables could
serve as devices for monitoring recovery after COVID-19.

Moreover, [26] some broader view of the usage of artificial
intelligence (AI) and internet of things for creating the sup-
port system methodology in hospitals. The combination of
these techniques could be useful in disease diagnosis, treat-
ment, and management. During the COVID-19 pandemic,
it will found application, for example, in data storing of
PCR and tests, from imaging technologies. In this work,
the authors used the machine learning algorithms, such as
Random Forest (RF), Naive Bayes (NB), and Support Vector
Machine (SVM). The dataset was reused and gathered under
laboratory conditions in 2020 [27]. The data contained a
record of 600 patients. Among these, 80 were diagnosed
positively with COVID-19. The number of features was 18,
and they included blood parameters. In this work, the authors
achieved the best results for SVM: 95 % accuracy, 94 % F1,

95 % of precision, 95 % recall, and 95 % for the Area Under
Curve. As the pre-processing step, normalisation and feature
selection were used. Nevertheless, there is no mention of the
stage of the disease at which the data were gathered.

To date, mainly smartwatches and smart masks [28] have
been used for the early detection of COVID-19. Moreover,
some new solutions for measuring physiological parameters
have recently been introduced, which are described below.

The characteristics of the ear-related area have allowed
researchers to create a photoplethysmography-based device
for measuring oxygen saturation in-ear SpO2 [29]. It is as
effective as finger pulse oximetry, with an even faster average
response. This device is suitable for monitoring COVID-19
and post-COVID-19 cases such as the possible occurring of
hypoxemia related to breathlessness declination [29]. Fur-
thermore, the usage of a headset wearable device allowed
coughing to be monitored, which, however is not a suitable
symptom for early detection [30].

The Biovitals Sentinel platform is an academic project,
that uses armband biosensors (Everion) to detect COVID-19.
The monitored parameters are skin temperature, respiratory
rate, blood pressure, pulse rate, blood oxygen saturation,
and statistics regarding daily activities [31]. The introduced
platform could serve as a source of data for potential support
system methodologies.

In [32], the authors used a skin sensor that was equipped
with an accelerometer and a temperature sensor, and can
be placed on the throat. A remarkable advantage of this
solution was that it could wirelessly register cough frequency,
intensity, and duration, as well as the respiratory rate. The
study also included heart rate measurements. This solution
contributed to a continuous physiological monitoring system
and to the data analytical part. Again, this system cannot
be used to warn against infection in the early stages. Upon
the onset of coughing, the person already knows about the
infection and can change the behaviour to protect others.

In summary, there are currently several approaches that use
wearables to detect COVID-19 and there is a big promise of
that this technology can offer accurate early disease detection
and screening to a broader population in an easy and non-
invasive way. A methodology, based on a medical device
- Empatica, that used advanced sensors was introduced.
Unfortunately, this device is relatively expensive and is not
widespread among the population.

Finding a methodology based on cheaper and commer-
cially successful smartwatches, such as Fitbit or Apple
Watch, could have a significantly higher impact. Several
previous works suggest that the heart rate and activity can
indicate the development of COVID-19 and flu in general in
their early stage. It is noteworthy that the use of wearables for
telemonitoring has both advantages and drawbacks. On the
one hand, they can present economic solutions for screening
tests and continuous objective monitoring and they are easily
accessible. On the other hand, they are not accurate as imag-
ing technologies (X-ray or CT) or PCR testing technologies
[33].
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TABLE 1. The summary of the state-of-the-art.

VOLUME X, 2021 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106255, IEEE Access
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III. EXPERIMENT
The main objective of this research was to develop a method-
ology for the detection of COVID-19 in its early stages
using wearable electronic devices. Notably, we developed
s that considered the character of the development of the
disease, that is, the incubation period and contagiousness
of the disease. Moreover, the use of the most commonly
gathered signals (heart rate and number of steps) by smart-
watches allows us to potentially apply this solution as a broad
screening test.

The research follows up mainly on paper [20] where reg-
ular fitness smartwatches were used for collecting data from
4642 volunteers in total. Of these, 114 of them were later
diagnosed as COVID-19 positive. This experiment used the
data from this paper [20]. In [20], the experiment consisted of
three steps: (a) signal pre-processing of the data, (b) machine
learning, and (c) statistical evaluation of the accuracy. The
detailed scheme of the experiment is presented in Fig. 1.
First, the ratio of the heart rate to the number of steps was
computed. This was used as a pre-processing step to obtain a
more informative feature. The experiment was designed for
two scenarios: classification between COVID-19 and healthy
controls (HC), and classification between COVID-19, HC,
and influenza. Next, the feature extraction was carried out for
two-time windows, and then the difference between them was
computed. We applied the minimum redundancy maximum
relevance (mRMR) based on the feature preselection. The
number of features was set to 50 to select the most valuable
of them and to facilitate the classifier’s learning process.
The next step was the classification with XGBoost, k-NN,
SVM, logistic regression, decision tree, and random forest.
The results were evaluated using metrics.

The data consisted of records of the number of steps and
heart rate. These values were measured every minute. To
partially suppress the effect of the person’s activities, the
heart rate value was first divided by the number of steps, and
these normalised values were used for further processing.

The experiment was designed to compare values measured
from sensors of COVID-19 positive persons and distinguish
these values from healthy controllers. Based on previous
works, there is an assumption that the infected human body
has a different response in terms of heart rate in the prodro-
mal stage of the diseases, even few days before the onset
of the disease [18], [24], [20]. The highest changes in the
elevated resting heart rate (RHR) are registered two days
before the onset of the disease [25]. Some studies have
also confirmed that, especially in the resting time, heart
rate is slightly higher than in the case of a healthy person.
Unfortunately, biological systems are not fully deterministic,
and in particular the heart rate does not responding equally to
the same activity or situation. For this reason, the data were
averaged for a one minute period. Further, different persons
have different responses of the body - for example, based
on their fitness, age and weight, etc. Thus, we did compare
absolute values between all persons, rather, we compared
changes in each person during the healthy state and near the

onset of the disease.
To construct a system that compares changes in the body

responses of each person, we defined two time frames in
the collected data. The detailed procedure of this step can
be found in Subsection III-B. Next, the set of features was
extracted for each window. Subsequently, the difference was
calculated for the set of features extracted between the later
and previous window.

