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Abstract: Chest X-ray (CXR) is becoming a useful method in the evaluation of coronavirus disease 19
(COVID-19). Despite the global spread of COVID-19, utilizing a computer-aided diagnosis approach
for COVID-19 classification based on CXR images could significantly reduce the clinician burden.
There is no doubt that low resolution, noise and irrelevant annotations in chest X-ray images are a
major constraint to the performance of AI-based COVID-19 diagnosis. While a few studies have made
huge progress, they underestimate these bottlenecks. In this study, we propose a super-resolution-
based Siamese wavelet multi-resolution convolutional neural network called COVID-SRWCNN for
COVID-19 classification using chest X-ray images. Concretely, we first reconstruct high-resolution
(HR) counterparts from low-resolution (LR) CXR images in order to enhance the quality of the
dataset for improved performance of our model by proposing a novel enhanced fast super-resolution
convolutional neural network (EFSRCNN) to capture texture details in each given chest X-ray
image. Exploiting a mutual learning approach, the HR images are passed to the proposed Siamese
wavelet multi-resolution convolutional neural network to learn the high-level features for COVID-
19 classification. We validate the proposed COVID-SRWCNN model on public-source datasets,
achieving accuracy of 98.98%. Our screening technique achieves 98.96% AUC, 99.78% sensitivity,
98.53% precision, and 98.86% specificity. Owing to the fact that COVID-19 chest X-ray datasets are low
in quality, experimental results show that our proposed algorithm obtains up-to-date performance
that is useful for COVID-19 screening.

Keywords: chest X-ray (CXR); COVID-19; convolutional neural network; multi-resolution analysis;
super resolution; Siamese network

1. Introduction

The coronavirus disease 2019 (COVID-19) epidemic resulted from a novel strain of
coronavirus that had not been previously diagnosed in humans and was first discovered in
late December 2019; since then, it has spread rapidly, infecting over 410 million individuals
globally, killing over 5.8 million people as of 13 February 2022 [1,2]. The gold standard for
identifying COVID-19 is now Reverse Transcriptase Quantitative Polymerase Chain Reac-
tion (RTq-PCR) tests [3,4]. Small quantities of viral RNA are collected from a nasal twirling,
increased in size, and measured during this test, with virus confirmation displayed visually
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with a fluorescent dye. Unfortunately, the RTq-PCR test is time-consuming and proce-
dural, requiring roughly two days for completion. Some researchers have also reported
false-positive RTq-PCR [5]. Other testing methods include vision-based technology such
as computed tomography (CT) imaging [6] and CXR imaging [7,8]. In a clinical review of
COVID-19, CT and CXR scans have shown to be successful [9–14]. However, COVID-19
detection based on CT scan is time-consuming and requires experts’ involvement. CT
scanning equipment is often troublesome to operate for COVID-19 patients since they must
often be moved to the CT room. The machines must be thoroughly cleaned after each use,
and there is a higher risk of radiation exposure [15].

CT has been successfully used as a supportive method for COVID-19 condition evalu-
ation, despite the fact that it is not approved as a basic diagnostic means [6]. Ground-glass
opacities (GGO) at the beginning stage and developing stage, air space merging during
the apex stage, bronchovesicular thickening in the wound, and stretching bronchiecta-
sis evident during the intake stage are all common CT findings [15]. Chest X-ray (CXR)
imaging, on the other hand, is relatively inexpensive and widely used for lung infection
diagnosis as well as for COVID-19 detection [16]. Owing to the rapid growth of COVID-19
patients, physicians and radiologists are in short supply. To this end, developing artificial
intelligence techniques for computer-assisted COVID-19 classification with CXR images is a
top priority. Along with ample data, convolutional neural networks (CNNs) have achieved
up-to-date results in the fields of biomedical engineering and healthcare [3,17,18]. This
level of efficiency is achieved by practising on labeled data and fine-tuning the millions of
parameters that make up the system. Because of the large number of parameters, CNNs
can easily overfit on small amounts of data.

