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COVID‑19 diagnosis by routine 
blood tests using machine learning
Matjaž Kukar1,2,8, Gregor Gunčar1,3,8, Tomaž Vovko4, Simon Podnar5, Peter Černelč7, 
Miran Brvar6, Mateja Zalaznik4, Mateja Notar1, Sašo Moškon1 & Marko Notar1*

Physicians taking care of patients with COVID‑19 have described different changes in routine 
blood parameters. However, these changes hinder them from performing COVID‑19 diagnoses. We 
constructed a machine learning model for COVID‑19 diagnosis that was based and cross‑validated on 
the routine blood tests of 5333 patients with various bacterial and viral infections, and 160 COVID‑19‑
positive patients. We selected the operational ROC point at a sensitivity of 81.9% and a specificity of 
97.9%. The cross‑validated AUC was 0.97. The five most useful routine blood parameters for COVID‑
19 diagnosis according to the feature importance scoring of the XGBoost algorithm were: MCHC, 
eosinophil count, albumin, INR, and prothrombin activity percentage. t‑SNE visualization showed 
that the blood parameters of the patients with a severe COVID‑19 course are more like the parameters 
of a bacterial than a viral infection. The reported diagnostic accuracy is at least comparable and 
probably complementary to RT‑PCR and chest CT studies. Patients with fever, cough, myalgia, and 
other symptoms can now have initial routine blood tests assessed by our diagnostic tool. All patients 
with a positive COVID‑19 prediction would then undergo standard RT‑PCR studies to confirm the 
diagnosis. We believe that our results represent a significant contribution to improvements in COVID‑
19 diagnosis.

In December 2019, cases of pneumonia of an unknown origin were identi�ed in Wuhan, the capital of Hubei 
province,  China1. �e causative agent was named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)2, and the disease was named coronavirus disease (COVID-19). Soon a�er, it was realized that SARS-
CoV-2 is a highly contagious and moderately virulent  virus3. In the following months, SARS-CoV-2 spread 
worldwide, and on March 11, 2020, the World Health Organization (WHO) declared COVID-19 a  pandemic4. 
Although clinical features of COVID-19 patients were soon  described5, 6, no vaccination or e�ective treatment 
was available. Currently, the only e�ective measures for stopping the spread of COVID-19 are strict precaution-
ary hygiene, social distancing, and isolation of contagious  subjects7, 8.

COVID-19 diagnosis is crucial for the identi�cation, isolation, and treatment of contagious  subjects9. �e gold 
standard for COVID-19 diagnosis is a demonstration of SARS-CoV-2 RNA in patients’ respiratory secretions 
using real-time reverse transcriptase polymerase chain reaction (RT-PCR)10, 11. Although RT-PCR is invalu-
able in dealing with the COVID-19 pandemic, it is a sophisticated test that requires an extensive and delicate 
 infrastructure10. Moreover, the test is not always positive even in fully symptomatic SARS-CoV-2 infected 
 patients12. Some authors have reported only 30%-60% sensitivity of RT-PCR in clinical  applications13, 14. Addi-
tionally, demand for RT-PCR testing is enormous, which is a limitation in controlling the  pandemic15. In symp-
tomatic COVID-19 patients, a CT scan of the chest is a  useful13 but undesirable  alternative16. �erefore, other 
testing methods are imperative.

Physicians taking care of COVID-19 patients have noted pronounced changes in their blood parameters. 
Particularly, they have described hypoalbuminemia, increased C-reactive protein (CRP) and lactate dehydroge-
nase (LDH), lymphopenia, etc.17. Nevertheless, these laboratory �ndings alone are insu�cient for physicians to 
di�erentiate patients with COVID-19 from patients with other infectious disorders. More so, it is widely known 
that even the most knowledgeable and experienced physicians can extract only a minor fraction of information 
contained in the results of routine blood  tests18. By contrast, machine learning (ML) can recognize subtle patterns 
in data. �erefore, ML is suitable for di�erentiating various patterns observed in routine blood parameters. We 
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have previously demonstrated how an ML model considerably outperformed experienced clinicians in diagnos-
ing hematological  disorders18, as well as another model for brain tumors with diagnostic accuracy similar to 
head  imaging19.