Unfortunately, there is still a lack of data in this domain.
Hence, we preferred to obtain insight into the data and use
statistics to understand the features. The features used for
the experiment were first pre-selected to suppress possible
over-fitting. The method used for the selection of the features
was the minimum redundancy maximum relevance (mRMR).
The number of features was 50. To evaluate the resulting
accuracy, we used the classification of COVID-19 positive
or COVID-19 negative classes. For statistical evaluation, 10-
fold Stratified Cross-Validation was used. We also included
Standardization. For evaluation of the model, we compared
results using different machine learning algorithms includ-
ing XGBoost, k-Nearest Neighbour (k-NN), Support Vector
Machines (SVM), Logistic Regression (LR), Decision Tree
(DT), and Random Forest (RF). For further statistical eval-
uation, the Mann-Whitney U test was used. This method
allows for checking whether is a statistical difference in
the distribution of the analyzing groups. To minimize the
number of type I errors, the false discovery rate (FDR) was
calculated.

A. TRAINING DATA
The data used for this research cames originally from [20].
For the study, the data were gathered using the wearable
devices and the application MyPHD app. The wearables used
included Fitbit, Apple Watch, Garmin Watch, Oura Ring,
BioStrap, Masimo Pulse Oximeter, Empatica, Motiv Ring,
and others. Data regarding steps, heart rate, and partly sleep
records were analysed. The data reused in this paper were the
records of steps per minute and heart rate per second, while,
the sleep data were omitted cause of their limited numbers. In
this study, 5262 participants were enrolled. Among these, 114
participants were diagnosed with COVID-19. To balance the
data, 34 HC and 27 COVID-19 cases, including 7 influenza
cases, were utilized.

B. FEATURE EXTRACTION
The data gathered from wearable devices measure physiolog-
ical data which are continuous time-series records. Although
deep learning has shown great results in end-to-end learning,
we have a relatively limited amount of training data. Thus,
we manually extracted features characterising time-series
signals [34]. The inspiration for the feature extraction of
physiological signal features was taken from [34], [35], [36],
and [37]. These covered the most frequently used features for
physiological signals. The number of measured samples was
still quite limited. These samples were records of a relatively
long period, so we decided to use hand-crafted features for
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Computing the ratio of heart rate to 
number of steps (activity)

Defining windows for two scenario

Extracting features for the windows

Computing difference between the 
windows separetly for HC and COVID

Feature pre-selection: mRMR

Classification with Stratified Cross-
Validation (Standarization + Selected

Classifiers)

Results

50 features
Classifiers:
➢ XGBoost
➢ KNN
➢ SVM
➢ Logistic

Regression
➢ Decision Tree
➢ Random Forest

Scenarios:
➢ (COVID + Influenza) and HC
➢ COVID and HC

FIGURE 1. Scheme of the experiment.

the feature extraction. To be sure about this decision, we
evaluated also NNs, such as long-short term memory and 1-
D convolution neural network. Nevertheless, as shown later,
there were no observable significant results. Three types
of features were extracted: (a) temporal, (b) statistical, and
(c) in the spectral domain. For the temporal domain, auto-
correlation, centroid, mean absolute differences, mean differ-
ences, median absolute differences, median differences, dis-
tance, the sum of absolute differences, total energy, entropy,
peak-to-peak distance, the area under the curve, absolute
energy, maximum peaks, minimum peaks, slope, and zero-
crossing rate were taken into account. Subsequently, from
the statistical domain, the following features were extracted:
histogram, inter-quartile range, mean absolute deviation, me-
dian absolute deviation, root mean square, standard devi-
ation, variance, empirical cumulative distribution function
(ECDF) percentile count, ECDF slope, kurtosis, skewness,
maximum, minimum, mean, median, ECDF, and ECDF Per-
centile. The spectral domain represents features such as - fast
Fourier transform (FFT) mean coefficient, wavelet absolute
mean, wavelet standard deviation, wavelet variance, spectral
distance, fundamental frequency, maximum frequency, me-
dian frequency, spectral maximum peaks, maximum power
spectrum, spectral centroid, decrease, kurtosis, skewness,
spread, slope, variation, spectral roll-off, roll-on, human
range entropy, Mel-frequency cepstral coefficients (MFCC),
linear prediction cepstral coefficients (LPCC), power band-
width, spectral entropy, wavelet entropy, and wavelet en-
ergy. The feature extraction was performed thanks using the
Python package: tsfel [38]. By adding a few temporal fea-

tures, the work builds on packages such as FATS, CESIUM,
TSFRESH, and HCTSA.

A scheme for - feature extraction is presented in Fig. 2. For
extracting the healthy control samples from the HC cohort,
the set of features was computed for two windows (ph -
earlier and pc - later window). The fixed-sized of the windows
was set, and we specified the spacing between them. In the
next step, the difference between a set of features for the
aforementioned windows was calculated. Where:

• The vector of features extracted from the earlier healthy
state is expressed as fHC1

• The vector of features extracted from the later healthy
state is expressed as fHC2

• The final vector for HC is expressed as: f = fHC2 -
fHC1

• The end of earlier healthy state window is expressed as
tHC1

• The beginning of later healthy state window is expressed
as tHC2

• The Spacing between windows is expressed as:
Spacing = tHC2 - tHC1

The scheme of the feature extraction for HC is presented
in Fig. 2.

However, to extracting COVID-19 cases, a similar proce-
dure was carried out. Otherness was represented by taking
into consideration the onset of the disease. The shift in the
computation of the windows was defined as the ability to
detect the disease in the prodromal stage. This is because the
highest peak of contagiousness of this disease is registered
two days before the onset of the disease. The next steps were
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Onset Diagnosis

Healthy state COVID early state

COVID infected person:
𝑙 = 1 (positive)

Feature extraction

Difference

𝑝H

𝑡C 𝑡O 𝑡D𝑡H

𝑝C

X𝑓H Feature extraction 𝑓C

റ𝑓 = 𝑓C − 𝑓H

Healthy state Healthy state

Healthy controller:
𝑙 = 0 (negative)

Feature extraction

Difference

𝑝HC1

𝑡HC2𝑡HC1

𝑝HC2

X𝑓HC1 Feature extraction 𝑓HC2

റ𝑓 = 𝑓HC2 − 𝑓HC1

𝑡

𝑡

27x

27x

FIGURE 2. Scheme of feature extraction for HC and COVID-19 cases.

the same as in the case of HC sample extraction. The scheme
of the described steps is shown in Fig. 2.