As a consequence, generalization efficiency is reciprocal to the size of the labeled data.
Tiny datasets are the most challenging task in the healthcare imaging domain because of the
restricted quantity and variety of samples [5–7]. Medical data mining is a time-consuming
and costly procedure that necessitates the involvement of radiologists and researchers [6].
Furthermore, especially with the present existence of the COVID-19 outbreak, adequate
data of CXR images are troublesome to come by. However, in AI-based COVID-19 screening
systems from chest X-ray imaging, there are two major problems; (1) low resolution (LR) is
still a major challenge and (2) image quality is still a major concern as this may vary among
samples, which often include noise and irrelevant annotations. The consequent of this is that
the AI-based system will learn inconsistent and noisy information from the data, thereby
missing the distinct features that would have been extracted for optimal classification.

In order to mitigate these setbacks, we propose a super-resolution convolutional neural
network-based multi-resolution CNN Siamese framework for COVID-19 classification.
The contributions of this work include: 1. To enhance the feature extraction robustness of
the network, we propose an enhanced fast super-resolution convolutional neural network
(EFSRCNN) to recapture high-resolution (HR) counterparts of low-resolution (LR) images,
from which it is able to extract distinct details. The EFSRCNN handles the problem of
low-quality images and helps to generate super-resolution images as well as improving
the PSNR. 2. To our knowledge, this paper is the first pioneering work that introduces an
end-to-end super-resolution CNN with a Siamese-based multi-resolution neural network
framework as a mutual learning approach for COVID-19 classification from CXR images.
The proposed architecture achieves much higher diagnosis accuracy. The subsequent
structure of this paper is coordinated as follows: in Section 2, we analyze related essays.
We then give a detailed description of the materials and methods in Section 3. Section 4
contains details of the experimental setup, and implementation information. We conduct
robustness evaluation in Section 5. The findings as well as other relevant discussion are
presented in Section 6. Section 7 brings this paper to an end.

2. Related Works

In the past, artificial intelligence-based approaches have been utilized to reliably
diagnose a range of ailments from healthcare images, surpassing human-centered diagnosis
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in many instances. Deep learning has increasingly been used to detect COVID-19 in medical
imaging. A deep neural ensemble learning network with random forest called EDRnet was
suggested in [19] to predict COVID-19 from samples of routine blood. The authors chose
28 blood biomarkers and utilized common attributes such as the age and gender of the
patients as the input data for the model. The authors claimed that their model achieved
100% sensitivity, 91% specificity, and 92% accuracy. The authors in [20] suggested different
classification models to prioritize symptomatic patients for COVID-19 early detection using
metadata such as gender and fever as input data for the models. An average of 90% accuracy
was obtained. A machine learning model was proposed in [21] to differentiate between
confirmed patients with severe and non-severe COVID-19 infection utilizing multiple
clinical features. Prediction accuracy of 96% was reported when the authors adopted a
random forest model with the most important multi-modal attribute features, such as age,
hypertension, cardiovascular disease, gender, diabetes, and lactate dehydrogenase.

Quite an interesting work was presented by the authors in [22] to compare and quantify
people’s preferences for AI clinicians and traditional clinicians. The authors adopted a
method of propensity score matching to match similar demographic characteristics of two
different categories of respondents. The authors reported that the AI diagnosis technique
outweighed human clinician diagnosis, with 95% of the respondents believing that the AI-
based clinician method achieves better accuracy at low expense. A hybrid deep learning and
machine learning model using a multi-modal fusion approach with three machine learning
classifiers was constructed in [23] to extract 10 high-level representation features from CT
exams combined with low-dimensional medical and lab testing data to distinguish between
COVID-19 and other forms of viral pneumonia as well as healthy patients. The overall
prediction accuracy ranged from 95 to 97%. The study in [24] suggested a machine learning
approach to rule out routine blood tests as the only data for COVID-19 diagnosis among
adults in emergency units. The authors claimed that their method achieved 98% sensitivity
and 97% specificity by integrating multi-center medical data collected from the emergency
unit’s laboratory. A deep transfer learning network with different pre-trained models
as the backbone, called FCONet, was proposed in [25] to classify COVID-19 and other
pneumonia diseases using CT images. The pre-trained network of FCONet with ResNet50
as a backbone obtained 99% accuracy.