�e aim of the present study is to determine the diagnostic accuracy of an ML model built speci�cally for the 
diagnosis of COVID-19 using the results of routine blood tests. A group of symptomatic patients newly diagnosed 
with COVID-19 and patients with other infectious diseases were studied.

Materials and methods
Patients and controls. A pool of a COVID-19-positive population was obtained in March/April 2020 
from patients admitted to the Department of Infectious Diseases, University Medical Centre Ljubljana (UMCL), 
Slovenia. �e positive training group included 160 consecutive symptomatic patients.

A pool of a COVID-19-negative population was obtained from 52,306 patients admitted to the same Depart-
ment from March 2012 to April 2019. A more representative population of 22,385 patients with various viral 
and bacterial infections, and approximately the same mean number of measured blood parameters as in the 
COVID-19-positive patients (at least 33 out of 35) was selected (Supplementary Table S1). To construct the �nal 
representative negative training group, patients were randomly sampled (without replacement) to approximate 
the proportion of positive versus tested individuals (3% at the time of data collection). At the end, the negative 
training group included retrospective data of 5333 patients with 225 di�erent bacterial and viral infections (dif-
ferent ICD codes), diagnosed prior to the COVID-19 outbreak (Fig. 1).

In all groups, we collected data on patients’ age, sex, routine blood test results, and the ICD10-encoded 
�nal diagnoses. All identi�able personal data were removed prior to analysis. All methods were performed in 
accordance with the relevant guidelines and regulations. �e National Ethics Committee of Slovenia approved 
the study (No. 0120-718/2015/7 and No. 0120-170/2020/6); patients’ written informed consent was not needed 
according to the Slovenian Patients’ Rights act, article 44/6. �e study was performed in accordance with the 
STARD  recommendations20.

Blood parameters used for model building. Out of 117 parameters measured in the positive training 
group, we removed all parameters that were measured in less than 25% of the patients. We also omitted non-
blood parameters and arterial blood parameters. �us, 35 parameters were selected. For each parameter, we cal-
culated the relative reference range and median values for a group of patients with COVID-19, and in the nega-
tive training group, we calculated for the viral and bacterial infections separately. All parameter values (reference 
ranges, medians) were centered and scaled according to reference ranges. We compared blood parameter dis-
tributions in groups by the nonparametric k-sample Anderson–Darling (AD) test and depicted the P-values21.

Visualization of blood parameter space. To visualize how the data was arranged in a high-dimensional 
space of 35 blood parameters, we applied the t-distributed stochastic neighbor embedding (t-SNE)  method22, 
which is an unsupervised, non-linear technique primarily used for data exploration and visualization of high-
dimensional data. �e method has been shown to perform e�ectively in several high-dimensional datasets, it 
is very �exible, and it can o�en �nd a structure where other dimensionality-reduction algorithms  fail22, 23. �e 
nature and complexity of t-SNE may lead to visualization misinterpretation, speci�cally to overstating the mean-
ing of distances on the  plot24. In this work, we used the openTSNE  implementation25, 26.

Smart Blood Analytics machine learning algorithm. �e Smart Blood Analytics (SBA) algorithm is 
a CRISP-DM based machine learning pipeline consisting of �ve processing stages corresponding to phases 2–6 
of the CRISP-DM27 standard. �e stages are as follows. Data acquisition: acquiring raw data from the database; 
data �ltering: constructing the training dataset consisting of blood test results obtained before treatment and 
the patient’s �nal diagnosis; data preprocessing: canonization of blood parameters (matching them with our 
reference blood parameter database, recalculation to SI units, data quality control); data modelling: building the 
diagnostic model using ML algorithms; evaluation: evaluating the model with strati�ed ten-fold cross-validation 
and/or independent testing data; deployment of the successfully evaluated model in the cloud (accessible either 
through hospital information systems or the SBA  website28).