Where:

• The vector of features extracted from the healthy state is
expressed as fH

• The vector of features extracted from COVID early state
is expressed as fC

• The final vector for COVID-19 case is expressed as: f
= fC - fH

• The end of earlier healthy state window is expressed as
tH

• The beginning of COVID-19 window is expressed as tC
• The beginning of the onset of symptoms is expressed as
t0

• The diagnosis of COVID-19 is expressed as tD
• The Onset is expressed as: Onset = tC + pC
• The Spacing between windows is expressed as:
Spacing = tC - tH

C. EVALUATION

To evaluate the quality of the algorithms several metrics
were used: accuracy, sensitivity, specificity, and the Matthews
correlation coefficient. From a clinical perspective, sensi-
tivity, and specificity are only as important as the accuracy
[39]. Sensitivity is defined as the ratio of positive cases
regarded by the algorithm as positive cases to the whole
set of real positive cases. Specificity is the ratio of negative
cases classified as negative to the whole set of real negative
cases [40]. The Matthews correlation coefficient is mostly
dedicated to imbalanced datasets.

The equations for the metrics are presented below:

Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity:

Sensitivity =
TP

TP + FN
(2)

Specificity:

Specificity =
TN

TN + FP
(3)

The Matthews correlation coefficient (MCC):

MCC =

=
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

D. MACHINE LEARNING AND STATISTICAL
EVALUATION
To identify the most informative features that could distin-
guish the disease, a univariate test was performed. In this
case, a non-parametric Mann-Whitey U-test was used. For
this purpose, we selected features, that were significantly
different from each other. For the use of this test, it is not
necessary to assume that the values are normally distributed.
It is suitable for small datasets. One of the obstacles of the
Mann-Whitney U-test is that it is endangered by error-type-I
[41]. For this reason, the Benjamini-Hochberg procedure was
used to controll the false discovery rate (FDR) [42]. However,
FDR is a strong criterion for a small cohort, dedicated to
multiple hypothesis testing.
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1) Machine Learning Algorithms
In this work, a few supervised machine learning algorithms
were used. These were: SVM [43], logistic regression [43],
k-NN [43], decision tree [43], random forest [43], and XG-
Boost [43]. The advantage of SVM is that it is generally
robust to over-fitting [44] and has a relatively good gen-
eralization capability [45]. The principle of its operation
is based on non-linearly transformed training data into a
higher dimension. The decision boundary is chosen by the
algorithm that converges to the best separating hyper-plane.
The hyper-plane is found by support vectors and determined
by them, the so-called margins. The SVM tries to find the
maximal marginal hyper-plane (MMH), which allows the
correct classification of unseen data classification, correctly.
The SVM works is based-on neural networks [44], [46].

The k-Nearest Neighbor classifier belongs to lazy and non-
parametric classifiers. K is the number of the neighbours,
and the test datasets are compared with the training dataset.
This classifier could be vulnerable to over-fitting because
of existing noise. Including match weighting, the attributes
can solve this problem by considering a change in distance
metrics [44] to calculate the distances between the sample
and the neighbours.

One of the simplest supervised machine learning algo-
rithms is logistic regression (LR), which is a classification
algorithm. The output is interpreted as a probability [45].
Despite the non-complicated principle of working, it could
achieve good results [46]. However, it could suffer from
multicollinearity [45].

A decision trees, Random Forest, and XGBoost are a group
of tree classifiers [44].

There are a few types of decision trees. The most com-
monly used are C4.5, ID3, and CART. In this study, CART
was applied for the classification purposes [47]. CART is a
non-parametric algorithm. Prominent advantages of CART
are its ability to deal with missing values and use pruning
(post pruning). The decision-making indicator uses the Gini
diversity index [48]. Decision trees can deal with linearly in-
separable data. The disadvantage of this algorithm is that it is
difficult to manage high dimensional data, and is vulnerable
to overfitting [45].

Random forest is an extended version of the decision tree.
This algorithm trains many decision trees and defines classes
based-on voting. The main advantage is that it is robust to
noise and does not overfit. Hence, it can be regarded as a fast
methodology. However, it slows down with an increase in the
number of trees [45].

XGBoost belongs to the tree gradient boosting system.
This algorithm can achieve state-of-the-art results for struc-
tured data. This algorithm characterises faster computing
and also uses regularization techniques - XGBoost also uses
shrinkage methodology and feature (column) sub-sampling
to protect against overfitting.

The algorithm parameters were optimised using a grid
search. For XGBoost, we optimized the following parame-
ters: subsample ratio of the training instances, control the

balance of positive and negative weights, minimum sum of
instance weight (hessian) needed in a child, maximum depth
of a tree, step size shrinkage used in the update to prevent
overfitting, gamma minimum loss reduction required to make
a further partition on a leaf node of the tree, set of parameters
for subsampling of columns, and subsample ratio of columns
for each level.

For k-NN, the parameters that were optimised were the:
number of neighbours, type of metric used for the evaluation,
and weight function used in prediction.

SVM was evaluated using several values: C, regularization
parameter, the degree of the polynomial kernel function, if
chosen and gamma kernel coefficient for radial basis func-
tion, sigmoid, and polynomial. The kernel types used in
the algorithm were: linear, polynomial, radial basis function,
sigmoid, and precomputed.

The logistic regression was optimised by the parameters: C
- the inverse of regularization strength, penalty normally used
in the penalisation, and solver - a type of algorithm which is
using in the optimization problem.

Whereas, the parameters which were used for optimising
the Decision Tree was: the minimum number of samples
necessary to split an internal node, the minimum number
of samples necessary at a leaf node, the number of features
taken into consideration for the best split, the maximum
depth of the tree, types of weights during balancing the data.

The parameters that were used for the random forest were
as follows: the number of trees in the forest, the minimum
number of samples necessary to split an internal node, the
minimum number of samples required to be at a leaf node,
the number of features taken into consideration for the best
split, the maximum depth of the tree, and types of weights
during balancing the data.

IV. RESULTS
The machine learning algorithms were trained for two cases:
A) for cohort containing COVID-19 cases and HC, and B) for
cohort containing COVID-19 cases + Influenza and HC. The
size of the spacing between windows was fixed to 7 days, and
the SHIFT was equal 2 days (please, check the designation in
Fig. 2). The summary of the parameters used for experiments
is presented in Table 2. Based on the statistical evaluation of
the extracted features, we conducted the Mann–Whitney U-
test with FDR correction. The results for the two scenarios
with Fig. 2 5-day windows are shown in Table 3 and Table
4. The distinction between those two groups is provided in
the view of checking samples from two different distributions
that is with pr without Influenza cases. The features distribu-
tions containing only people having COVID-19 versus HC
should be different from the distribution of the features con-
taining COVID-19 cases and influenza cases versus HC. The
same dependency was compared. The number of extracted
features was 381 and their descriptions can be found in [49].

The features, which passed the Mann-Whitney U test for
the cohort containing 27 people suffering from COVID-
19 disease and 27 HC are the following: sets of MFCC,
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TABLE 2. The scenario of carried out experiments.