A concise review on the effectiveness of the AI-based diagnosis of COVID-19 is
presented in [26]. The authors emphasized the importance of timely and early prognosis
and diagnosis of COVID-19 patients to curb the spread of the virus and thus reduce the
burden on the healthcare system and clinicians. The authors reported that deep learning
models have achieved high sensitivity results compared to human clinicians diagnosis.
An online AI-based approach of statistical deep learning techniques to predict COVID-
19 was developed in [27] using two publicly available datasets. A multi-level pipeline
model based on a deep neural network approach was presented in [28] to classify COVID-
19 and other forms of pneumonia using chest X-ray images. The authors of this study
adopted the ResNet50 pre-trained model as the backbone network. The authors reported
training and test accuracy of 96% and 92%, respectively. A residual CNN architecture
was proposed to classify COVID-19 from non-COVID-19. The model was trained on data
from two publicly accessible sources [29–31]. The model achieved 80% sensitivity and
94.9% specificity, with only 10 instances of COVID-19 images. To minimize the number of
false negatives, future models should increase the sensitivity according to this research.
A modified Bayesian ResNet50 [30] architecture with weight descent was proposed in [31]
to classify four categories of data into COVID-19, non-COVID-19, healthy, and pneumonia
using 14 COVID-19 instances, in which two of the COVID-19 instances were incorrectly
categorized in BCNNs and CNNs when dropping the weights at different points. Their best
model for COVID-19 diagnosis had 86% sensitivity and 99% precision. The study pointed
out that model efficiency can be enhanced by estimating uncertainty within predictions.

Three separate deep transfer learning networks were suggested in [32] to diagnose
COVID-19 from among healthy cases using 50 instances each. In [33], the authors reported
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that Inception V3 achieved perfect results, as well as ResNet50 in [34], whereas in [35],
Inception-ResNet V2 incorrectly classified one healthy instance as COVID-19 in a testing set
of ten images from each class. The authors suggested the merits of fine-tuning deep learning
models for COVID-19 investigation. An ImageNet [36] pre-trained 18-layer residual CNN
was suggested in [37]. For classification, the CNN was accompanied by completely linked
layers and sigmoid activation. At the end of the CNN, a separate anomaly detection mech-
anism was introduced. A cross-validation approach of two-fold threshold was adopted to
record the specificity and sensitivity on 100 instances. The model achieved 72% sensitivity
at 98% specificity and 96% sensitivity at 70% specificity. In conclusion, these frameworks
tend to work admirably; indeed, due to the possibility of missing a COVID-19 diagnosis,
increasing the model sensitivity is a top priority. Quite a number of models have been
created to diagnose COVID-19 using CT and CXR. A COVID-19 contusion identification
approach for the diagnosis of COVID-19 was suggested in [38], where the algorithm [39]
was trained on professionally interpreted CT slices in order to extract COVID-19-infected
areas using 11 suspected COVID-19 and 16 pneumonia patients. The authors claimed
that their model performed similarly to a professional radiologist, with 99% sensitivity
on 300 COVID-19 instances. A similar segmentation network was proposed in [40] to
segment COVID-19 with accuracy of 91%. The authors suggested that their approach could
be used to monitor the disease’s progression. COVID-19 was segmented and quantified
using a combination of commercial software and deep learning in [41], with 96% AUC.
A shared weighted ResNet50 model was proposed in [42] for each slice in a CT image.
The max pooling layer combined the slices to create a feature vector for classification using
68 COVID-19 and 285 healthy instances, with 96% AUC.