As the principal ML algorithm, we chose the extreme gradient boosting machine,  XGBoost29–31. In our 
previous work, with the same type of blood parameter  data18, 19, we performed a comprehensive comparison 
of various ML algorithms, such as random forest (RF), neural network (NN), the extreme gradient boosting 
machine (XGBoost) and support vector machines (SVM). With respect to the XGBoost algorithm, other algo-
rithms all exhibited signi�cant de�ciencies due to the dimensionality of the input space and the high numbers 
of missing parameter measurements. XGBoost is an optimized distributed gradient boosting library designed 
to be highly e�cient, �exible and portable. It implements machine learning algorithms under the Gradient 
Boosting framework. It provides a massively parallel tree boosting approach that builds a strong classi�er from 
an ensemble of weak classi�ers. Its goal is to minimize the loss function by adding weak learners using a gradi-
ent descent optimization algorithm by utilizing arbitrary di�erentiable loss functions. Additionally, XGBoots 
provides intrinsic handling (dynamic imputation) of missing data, produces models with signi�cantly higher 
performance, and requires less computational resources. XGBoost is currently one of the most popular ML  tools32 
with key strengths, such as speed and parallelization, and can intrinsically handle sparse (missing) data, which 
many other algorithms have problems  with33.

Imbalanced data and model calibration. In our data, we observed severely imbalanced groups (in daily 
practice, the ratio of positive versus tested is approximately 3%). However, such a scenario is o�en problematic 
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for machine learning algorithms as it makes it too easy to focus on the prevalent group (negatives). Simple data 
undersampling techniques failed to improve the results due to the relatively large number of blood param-
eters and a correspondingly large (35 + 2)-dimensional attribute space. Moreover, more advanced resampling 
techniques, such as  SMOTE34, 35, struggle with high-dimensional and interdependent  data36, such as blood test 
measurements. Our full dataset at the start consisted of 52,306 pre-COVID-19 negative patients; this number 
was further reduced by retaining only the patients with viral and bacterial infections (22,385). Relative to the 
160 positive cases, this represented the prevalence of 0.007 (0.7%), while at the time of writing the prevalence of 
COVID-19-positive test results was 3%. We therefore undersampled the 22,385 patient to retain the 3% preva-
lence as well as to keep only the negative patients with a su�cient number of measured blood parameters (33 out 
of 35, on average). �is approach yielded the �nal 5333 negative patients. Additionally, the intrinsic imbalance 
was addressed by model calibration using the precision-recall (PR)  curve37 and maximizing the F2-score (favor-
ing recall versus precision) to select the operational ROC point.

Evaluation of predictive models. �e models were evaluated in two ways. First, we automatically evalu-
ated the models using repeated strati�ed ten-fold cross-validation. �e results were characterized using standard 
performance measures, such as sensitivity and speci�city (recall on positive and negative groups, respectively), 
precision, AUC, and ROC curve. Additionally, we tested the �nal model on a separate control group of 873 

Figure 1.  A �ow chart of patients included in the model building and validation process.
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negative patients and reported practically the same performance measures (865 true negatives, 8 false negatives, 
speci�city 99.07% without calibration). At the time it was impossible to obtain additional positive patients with 
a su�cient number of blood test results. Furthermore, for sensitivity and speci�city, the 95% binominal con�-
dence intervals using the Agresti-Coull method were  calculated38.

Results
Demographic data for all patient groups are presented in Table 1. Out of the 160 COVID-19-positive patients 
(median age: 55.5 years; 42% women), 17 were admitted to the intensive care unit (ICU), and 14 required intuba-
tion and invasive mechanical ventilation. Chest X-rays were performed on 94 patients, and lung in�ltrates were 
detected in 68 patients. Respiratory failure occurred in 44 patients (27.5%), 10 died (6%), 7 were still in the ICU 
(4%), and 20 were in the hospital (12.5%). �e following comorbidities were also present: hypertension in 34.4%, 
diabetes in 9.4%, hyperlipidemia in 11.9%, heart failure in 7.5%, hypothyroidism in 6.3%, atrial �brillation in 
5.0%, ischemic heart disease in 3.8%, COPD or asthma in 5.6%, chronic kidney failure in 3.8%, and occlusive 
peripheral arterial disease in 1.9%.