Cases Len_window SHIFT Spacing
5 2 7
7 2 7COVID+HC+Influenza

10 2 7
5 2 7
7 2 7COVID+HC

10 2 7

FFT, mean coefficient, linear prediction cepstral coefficients
(LPCC), spectral slope, maximum frequency, spectral roll-
off, spectral kurtosis, fundamental frequency, spectral skew-
ness, zero-crossing rate, slope, min, spectral centroid, median
frequency, ECDF percentile, and signal distance. The fea-
tures that passed the test, for the assumed confidence level
α = 0.05, are presented in Table 3. After applying the
FDR correction, none of the checked features passed the test.
Nevertheless, it is a strong criterion. The minimum obtained
value was 0.3456. The p-value with FDR correction between
the two scenarios. The minimum p-value of evaluated fea-
tures for the scenario with COVID-19, influenza, and HC
cases was lower than for the scenario with only COVID-19
and HC cases (0.2389).

For the second scenario, the features that passed the Mann-
Whitney U test with the assumed confidence level were the
following: the set of FFT mean coefficients, spectral kurto-
sis, maximum frequency, spectral roll-off, histogram, zero-
crossing rate, spectral skewness, spectral slope, min, spectral
centroid, slope, median frequency, spectral spread, and signal
distance.

Subsequently, in this section, the classification results for
the two cohorts are presented in Sections tables 5 to 10. In
what follows, we explain the parameter selection should be
explained. The shift (marked as Onset) was set to 2 days (Fig.
2). Due to registration, the highest contagiousness peak was
registered exactly 2 days before the clear visibility of the pa-
tient’s onset [14]. However, in view of the incubation period,
the space between windows was set to 7 days. The incubation
period was 2 to 11 days [8]. The selection of this parameter
was set to 7 days, which indicates that the sum of the later
windows (based on which the feaures were calculated) and
spacing was longer than the registered maximum of the
incubation period. The variable remained equivalent to the
length of windows, that is, 5-, 7- and 10-days windows were
tested. The results were achieved for the following classifiers:
XGBoost, k-NN, SVM, logistic regression, decision tree, and
random forest.

A. COVID-19 DETECTION
For the cohort containing COVID-19 cases and HC, the
results of the classifications are presented in tables 5 to 7.
For the 5-day windows (Table 5), the highest accuracy (0.78),
specificity (0.77), sensitivity (0.80), and MCC (0.60) were
registered for k-NN. We observed that high accuracies were
achieved for XGBoost (0.71) and logistic regression (0.69).

This was evaluated on 27 HC and 27 COVID-19 cases using
stratified cross validation. We also optimised the machine
learning models. For the best k-NN, the following parameters
were registered as the most optimal: 11 nearest neighbors, as
the distance metric was chosen as the Manhattan distance.
Moreover, we used weight function, which was computed as
weights points by the inverse of their distance.

The outcomes of the classification for the 7-day windows
are shown in Table 6. The results obtained were lower in com-
parison to those from Table 6. The k-NN classifier had the
highest accuracy (0.68), sensitivity (0.73), and MCC (0.37),
whereas, the highest specificity was reported for XGBoost
(0.66).

The results with a window of 10-days are presented in
Tab. 7. Once again, the k-NN achieved the highest results
in accuracy (0.71), sensitivity (0.84) and MCC (0.46). For
the logistic regression, the highest results were obtained for
specificity (0.68).

B. COVID-19 AND INFLUENZA DETECTION
The second dataset contained the COVID-19 cases, people
with Influenza, and HC. COVID-19 disease and influenza
were treated as one class and HC as the second. This time,
the data were balanced. For the 5-day windows, the cohort
contained 31 HC, 24 COVID, and 7 influenza cases (Table
8). The highest accuracy was obtained in this case for k-NN
(0.73), and it also had, the best-recorded specificity (0.76)
and MCC (0.49). The sensitivity was highest with logistic
regression (0.76). The following parameters were identified
as the most optimal for k-NN: three nearest neighbors,
Euclidean distance as the best distance, and every point in
the neighborhood were weighted equally. The most optimal
parameters for logistic regression were the L2 penalty, and
the "saga" algorithm for the optimization, and inverse of
regularization strength was C=464. Furthermore, we evalu-
ated the second dataset using a 7-day window length. This
time, the best results were obtained with logistic regression
(0.71). Specificity (0.68) and MCC (0.45) were also highest
for this classifier. The sensitivity (0.89) was the best for lo-
gistic regression. Lastly, the best outcome in accuracy (0.73),
sensitivity (0.82), and MCC (0.50) for the 10-day window
length was achieved with k-NN. The specificity (0.66) was
best with logistic regression.
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TABLE 3. Mann-Whitney U-test including also FDR correction for the cohort of COVID-19 disease and HC.

Features pval pval_FDR Features pval pval_FDR
MFCC_11 0.0045 0.3546 Zero crossing rate 0.0283 0.3546
FFT mean coefficient_117 0.0070 0.3546 LPCC_3 0.0297 0.3546
FFT mean coefficient_189 0.0070 0.3546 LPCC_9 0.0297 0.3546
Spectral slope 0.0102 0.3546 Slope 0.0297 0.3546
FFT mean coefficient_43 0.0134 0.3546 Min 0.0304 0.3546
FFT mean coefficient_254 0.0134 0.3546 FFT mean coefficient_21 0.0309 0.3546
FFT mean coefficient_233 0.0140 0.3546 FFT mean coefficient_243 0.0321 0.3546
Maximum frequency 0.0160 0.3546 FFT mean coefficient_175 0.0333 0.3546
Spectral roll-off 0.0160 0.3546 FFT mean coefficient_144 0.0346 0.3546
FFT mean coefficient_130 0.0174 0.3546 MFCC_7 0.0346 0.3546
MFCC_0 0.0174 0.3546 FFT mean coefficient_163 0.0374 0.3546
FFT mean coefficient_49 0.0189 0.3546 Spectral centroid 0.0374 0.3546
FFT mean coefficient_149 0.0189 0.3546 LPCC_0 0.0388 0.3546
FFT mean coefficient_0 0.0206 0.3546 FFT mean coefficient_249 0.0403 0.3546
FFT mean coefficient_202 0.0215 0.3546 Median frequency 0.0403 0.3546
MFCC_2 0.0224 0.3546 ECDF Percentile_0 0.0409 0.3546
FFT mean coefficient_37 0.0243 0.3546 FFT mean coefficient_39 0.0418 0.3546
FFT mean coefficient_247 0.0243 0.3546 FFT mean coefficient_185 0.0418 0.3546
MFCC_9 0.0243 0.3546 FFT mean coefficient_242 0.0418 0.3546
FFT mean coefficient_167 0.0263 0.3546 FFT mean coefficient_6 0.0434 0.3546
FFT mean coefficient_188 0.0263 0.3546 FFT mean coefficient_57 0.0450 0.3546
Spectral kurtosis 0.0263 0.3546 Signal distance 0.0450 0.3546
Fundamental frequency 0.0274 0.3546 FFT mean coefficient_235 0.0467 0.3546
Spectral skewness 0.0274 0.3546 FFT mean coefficient_154 0.0484 0.3546
Histogram_5 0.0283 0.3546 FFT mean coefficient_194 0.0484 0.3546

TABLE 4. Mann-Whitney U-test including also FDR correction for the cohort of COVID-19 disease, Influenza and HC.