A fine-tuned siamese network with modified enhanced super resolution GAN plus
based on low quality chest X-ray images was suggested in [43] to identify COVID-19
instances from non-COVID-19, achieving 98.8%, precision of 98.6%, sensitivity of 97.5%,
specificity of 98.9%, an F1 score of 97.8% and ROC AUC of 98.8% for the multi-class
task, while for the binary class, the model achieves accuracy of 99.7%, precision of 98.9%,
sensitivity of 98.7%, specificity of 99.3%, F1 score of 98.2% and ROC AUC of 99.7%..
According to [44], segmented scans were used to remove infection and lung fields, and the
images were categorized according to infection size using a random forest infection size
classifier on a five-fold cross-validation. The method achieved 94% AUC using 1657 COVID-
19 and 1028 healthy patients. A 3D neural network was proposed in [45] to segment lesions
before using a 2D ResNet network to classify them as COVID-19 or not. This approach
was examined on datasets from two hospitals, achieving 99% AUC on 128 healthy and
154 COVID-19 exams. For CT slice classification, a ResNet152 integrated segmentation
network was proposed in [46] to concentrate on the diseased area. This network achieved
98% AUC on local and public datasets with 1,071 healthy and 183 COVID-19 instances. A
deep learning model was suggested in [47] for the segmentation of infection spots. These
infected patch areas were fed as input to the ResNet18 network for classification using 60
instances of pneumonia and 30 COVID-19 instances. The model achieved 86% accuracy.

An inception network was suggested in [48] to diagnose COVID-19 using a private
dataset of 100 instances each for healthy and pneumonia cases, whereas COVID-19 had
only 10 instances, with 89% accuracy in the internal validation, while the external validation
achieved accuracy of 83%. An attention module-based function pyramid network with
ResNet50 was proposed in [49] using a private dataset of 27 COVID-19 and 24 healthy
instances. The authors claimed that the model achieved 99% AUC and 93% sensitivity.
However, the procedure achieved 95% AUC and 96% sensitivity on a dataset of 27 COVID-
19 and 30 bacterial pneumonia instances. An interesting procedure suggested a deep
learning model with a random forest classifier focused on measurable features to determine
the magnitude of COVID-19 [50]. The procedure achieved overall accuracy of 87% using
three-fold cross-validation on 176 instances.

A weakly supervised approach was proposed in [51] in which segmentation masks
were produced automatically and, hence, the mask and CT image were passed into a 3D
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CNN for classification. The authors recorded 95% AUC using this procedure. In summary,
most studies, including those using CXR imaging, rely on quite a few COVID-19 images
from various sources, with no standardized protocols. The reason that AI innovation and
clinical utility are minimal is that these studies apply previously established AI-based
algorithms to new problems. In general, COVID-19 screening based on CT or CXT images
has achieved a significant improvement according to [52]. Moreover, a number of models
have utilized very few images—as low as 10 COVID-19 instances in the test set—while
some used external validation owing to data scarcity. Building a system that can achieve
better performance using fewer image data is necessary because it will permit the greater
inclusion of uncommon data classes in the test dataset. The goal of this research is to build
an AI-based model that is robust enough to utilize few and low-quality image instances
and still achieve high performance.

3. Materials and Methods
3.1. Problem Statement

Thorough COVID-19 screening is essential in light of the imminent pandemic threat.
A serious problem is encountered with regard to the insufficiency of COVID-19 test kits in
many developed/rural locations, as well as the time it takes to produce the sample (correct)
findings, which also in turn affects developing countries with under-equipped hospitals
and clinics. Developing countries commonly lack sufficient COVID-19 kits, restricting
primary healthcare clinics’ capacity to obtain, ship, and evaluate test findings, causing
them to be dependent on more specialized institutes. To respond to the third wave of the
pandemic, an automated and efficient supplemental technique is necessary to address the
increasing demand for additional test cases in places with minimal access to antibody tests.