�e analysis of 35 selected blood parameters revealed that in the COVID-19 positive group, the calculated 
parameter medians were within the normal reference range for all except two parameters that were elevated: 
prothrombin activity % (median: 1.05; normal range (SI): 0.7–1), and CRP (median: 12 mg/L; SI: 0–5 mg/L). 
Most blood test parameters from the patients with COVID-19 di�ered signi�cantly from patients with other 
viral and bacterial infections (Fig. 2). Five parameters with the statistically most signi�cant di�erence and e�ect 
size between the COVID-19-positive group and bacterial infections were urea, hemoglobin, erythrocyte count, 
hematocrit, and leukocyte count. When the COVID-19-positive group was compared to other viral infections, the 
�ve parameters with the statistically most signi�cant di�erence and e�ect size were mean corpuscular hemoglobin 
concentration (MCHC), eosinophils ratio, prothrombin international normalized ratio (INR), prothrombin 
activity %, and creatinine (Fig. 2).

�e full complexity of COVID-19 diagnostics can be illustrated by visualizing the blood parameter space of 
patients with COVID-19, and with bacterial, and viral infections from our training data using the t-SNE  method22 
(Fig. 3). Even a�er extensive experimentation, which also included alternative visualization techniques, such 
as PCA and MDS, it was impossible to obtain partial separation of the positive and negative groups. While the 
virus and bacteria subgroups appear di�erent, but have a signi�cant overlap, the COVID-19 positive group is 
dispersed between both. Expectedly, the medoid of the COVID-19 positive group lies closer to the medoid of 
the virus subgroup than to the medoid of the bacteria subgroup. �is is not the case in the COVID-19 positive 
patients who died or had a diagnosis of acute respiratory failure (ARF). �e medoids of those patients are both 
closer to the medoid of the bacteria subgroup (Fig. 3).

Nevertheless, the predictive model for the diagnosis of COVID-19, which was produced using XGBoost, 
performed e�ectively (Fig. 2). We evaluated our approach using the ten-fold strati�ed cross-validation test-
ing procedure. �e results and the corresponding binomial con�dence intervals, calibrated with respect to the 
operational ROC point were as follows: a sensitivity of 81.9% ± 6%, speci�city of 97.9% ± 0.4%, and AUC of 0.97 
(Table 2, Fig. 4). Results of alternative learning algorithms, not selected for the �nal model, were as follows: 
Support Vector Machine—sensitivity 74.4%, speci�city 96.4%, AUC 0.91; Random Forest—sensitivity 79.7%, 
speci�city 97.6%, AUC 0.95; Neural network—sensitivity 72.2%, speci�city 96.1%, AUC 0.92.

We also estimated the importance of features (parameters) by computing the average gain across all the trees 
and node splits where the feature was  used29. �is represents the model-dependent discriminative power of each 
feature, relevant to the particular model only. �e �ve blood parameters with the highest discriminative power 
were MCHC, eosinophils count, albumin, INR and prothrombin activity %.

Discussion
In this study, we con�rmed that COVID-19 diagnosis is attainable using ML on data from routine blood tests. 
We demonstrated that our ML model e�ciently discriminated patients with COVID-19 from patients with other 
infectious diseases. �e model exhibited a high sensitivity of 81.9%, a speci�city of 97.9%, and an AUC of 0.97 on 
the cross-validated training group (Fig. 4). From an ML perspective, our results are quantitatively excellent, with 
an impressively low proportion of false positives and a moderately low proportion of false negatives. Moreover, 
AUC values above 0.90 are generally considered as  excellent39.

Owing to the absence of a completely reliable diagnostic standard for COVID-19, it is di�cult to evaluate the 
diagnostic performance of various diagnostic tests. Nevertheless, it is clear that the diagnostic performances of 
both RT-PCR studies and chest CT are not perfect. In a recent study of 1014 patients suspected with COVID-19, 
both tests were positive in 580 cases, only chest CT was positive in 308, only RT-PCR in 21, and none of them in 

Table 1.  Demographic features of included patient groups.