Features pval pval_FDR Features pval pval_FDR
FFT mean coefficient_163 0.0024 0.2389 FFT mean coefficient_56 0.0212 0.2421
FFT mean coefficient_243 0.0031 0.2389 Min 0.0216 0.2421
FFT mean coefficient_189 0.0032 0.2389 FFT mean coefficient_236 0.0225 0.2421
FFT mean coefficient_202 0.0040 0.2389 FFT mean coefficient_53 0.0238 0.2421
FFT mean coefficient_149 0.0059 0.2389 FFT mean coefficient_29 0.0245 0.2421
FFT mean coefficient_242 0.0065 0.2389 FFT mean coefficient_15 0.0252 0.2421
Spectral kurtosis 0.0065 0.2389 FFT mean coefficient_165 0.0259 0.2421
FFT mean coefficient_182 0.0070 0.2389 FFT mean coefficient_247 0.0259 0.2421
FFT mean coefficient_167 0.0075 0.2389 FFT mean coefficient_152 0.0267 0.2421
Maximum frequency 0.0094 0.2389 FFT mean coefficient_185 0.0267 0.2421
Spectral roll-off 0.0094 0.2389 Spectral centroid 0.0267 0.2421
FFT mean coefficient_254 0.0101 0.2389 FFT mean coefficient_134 0.0299 0.2586
FFT mean coefficient_117 0.0118 0.2389 Slope 0.0299 0.2586
Histogram_5 0.0122 0.2389 Median frequency 0.0316 0.2615
FFT mean coefficient_25 0.0126 0.2389 Spectral spread 0.0316 0.2615
Zero crossing rate 0.0130 0.2389 FFT mean coefficient_125 0.0333 0.2647
FFT mean coefficient_233 0.0138 0.2389 FFT mean coefficient_155 0.0333 0.2647
FFT mean coefficient_194 0.0147 0.2389 FFT mean coefficient_250 0.0352 0.2738
MFCC_11 0.0152 0.2389 FFT mean coefficient_50 0.0372 0.2832
FFT mean coefficient_43 0.0157 0.2389 FFT mean coefficient_160 0.0382 0.2851
FFT mean coefficient_39 0.0162 0.2389 FFT mean coefficient_230 0.0392 0.2872
FFT mean coefficient_150 0.0162 0.2389 FFT mean coefficient_175 0.0413 0.2874
Spectral skewness 0.0162 0.2389 FFT mean coefficient_255 0.0413 0.2874
FFT mean coefficient_143 0.0167 0.2389 FFT mean coefficient_222 0.0424 0.2874
FFT mean coefficient_0 0.0172 0.2389 FFT mean coefficient_229 0.0447 0.2874
FFT mean coefficient_130 0.0172 0.2389 FFT mean coefficient_231 0.0458 0.2874
FFT mean coefficient_251 0.0172 0.2389 FFT mean coefficient_30 0.0470 0.2874
Spectral slope 0.0177 0.2389 Signal distance 0.0470 0.2874
FFT mean coefficient_235 0.0183 0.2389 FFT mean coefficient_180 0.0483 0.2874
FFT mean coefficient_207 0.0188 0.2389 FFT mean coefficient_196 0.0483 0.2874
FFT mean coefficient_48 0.0212 0.2421 FFT mean coefficient_187 0.0495 0.2874

V. EXPERIMENT

In this paper, we introduced a methodology for early COVID-
19 detection in the prodromal phase based on records from
smartwatches. Machine learning techniques are used for the
analysis of the signal. The data originated from paper [20],

where only a portion of the data was used. We selected 27
COVID-19 and 7 influenza samples as a positive class, and 34
healthy controllers as a negative class. In the original paper,
32 COVID positive samples, 15 influenzas, and 72 healthy
controllers were used. The reason for this is that some of the
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TABLE 5. Results for detection of COVID-19 disease for 5-day windows
(cohort: 27 HC, 27 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.71 0.72 0.71 0.46
k-NN 0.78 0.77 0.80 0.60
SVM 0.65 0.66 0.65 0.33
Logistic Regression 0.69 0.69 0.69 0.41
Decision Tree 0.50 0.52 0.49 0.01
Random Forest 0.62 0.59 0.66 0.27

TABLE 6. Results for detection of COVID-19 disease for 7-day windows
(cohort: 26 HC, 26 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.67 0.68 0.66 0.35
k-NN 0.68 0.73 0.63 0.37
SVM 0.66 0.70 0.63 0.35
Logistic Regression 0.63 0.60 0.64 0.26
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.59 0.56 0.61 0.18

records missed some important data parts that were needed
for the comparison of the signals. The size of the data is not
very large, however, it is currently the largest public dataset
of this kind available.

A few scenarios were tested with various fixed parameters,
that is, shift between windows, spacing between windows,
and changeable length of windows. These parameters were
fixed by considering the incubation periods and the highest
interval of contagiousness. A wrong selection can result in
the risk of considering people already in quarantine. The
purpose of this work was to concentrate on the prodromal
stage analysis, and the parameters were selected accordingly.

The set of extracted features covers several domains:
temporal, statistical, and spectral. Thanks to this, it could
represent a larger range in the variability of the analysed
signals. Based on the statistical analysis, the most informative
features were those related to changes in frequency and the
spectral. This could be explained by the fact that the final
features were computed as the difference of the extracted
features for two windows - later and earlier. The statisti-
cal evaluation showed that features such as MFCC, FFT,
spectral-based, histogram, and LPCC differed significantly
in the comparison of HC and COVID-19 cases. However, for
the scenario with (COVID-19, Influenza) and HC, the fol-
lowing features were relevant: FFT, spectral-based, MFCC.
These features seem to contradict. What is observable, under
stricter requirements (after FDR correction), none of the p-
values for the features were below 0.05. One of the most
significant differences was in the p-value, as the p-value with
the FDR correction was lower for the cohort with influenza.
This could indicate differences between the intensity of the
symptoms for influenza and COVID-19 cases, this same p-
value should be various. This revealed changes in the patterns
of some frequencies (activities) between the HC and COVID-
19 cases. Besides an increase or a decrease in parameter de-
tection, the results showed a higher accuracy registered for k-
NN in most of the cases. Good outcomes were achieved also