Many studies have shown that CT scans can detect ground-glass opacities and other
chest characteristics that are more detailed than a normal chest X-ray. CT scans are not
reliable for COVID-19 purposes due to infection management concerns associated with
transferring patients to CT units, comparably high expenses (high purchase cost, installa-
tion, and repair of CT equipment), and poor system availability in rural locations. A chest
X-ray (CXR) may, on the other hand, be utilized to detect COVID-19 [10] or other pneu-
monia outbreaks, as CXR imaging equipment is commonly available in emergency rooms,
public health centers, and even rural clinics. Nonetheless, with AI-based CXR detection
systems, there are two major bottlenecks. 1. The low-resolution (LR) features are an issue;
2. The acquired dataset samples usually consist of unnecessary details and blurry features.

Even experienced radiologists have difficulty distinguishing between the features of
COVID-19 pneumonia and community-acquired bacterial pneumonia when reviewing
chest X-ray images [10]. Furthermore, the influx of patients into hospital ERs during
the pandemic, manual inspection of radiograph data, and accurate decision-making will
all contribute to a difficult trade-off between accuracy and detection time, potentially
exhausting the radiology unit and, as a matter of urgency, necessitating the use of an
automated identification method. A third wave of COVID-19 activity would call for an
increase in compact chest X-ray devices, as their widespread use would render CTs obsolete.
We discuss the concerns raised previously and proposed a deep learning-based Siamese
discrete wavelet multi-resolution with enhanced fast super-resolution convolutional neural
network solution to address the third-wave challenges.

3.2. Datasets

Artificial intelligence (AI) has achieved a remarkable reputation in the field of clinical
research. In the face of the current pandemic, artificial intelligence can assist healthcare
workers in the process of disease detection, boosting the accuracy of identification methods
at a fast rate and perhaps saving lives. The scarcity of appropriate data is perhaps the most
significant barrier facing AI-based approaches. Since AI-based approaches are data-driven,
a large amount of data is needed. The process of data collection is quite tedious as there
are many ethics concerns from experts. Bearing this view in mind, we resorted to well-
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known and validated dataset repositories for the collection and compilation of the dataset.
In this study, we collected chest X-ray data of different pneumonia-related illnesses from
three different open sources [53–55]. As illustrated in Table 1, we collected 3616 scans of
COVID-19 CXR from the COVID-19 radiography database [53]. In addition, we collected
3029 scans of bacterial pneumonia, 8851 scans of healthy patients, and 2983 scans of
viral pneumonia from the Kaggle database of the Radiological Society of North America
(RSNA) [54]. Moreover, we collected 74,999 scans of other pneumonia-related illnesses
from the National Institute of Health (NIH) [55], as illustrated in Table 1, for the purpose
of validating our proposed architecture for multiple classification problems. As indicated,
there are approximately 90,983 CXR scans including COVID-19 and 10 other pneumonia-
related illnesses as well as healthy instances. Since the number of each category of data
class varies, as a result, we selected 1000 scans of CXR from each category, which sum
up to 12,000 CXR images. Moreover, since the amount of CXR associated with each
class is balanced, the dataset is partitioned into three sets of 60%, 20%, and 20% for
training, validation, and testing, respectively. Figure 1 gives a visual representation of the
dataset distribution.

Figure 1. Data collection of chest X-ray images of different pneumonia-related illnesses includ-
ing COVID-19.

Table 1. Description of the chest X-ray dataset showing different categories of pneumonia illnesses
and the distribution of images per category as well as the number of selected images per category.