Training group—COVID-19

Negative Positive

Number
5333
2971 viral infections
2362 bacterial infections

160
38 with acute respiratory failure (ARF)
10 died (9 with ARF)

Age median 57 55.5

Female sex [number/%] 2155/40% 67/42%
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Figure 2.  Blood parameters sorted by their XGBoost importance score. More important parameters are shown 
on the le�. Group median values and IQR of the blood parameters used in model building are shown, centered, 
and scaled to reference intervals. Median bar for the C-reactive protein in bacterial infections is out of the 
scale at 38 mg/L. Groups (COVID-19/other virus/bacteria) were evaluated by the Anderson–Darling test. �e 
signi�cance levels (0.05 or 0.01) of the test results are depicted at the bottom of the �gure.

Figure 3.  Visualization of bacteria/virus/COVID-19 parameter space with t-SNE method. Each dot represents 
a patient or more speci�cally, an embedding of his/her blood parameters into a two-dimensional space, 
and its color represents the group. Blue dots represent patients with viral infections other than COVID-19, 
orange dots patients with bacterial infections and red dots patients with COVID-19. Green dots in panel (a) 
represent COVID-19 patients who died (10 patients) and in panel (b) COVID-19 patients diagnosed with acute 
respiratory failure (38 patients). Medoids of bacteria/virus/COVID-19/”COVID-19 death” groups on panel (a) 
and bacteria/virus/COVID-19/”COVID-19 ARF” groups on panel (b) are also marked.
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the remaining 105 patients; RT-PCR sensitivity was 59%, and chest CT was 88%13. �e diagnostic performance 
of our predictive model is most likely not inferior to its competitors. Furthermore, it is most probably com-
plementary and would be best used along with standard protocols designed according to local circumstances.

In a study describing an ML model using blood  parameters40, the researchers studied 105 patients with 
COVID-19 and 148 patients with other pulmonary disorders. �ey identi�ed 11 most-useful blood parameters 
(total protein, bilirubin, glucose, creatinine, Ca, LDH, creatine kinase, K, Mg, platelet distribution width, and 
basophil count) and used them in their analyses. �ey also recorded high test accuracies: 98% on cross-validation 
and 97% on the test  set40. Although their work has not been peer-reviewed and published in scienti�c literature, 
their data con�rm our �nding that ML models using routine blood parameters are useful in the diagnosis of 
COVID-19. However, their data quantitatively has a 41% ratio of positives. �us, where the ratio is much lower 
in practice, unacceptably high numbers of false positives would be recorded.

In another study, the authors used data from 102 patients diagnosed as positive and 133 diagnosed as negative 
with RT-PCR  tests41. �eir best results are considerably lower than ours (AUC: 0.85, sensitivity 0.68, speci�city 
0.85), most likely due to a much lower number of blood parameters measured (only 13). Again it is di�cult to 
assess the practical importance of their results as the 43% ratio of positives would in practice be much smaller 
and again result in high numbers of false positives.

We obtained blood samples from our patients immediately a�er they were presented to the infectious dis-
ease service. �is observation suggests that the SBA algorithm is useful in the early symptomatic phase when 
COVID-19 is easier to be missed by RT-PCR test. We do not have data on the ability of our model to diagnose 
presymptomatic COVID-19 patients as their blood had not been drawn. Although this should be tested in the 
future, our model will possibly be ine�cient at that stage in which the virus replicates locally in the nasopharynx 
without systemic e�ects.

Some routine blood parameters proved to be especially important in our model. It should be noted that we 
selected the blood parameters we used for model training and analysis based on the available data in all of our 
patient groups. �erefore, we were unable to include some clinically relevant parameters that might be helpful in 
identifying patients with COVID-19. However, our analysis revealed some blood parameters that require further 
investigation in patients with COVID-19. In our analysis, the two out of �ve most discriminating parameters for 
patients with COVID-19 were prothrombin activity % and INR, which were elevated and decreased, respectively, 
indicating accelerated blood clot formation in patients with COVID-19. �e risk of disseminated intravascular 

Table 2.  Confusion matrix for the cross-validated training group.