TABLE 7. Results for detection COVID-19 disease for 10-days windows
(cohort: 24 HC, 24 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.65 0.65 0.67 0.34
k-NN 0.71 0.84 0.60 0.46
SVM 0.67 0.67 0.67 0.36
Logistic Regression 0.70 0.72 0.68 0.42
Decision Tree 0.53 0.61 0.46 0.07
Random Forest 0.58 0.53 0.63 0.18

TABLE 8. Results for detection of COVID-19 disease and including Influenza
cases for 5-days windows (cohort: 34 HC, 27 COV, Influenza 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.66 0.68 0.65 0.35
k-NN 0.73 0.71 0.76 0.49
SVM 0.71 0.75 0.68 0.45
Logistic Regression 0.69 0.76 0.62 0.40
Decision Tree 0.52 0.50 0.55 0.05
Random Forest 0.56 0.56 0.56 0.13

with the logistic regression and for cohort containing only
COVID-19 and HC, as well also for XGBoost. The success
of the logistic regression indicates the ease of the recognition
of the samples containing disease cases and HC based on the
extracted features. The best results obtained with k-NN sug-
gest existing aggregations and sufficient boundaries between
them. The results obtained with XGBoost may be reached
due to the more complex nature of this classifier. Neverthe-
less, this classifier might have been slightly overfitted. In the
context of analysing the length of the windows, cohorts, and
obtained predictions, the best detection was obtained for 5-
day windows and a dataset containing COVID-19 and HC.
The accuracy was 0.77. The sensitivity (0.77) and specificity
(0.80) were similar in value, which suggests that COVID-19
cases and HC were recognised on a comparable level. The
results for detection of COVID-19 for 7-day windows and 10-
day windows were also above 0.70. Nevertheless, the choice
of shorter windows is much better in reality. The records for
comparing HC and potentially ill windows do not need to be
gathered from many days which is easier in the application
- For all of these cases, the best-performing classifier was k-
NN. Considering the datasets containing influenza cases, the
best accuracies for each studied case were above 0.70. The
highest sensitivity was recognised for 7-day windows, and
with the use of k-NN, it was 0.89. Nonetheless, the specificity
was low: at 0.51. When many positive cases were detected,
the recognition of negative cases was random. The results
between the two cohorts were at a similar level, although.
The detection of only COVID-19 cases was slightly more
accurate. This could indicate differences in the distribution of
COVID-19 data and a dataset containing COVID-19 together
with influenza. I has been reported that the symptoms of
COVID-19 last longer than those of influenza. Similarly,
they peak later after the illness onset [25]. Nonetheless,
this statement is linked to symptoms in general. However,
among symptoms onset, the increase in resting heart rate
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TABLE 9. Results for detection of COVID-19 disease and including Influenza
cases for 7-days windows (cohort: 33 HC, 26 COV, Influenza 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 0.64 0.62 0.28
k-NN 0.70 0.89 0.51 0.44
SVM 0.68 0.80 0.57 0.39
Logistic Regression 0.71 0.74 0.68 0.45
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.60 0.55 0.65 0.21

TABLE 10. Results for detection of COVID-19 disease and including Influenza
cases for 10-days windows (cohort: 31 HC, 24 COV, Influenza 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 0.63 0.62 0.27
k-NN 0.73 0.82 0.64 0.50
SVM 0.68 0.72 0.65 0.39
Logistic Regression 0.67 0.67 0.66 0.35
Decision Tree 0.52 0.54 0.50 0.04
Random Forest 0.59 0.58 0.59 0.18

was reported to be higher for COVID-19 than for influenza.
In the case of influenza, it was also visible, however, in
a milder manifestation. These measurements were gathered
with the smartwatches [25]. Due to the use of smartwatches,
the results from this study could potentially be applied on
a large scale. These devices are low-cost and can be used
for limited screening tests [50]. The raw data used for this
research could be distinguished into activity recognition (i.e.
step counting) and heart rate measurements. Based on step
counting, the most accurate device for this purpose is the
pedometer. However, smartwatches are more comfortable for
this purpose. They are non-invasive, user-friendly, and be-
cause of this suitable for this research. Another sensor, which
is being used for activity recognition is an accelerometer.
Some wearables are equipped also with sensors such as gy-
roscopes, magnetometers, barometers, and altimeters. They
could increase the quality of activity recognition. However,
the prices of these devices are higher: hence, they are often
not included in standard smartwatches [51].

HR records were measured based on to the optical tech-
nique of PPG measurements. Unfortunately, optical sensing
can cause some problems with the accuracy of this sensor,
especially during activity. The signals gathered by PPG could
be noised because of a movement, ambient light, and also
tissue compression. The noise in the PPG signal can influence
the correctness of computing the real value of HR [51]. Some
devices use an accelerometer to increase the robustness of
the HR estimation. Concerning these facts, the choice of a
smartwatch could influence the robustness of the gathered
HR values, which may limit the maximum accuracy of the
created support system methodology. A solution could be
combinations of more accurate pedometers for activity recog-
nition, with smartwatches. With this combination, higher
accuracy can be obtained, however, it would be more imprac-
tical as the use of these wearables should be as unobtrusive
and discrete as possible [52] - [53].

Regarding the smartwatches, the most frequently used

device for the original study was Fitbit [20]. The type of
used device used was not provided in the database. Thus, it
is challenging to claim the kind of device used for collecting
the data in each case or this study. The most common fitness
smartwatch - Fitbit, offers, among others, collecting data
from a 3-axis accelerometer [54] - and PPG to extract the
heart rate [55].

Some smartwatches can collect data more accurately and
from extra sensors, such as - measuring skin conductance,
skin temperature (gathered by infrared thermopile), BVP
and HRV, and acceleration. Their disadvantage include their
higher price is higher [56], [57]. The Empatica offers the
ability to collect more accurate data and extended range
of gathered data is regarded as medical device [58]. The
experiment developed with the use of such a device could
produce more accurate results for the created support sys-
tem methodology. The increase in the number of modalities
would bring more informative physiological data and this
could also lead to a more robust model. Nevertheless, the
use of Empatica for screening tests is difficult because of its
higher price [22].

Finally, our findings must be compared with those of
original study on which this study was based [20]. In this
study, the same dataset was used as the one introduced in
[20]. In the original research, 32 COVID-19 cases were
analysed. In 25 cases some anomalies were detected, and
22 cases were in their early stage. Both works, this and
the original focus on prodromal stage detection. First, this
work did not treat outliers as anomaly detection issues,
but rather as a classification problem. Hence, we increased
parameters such as sensitivity and accuracy. The work also
evaluated the data from several domains such frequency,
spectral, and statistical aspects. The devices used for both
studies were smartwatches, as mentioned before. The authors
of the original work published offline and online algorithms
for analysing the provided data.