S/N Pneumonia Data Count Selected No Train Set Val Set Test Set

1 Atelectasis 4999 1000 700 200 100
2 Bacteria 3029 1000 700 200 100
3 Cardiomegaly 10,000 1000 700 200 100
4 Consolidation 10,000 1000 700 200 100
5 COVID-19 3616 1000 700 200 100
6 Effusion 10,000 1000 700 200 100
7 Infiltration 10,000 1000 700 200 100
8 Mass 10,000 1000 700 200 100
9 Nodule 10,000 1000 700 200 100

10 Pneumothorax 10,000 1000 700 200 100
11 Healthy 10,000 1000 700 200 100
12 Viral 2983 1000 700 200 100

Total 94,627 12,000 8400 2400 1200
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3.3. COVID-19 Classification Architecture

The overall illustration of our proposed architecture, called COVID-SRWCNN, consists
of two distinct stages. In the first stage, the enhanced fast super-resolution convolutional
neural network (EFSRCNN) is utilized to reconstruct high-resolution CXR images from
the low-resolution original CXR images. Secondly, the high-resolution CXR images are
then passed as inputs to our proposed Siamese wavelet multi-resolution convolutional
neural network (SWMRCNN) to extract and learn discriminative features for the diagnosis
of COVID-19.

3.4. Enhanced Fast Super-Resolution Convolutional Neural Network (EFSRCNN)

The general procedure of SRCNN aims at extracting patches from the input in the
first layer represented as high-dimensional feature vectors. The middle layer maps the
feature vectors non-linearly to high-dimensional feature vectors and, thereafter, the fi-
nal reconstruction layer then combines these features to create the final output image.
Since the middle layer contributes the most to the network parameters, the size of the
generated high-resolution image is directly proportional to the network complexity. Our
proposed EFSRCNN is broken into five sections, with which the first four sections are
convolutional layers, followed by a deconvolutional layer, which is the fifth section, as
indicated in Figure 2, which includes feature extraction, shrinking, mapping, dilation,
and deconvolution.

Figure 2. This figure shows the network architecture of the SRCNN, FSRCNN, and our proposed
enhanced super-resolution framework called EFSRCNN. In a logical sense, our proposed model
is centered on the merits of both the SRCNN and FSRCNN. First, EFSRCNN uses the bicubic
interpolated version of the ground-truth low-resolution image as an input, similar to the process in
SRCNN but different from the process in FSRCNN. Similar to FSRCNN, a deconvolutional layer
is added at the end of the network to achieve up-sampling. Shrinking, mapping, and dilation
phases of EFSRCNN replace the non-linear mapping phase in SRCNN and it is quite similar to the
phases in FSRCNN. Nevertheless, EFSRCNN has a deeper network topology compared to FSRCNN.
The sizes of the filters within the mapping layers are kept similar to FSRCNN. These enhancements
give EFSRCNN higher performance while lowering the computational cost compared to SRCNN
and FSRCNN.
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3.4.1. Feature Extraction

This section is comparable to the first portion of SRCNN. but different from FSR-
CNN. EFSRCNN extracts features from the original LR image after interpolating them.
The small LR input is denoted as Yz to distinguish it from SRCNN. Each patch of the input
is represented as a high-dimensional feature vector using convolution with the first set
of filters. On the choice of selecting parameters such as filter size fk and the number of
channels ck, we refer to SRCNN. Without much information loss, we adopted a filter size of
3. In SRCNN, the first layer’s filter size is set at 9. It is worth noting that these filters are
applied to the upscaled image Y. Because the majority of the pixels in Y are interpolated
from Yz, a 50% patch in Yz might encompass nearly all of the information in a 99% patch in
Y. We use SRCNN to set the number of channels ck for the first layer to be 1.

3.4.2. Shrinking

In SRCNN, the feature extraction stage is usually followed by the mapping step,
after which the high-dimensional LR features are directly mapped to the HR feature space.
Nevertheless, because the LR feature dimension is normally quite large, the mapping
step’s computational complexity is quite high. Similar to FSRCNN, we introduce the 1× 1
convolutional layer after the feature extraction layer, called the shrinking layer, to shrink the
interpolated LR feature dimension with a filter size of 1, which acts as a linear combination
within the interpolated LR features.