Positive Negative

Predicted positive 131 112

Predicted negative 29 5221

Figure 4.  ROC, PR (precision-recall), and F2 curves for COVID-19 diagnosis calculated from the training 
data using ten-fold strati�ed cross-validation. Vertical and horizontal dashed lines connect the F2 (gray) max 
point with the PR curve (orange) and the ROC curve (blue) in order to obtain the operational ROC point with 
sensitivity = 0.819, speci�city = 0.979 (depicted with red dots), and AUC = 0.97.
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coagulation and venous thromboembolism is well recognized in COVID-1942. We also observed raised MCHC, 
a reduction in eosinophils, low albumin levels, high CRP, and lymphopenia (Fig. 2). In a systematic review and 
meta-analysis of 19 studies, the most prevalent laboratory abnormalities found in patients with COVID-19 were 
hypoalbuminemia (76%), increased CRP (58%), LDH (57%), and lymphopenia (43%)17. However, this pattern 
of abnormalities is still rather nonspeci�c and does not enable physicians to diagnose COVID-19. Likewise, 
considering the 35 most important parameters we analyzed (Fig. 2) does not enable physicians to con�rm 
a COVID-19 diagnosis. �is is also evident from our t-SNE analysis and visualization of the distribution of 
COVID-19, bacterial infection, and viral infection cases, which showed the complexity of the parameter space 
in COVID-19 (Fig. 3). Apart from diagnosis, physicians caring for patients with COVID-19 also noted some 
typical patterns in blood parameters that predict more severe disease courses. Most notably in patients with more 
severe disease courses, laboratory abnormalities were more pronounced (e.g., more severe lymphopenia, CRP and 
LDH increase, etc.)5. In agreement, our t-SNE visualization of blood parameter space shows that the medoid of 
the patients with a severe COVID-19 course is shi�ed toward the medoid of the patients with bacterial infection 
(Fig. 3). �is indicates the need for COVID-19 patients to be tested for bacterial co- or super-infection43 or severe 
 in�ammation44 early on and treated accordingly. It also shows the possibility of the e�cient prognostication of 
the COVID-19 course using ML.

Our study has several limitations. First, our analysis was performed on data obtained in a single center. 
Although this may limit generalizability, using standardized and approved procedures, reagents, and technol-
ogy, we expect similar laboratory blood test results in other centers. Second, the number of COVID-19-positive 
patients included in our analyses was limited (160 for the building of the ML model). Both data disproportion 
and parameter dimensionality suggest that a considerably higher number of positive patients (at least 1000) 
would further improve results on the positive group. However, with respect to the small number of available 
COVID-19-positive patients, the current results are excellent. �ird, the study was retrospective, which limited 
the scope of available patient data. However, for the purpose of this study, we mainly required available results 
of routine blood tests and accurate COVID-19 diagnoses.

�e study also has several strengths. First, we analyzed data from a large number of patients (> 5000) with 
good data quality for blood tests and diagnoses. Second, a single certi�ed laboratory diagnosed all patients with 
COVID-19 using RT-PCR, which assured the high quality of the diagnoses. �e speci�city of RT-PCR was also 
very high. Furthermore, high speci�city was assured by the inclusion of patients evaluated for various infectious 
diseases before the COVID-19 pandemic. �ird, we used state-of-the-art ML algorithms that can develop the 
best predictive models.

�e study demonstrates that symptomatic patients with COVID-19 can be e�ciently diagnosed from the 
results of routine blood tests. �e SBA COVID-19 ML model extracted subtle prognostic data from blood test 
results that were hidden from the most experienced clinicians. We believe that our results present an important 
step to a more widely available diagnosis of patients with COVID-19. Moreover, our ML predictive model is 
available worldwide at https:// www. smart blood analy tics. com/ as a web application or through an API call, and 
it can be used instantly. �e model will also be of bene�t a�er the pandemic as it will be an alternative for a 
physician to test patients for COVID-19 from the blood test results of other diagnoses.

Data availability
Our ML predictive model is available at https:// www. smart blood analy tics. com/ as a web application or through 
an API call upon registration.
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