Two types of data were used to detect the RHR and the
ratio between the HR and the number of steps. The algorithm
applied for analysing the RHR was the RHR difference
(RHR-Diff) [20], was based on standardized residuals. We
compared the 1-h resolution with the 28-day baseline. The
second algorithm, the so-called HROS-AD, was built on
heart rate over steps signals to detect anomalies. The values
were compared for 1-hour with the rest of the record using
Gaussian density estimation [20]. For RHR-Diff and HROS-
AD, anomalies were detected in 22 COVID-19 cases. It
should be emphasised that these methods are dedicated to
anomaly detection, so they indicate some outliers. However,
they do not clearly indicate wheter the person has or does not
have COVID-19. Our methodology considers the classifica-
tion problem.

The cumulative sum algorithm (CuSum) which works in
real-time was introduced in [20]. In particular, it cumulated
the deviations of the elevated residuals RHRs. The 28 days
period was taken into consideration for this algorithm. Thus,
62,5 % of COVID-19 cases and viral infections were de-
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tected. Nevertheless, it should be treated as a specificity
issue, rather than not accuracy issue. The difference between
our paper and the original one is that we have created the
support system methodology with a specificity higher than
77 % and an accuracy 78 % for 5-day windows for the
COVID-19 detection. For the cohort containing influenza
cases, the accuracy was 73 % and 71 % for the specificity.
Moreover, our algorithm required a shorter period to detect
the prodromal stage of the disease.

VI. LIMITATION OF THE WORK
A few limitations are evident in this study. Due to the reuse
of the dataset from the original paper, some related problems
could occur [20]. The previous study did not mention exactly
where the data were gathered. The results obtained could be
biased for a specific group of people. For example, race and
ethnicity can influence the variance of cohort [25]. Further,
the dataset is limited. This implies that the machine learning
models created could be biased and overfitted. Future studies
should extend the dataset to create a more robust algorithm.

Nevertheless, there could be also pointed out some chal-
lenges related to wearing wearable devices. It is the respon-
sibility of the people to wear them all the time the device.
In the real-world scenario, there is often a problem of a lack
of data. This will result in the use of some pre-processing
methodologies and will decrease the level of reliability of the
machine learning model. Furthermore, this research focused
on Fitbit; hence the solution may be limited to this device.
Other smartwatches could use different pre-processing steps
and approximations of the gathered signals [59]. Moreover,
the gathered signals could be noisy [60]. People could wear
the devices inappropriately. The signals could also be biased
by the noise coming from various sensors. The common
smartwatches are not certificated medical devices. Thus,
future versions of the hardware could incorporate other pa-
rameters. It is also not clear what the responses of the human
body of people with several comorbidities are. Moreover, the
comorbidities could have an influence on the physiological
parameters, and this could distort the pattern of the signal
which could be typical for COVID-19 or HC cases.

VII. CONCLUSIONS
In this work, we introduced a methodology for the prodro-
mal stage detection of COVID-19. The work contributes a
methodology for the detection of COVID-19 in the early
stages. This tool uses smartwatches (wearable devices) and
reached interesting accuracy of 78 %. To limit the conta-
giousness of the disease, this approach is takes into consid-
eration the character of the disease, that is, the incubation
period and the highest contagiousness interval. This is a
unique approach in comparison to the previous works. We
evaluated three window lengths: 5, 7, and 10, and used
features designed for biomarker analysis. The model based
on 5-day windows allowed us to obtain the prediction with
78 % in accuracy. We tested a few sets of parameters. The
most practical in reality will be the solution based on 5-

day windows. This research was based on [20]. The biggest
difference between our research and the original one was that
this work focused on creating a classification algorithm, in-
stead of an anomaly detection model, which has the potential
to reach better accuracy and serve as a better diagnostic tool.
Moreover, we provided an evaluation of the methodology
expressed by more metrics and achieved better results for
the models. The approach applied in this experiment could
serve as a potential screening test based on smartwatches.
The statistical evaluation based on the Mann-Whitney U
test indicated which of the features differed most in the
cohorts analyses. These were primarily from the statistical
and spectral domains. We compared the model results trained
on two different cohorts, COVID-19 and HC, and COVID-
19, influenza, and HC. The results were quite similar for
both cases, and slightly worse for the extended cohort with
influenza. Considering the algorithms, simple classifiers such
as k-NN and Logistic Regression, provided the best results
which could indicate that a non complex dependency occured
in the datasets. In some cases, XGBoost achieved also good
outcomes.

The major limitation of the study and the opportunity for
future development is mainly the size of the training samples.
It is, very difficult to obtain the data right at the time of dis-
ease onset, since usually the subjects are, not aware about the
infection. Including parameters such as age, gender, weight,
height, habits, and addiction to smoking and drinking could
be worthwhile and could improve the accuracy of model [8],
[22]. Another big advantage would be to extend the types
and accuracy of the sensors used in wearable devices or
optimally to use certified medical devices (e.g. Empatica).
In the past, different sensor types were found across the same
fitness products, which resulted in different measured values.
Certified medical devices are not used very often because
fitness devices are significantly cheaper. Not very practical
but also possible, could be an experiment that combines
several cheap fitness devices to cover more sensors at the
same time. This work rely significantly on resting heart rate
time; in the future, it could be interesting to identify and
compare various activities (e.g. during the sleep). This might
increase the accuracy and possibly shorten the required signal
length which is currently 5 days. However, such an approach
has a limitation - it cannot be broadly used for screening tests
as standard smartwatches.

VIII. DATASET
The data were reused from the work [20] and could be found
here: 1
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[40] J. Skibińska and R. Burget, “Parkinson’s disease detection based on
changes of emotions during speech,” in 2020 12th International Congress
on Ultra Modern Telecommunications and Control Systems and Work-
shops (ICUMT), pp. 124–130, IEEE, Oct. 2020.

[41] N. Nachar et al., “The mann-whitney u: A test for assessing whether
two independent samples come from the same distribution,” Tutorials in
quantitative Methods for Psychology, vol. 4, pp. 13–20, May 2008.

[42] D. Thissen, L. Steinberg, and D. Kuang, “Quick and easy implementation
of the benjamini-hochberg procedure for controlling the false positive rate
in multiple comparisons,” Journal of educational and behavioral statistics,
vol. 27, pp. 77–83, Mar. 2002.