3.4.3. Non-Linear Mapping

The non-linear mapping step is the most critical aspect that influences SR performance.
The number of filters in a layer (width) and the number of layers (depth) of the mapping
layer are the most influential parameters. To achieve high performance comparable to
SRCNN and FSRCNN, we increase the depth of the mapping layer to 6 convolutional
layers with a 3× 3 filter size each to maintain consistency.

3.4.4. Dilating

In contrast to the shrinking layer, the dilating layer acts in the reverse direction.
For the sake of computing performance, the shrinking procedure reduces the number
of the interpolated LR feature dimensions. The ultimate restoration quality will be poor
if we generate the HR image directly from these low-dimensional characteristics. As a
result, after the mapping section, we add a dilating layer to broaden the HR feature
dimension. To keep the shrinking layer consistent, we use 1× 1 filters, the same number as
the interpolated LR feature extraction layer.

3.4.5. Reconstruction

The final layer is a deconvolution layer, which uses a collection of deconvolution filters
to up-sample and aggregate the prior features. The deconvolution can be thought of as the
reverse process of the convolution. The filter is convolved with the image using a stride of
2 for convolution, and the output is 1

2 times the input. In contrast, if we swap the input and
output positions, the result will be 2 times the input. Surprisingly, the inverted network
functions similarly to a down-scaling operator that accepts the HR image and produces
an LR image. The deconvolution layer is then transformed into a convolution layer with
a stride of 2. We use 9× 9 filters in order to maintain consistency with the first layer of
SRCNN because it collects features from the HR images. Similarly, the deconvolution filters
have a spatial size of 9 when we reverse the process.
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3.4.6. Cost Function

In consideration of the network parameters, the mean squared error is used to mini-
mize the loss between the recaptured high-resolution images F(Y; Ψ) and the actual images
X for a given range of high-resolution images Xk and their counterpart low-resolution
images Yk; the mean squared error loss function is given in Equation (1).

L(Ψ) =
1
n

n

∑
k=1
||F(Yk; Ψ)− Xk||2 (1)

The training samples in the set are denoted by n. A high PSNR is achieved in this
case by utilizing the MSE loss function, which is a well-known metric for assessing image
restoration efficiency.

3.4.7. Differences with Other Super-Resolution Methods

It is worth illustrating how the merits of both SRCNN and FSRCNN translated to
EFSRCNN within a few steps. We present the network topology of SRCNN and FSRCNN.
We also illustrate the performance of these networks in terms of PSNR trained on a chest
X-ray dataset. First, we maintain the same pre-processing operation as SRCNN in the first
layer. Secondly, we increase the depth of the mapping layers as compared to FSRCNN
by adding 2 more convolutional layers, resulting in a total of 6 mapping layers. It is well
known that the depth of the layers affects the performance of the network. We adopt
6 thin layers, thus obtaining satisfactory results of 33.24 dB with fewer parameters. Finally,
we utilize small filter sizes and fewer filters to achieve a speed of 52.1×. Our proposed
enhanced fast super-resolution network outperforms SRCNN and FSRCNN by a large
margin. The high performance of our method is attributed to the number of filter sizes, as
presented in Table 2.

Table 2. Transitional configuration from SRCNN and FSRCNN to EFSRCNN.