[43] C. M. Bishop, “Pattern recognition and machine learning, 11.(corr. print-
ing),” Information Science and Statistics; Springer: New York, NY, USA,
2013.

[44] J. Han and M. Kamber, Data mining : concepts and techniques. Kaufmann,
2006.

[45] A. Singh, N. Thakur, and A. Sharma, “A review of supervised machine
learning algorithms,” in 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), pp. 1310–1315, Oct.
2016.

[46] R. Saravanan and P. Sujatha, “A state of art techniques on machine learn-
ing algorithms: a perspective of supervised learning approaches in data
classification,” in 2018 Second International Conference on Intelligent
Computing and Control Systems (ICICCS), pp. 945–949, IEEE, 2018.

[47] A. Priyam, G. Abhijeeta, A. Rathee, and S. Srivastava, “Comparative
analysis of decision tree classification algorithms,” International Journal
of current engineering and technology, vol. 3, pp. 334–337, Jun. 2013.

[48] H. Sharma and S. Kumar, “A survey on decision tree algorithms of clas-
sification in data mining,” International Journal of Science and Research
(IJSR), vol. 5, pp. 2094–2097, Apr. 2016.

[49] “Time series feature extraction library.”
https://tsfel.readthedocs.io/en/latest/. Accessed: 2021-03-18.

[50] T.-C. Lu, C.-M. Fu, M. H.-M. Ma, C.-C. Fang, and A. M. Turner,
“Healthcare applications of smart watches: a systematic review,” Applied
clinical informatics, vol. 7, p. 850, Sep. 2016.

[51] A. Henriksen, M. H. Mikalsen, A. Z. Woldaregay, M. Muzny,
G. Hartvigsen, L. A. Hopstock, and S. Grimsgaard, “Using fitness trackers
and smartwatches to measure physical activity in research: analysis of
consumer wrist-worn wearables,” Journal of medical Internet research,
vol. 20, p. e110, Mar. 2018.

[52] T. G. Stavropoulos, A. Papastergiou, L. Mpaltadoros, S. Nikolopoulos,
and I. Kompatsiaris, “Iot wearable sensors and devices in elderly care: a
literature review,” Sensors, vol. 20, p. 2826, May 2020.

[53] Y. Guo, X. Liu, S. Peng, X. Jiang, K. Xu, C. Chen, Z. Wang, C. Dai,
and W. Chen, “A review of wearable and unobtrusive sensing technologies
for chronic disease management,” Computers in Biology and Medicine,
p. 104163, Feb. 2020.

[54] L. M. Feehan, J. Geldman, E. C. Sayre, C. Park, A. M. Ezzat, J. Y. Yoo,
C. B. Hamilton, and L. C. Li, “Accuracy of fitbit devices: systematic review
and narrative syntheses of quantitative data,” JMIR mHealth and uHealth,
vol. 6, p. e10527, Aug. 2018.

[55] Y. Bai, P. Hibbing, C. Mantis, and G. J. Welk, “Comparative evaluation
of heart rate-based monitors: Apple watch vs fitbit charge hr,” Journal of
sports sciences, vol. 36, pp. 1734–1741, Dec. 2018.

[56] U. Lee, K. Han, H. Cho, K.-M. Chung, H. Hong, S.-J. Lee, Y. Noh,
S. Park, and J. M. Carroll, “Intelligent positive computing with mobile,
wearable, and iot devices: Literature review and research directions,” Ad
Hoc Networks, vol. 83, pp. 8–24, Feb. 2019.

[57] A. Bizzego, G. Gabrieli, C. Furlanello, and G. Esposito, “Comparison of
wearable and clinical devices for acquisition of peripheral nervous system
signals,” Sensors, vol. 20, p. 6778, Nov. 2020.

[58] J. Chen, M. Abbod, and J.-S. Shieh, “Pain and stress detection using
wearable sensors and devices—a review,” Sensors, vol. 21, p. 1030, Feb.
2021.

[59] G. Cosoli, S. Spinsante, and L. Scalise, “Wrist-worn and chest-strap
wearable devices: Systematic review on accuracy and metrological char-
acteristics,” Measurement, vol. 159, p. 107789, Jul. 2020.

[60] A. Rehman, M. Mustafa, N. Javaid, U. Qasim, and Z. A. Khan, “Analytical
survey of wearable sensors,” in 2012 Seventh International Conference
on Broadband, Wireless Computing, Communication and Applications,
pp. 408–413, IEEE, Jan. 2012.

JUSTYNA SKIBINSKA was born in Poland. She
is the Early Stage Researcher and PhD student
at Brno University of Technology, Czech Repub-
lic and Tampere University, Finland as a part of
H2020 MCSA ITN/EJD A-WEAR project. She
obtained her master’s and bachelor’s degree from
Biomedical Engineering with major in Computer
Science and Electronics in Medicine at University
of Science and Technology in Kraków, Poland in
2018 and 2017 respectively.

RADIM BURGET is an Assoc. Professor at Brno
University of Technology and is heading Sig-
nal processing program at SIX Research Cen-
tre. He has been involved in research of artifi-
cial intelligence for many years and in plenty of
research projects which include projects funded
on European level, national level or privately
funded projects. Companies he is cooperating with
include Honeywell, Mitsubishi Electric, Rapid-
miner, Konica-Minolta and others.

ASMA CHANNA obtained her Master’s degree
from Mehran University of Engineering and Tech-
nology Jamshoro, Pakistan in 2018. She is cur-
rently pursuing a double Ph.D. degree at Uni-
versity Politehnica of Bucharest, Romania, and
Mediterranea University of Reggio Calabria, Italy,
as a Marie Skłodowska-Curie Fellow in the Eu-
ropean project A-WEAR. Her research interests
include, biomedical signal processing, wearables,
eHealth and artificial intelligence..

NIRVANA POPESCU is full professor at Univer-
sity POLITEHNICA of Bucharest (UPB), Com-
puter Science Department, since 2014. She re-
ceived PhD in Computer Science with a thesis
called “Self-organizing intelligent fuzzy systems”,
at UPB in 2003. Her main research interests are
neural networks, intelligent systems, fuzzy logic
and control, eHealth systems, cognitive and au-
tonomous robots, reconfigurable computers.

YEVGENI KOUCHERYAVY received the Ph.D.
degree from TUT in 2004. He is a Full Professor
and Lab Director at the Department of Electron-
ics and Communications Engineering, Tampere
University of Technology (TUT), Finland. He is
the author of numerous publications in the field
of advanced wired and wireless networking and
communications. His current research interests in-
clude various aspects in heterogeneous wireless
communication networks and systems, the Internet

of Things and its standardization, as well as nanocommunications.

16 VOLUME X, 2021