SRCNN FSRCNN Transistion State EFSRCNN

First layer Conv (9, 64, 1) Conv (5, 56, 1) Conv (3, 56, 1) Conv (3, 48, 1)

Middle layer Conv (5, 32, 64)
Conv (1, 12, 56)

4 Conv (3, 12, 12)
Conv (1, 56, 12)

Conv (1, 12, 56)
5 Conv (3, 12, 12)
Conv (1, 56, 12)

Conv (1, 12, 48)
6 Conv (3, 12, 12)
Conv (1, 48, 12)

Last layer Conv (5, 1, 32) DeConv (9, 1, 56) DeConv (9, 1, 56) DeConv (9, 1, 48)
Input size HR LR HR HR
Model size 57,184 12,464 8653 5178

Speed 8.7× 41.3× 46.8× 52.1×

3.5. Siamese Wavelet Multi-Resolution Convolutional Neural Network (SWMRCNN)

Using two similar multi-resolution wavelet convolutional neural networks with the
same weights, our proposed COVID-19 classification network learns fixed-length represen-
tations. To minimize the computational cost and model complexity, we built each identical
CNN from scratch in our experiment, as shown in Figure 3. The architecture consists of
two parts; the first part is the wavelet decomposition multi-resolution analysis for image
pre-processing and filtering, while the second part is the convolutional neural network for
feature learning and classification. The first part tries to capture detailed features of the im-
age and eliminate the noisy content present in the image by means of a filtering technique.
These high- and low-pass filters generate the detail and approximate components from the
original image with the help of the wavelet and scaling function by down-sampling with a
scale factor of 2. The generated detail component is now the new input image fed to the
convolutional neural network for feature learning and classification.
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Figure 3. Our proposed Siamese wavelet multi-resolution convolutional neural network.

The generated approximate component is passed to the second-level decomposition
stage, where it is further decomposed to generate second-level detail and approximate
components. This process is repeated for four levels. The second part is subdivided into
two pathways: the feature learning block and the concatenation block. The feature learning
block consists of 9 convolutional layers, where each convolutional layer is followed by
batch normalization and a ReLU activation function. We did not utilize max pooling in
our model; rather, we added global average pooling after the last convolutional layers
and a dropout of 50% was added to each fully connected layer. The concatenation block
consists of 3 channel-wise concatenations connected to 6 convolutional layers. The first
channel-wise concatenation is via a 1× 1 convolutional layer of 64 kernel size and the
second channel-wise concatenation is via two 1× 1 convolutional layers of kernel size 64
and 128, respectively. The third channel-wise concatenation is via three 1× 1 convolutional
layers of kernel size 64, 256, and 256, respectively. The model is trained on 30 epochs with
a learning rate of 0.0002, using Adam as the optimizer. To minimize overfitting, we used a
50% dropout for regularization and batch normalization (BN). The rectified linear units
(ReLU) non-linearity was used as the activation function for all layers, and the learning rate
was controlled using the adaptive moment estimation (Adam) optimizer. The similarity
between images was determined using the absolute distance, after which the values were
passed through a sigmoid activation function to yield a similarity score, and the loss
function was defined by computing the contrastive loss, as shown in Equation (2).
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L(w1x1x2)
=

1
2 ∑

x=1
[y ln a + (1− y)ln (1− a)] (2)

where y is the label, x is the input, and α is the predicted outcome. Here, x1 and x2 are a
pair of CXR images passed into the separate identical CNNs. w is the shared parameter
vector that neural networks will learn; f (x1) and f (x2) are the latent representation vectors
of the input. If X1, X2 are same, then the || f (x1)− f (x2) ||2 is small, meaning that they are
similar with the same label, and if x1, x2 are different, then the || f (x1)− f (x2) ||2 is large,
which means that they are not similar. Therefore, the absolute distance between the paired
images is given in Equation (3).

d(x1, x2) = || f (x1)− f (x2) ||2 (3)

3.6. Wavelet

Wavelets are a type of function that can be used to scale and localize a function.
The wavelet transform cuts up the input image into different frequency constituents,
and then studies each constituent with a resolution suited to its scale. The underlying
concept behind the wavelet transform is to extend and convert the input image in the
time domain using a wavelet basis, which then decomposes it into a series of sub-band
components with different image resolutions, frequency attributes, and directional features.
In order to achieve dimensionality reduction, low-frequency constituents are maintained
while high-frequency constituents are eliminated as much as possible in the wavelet trans-
form. A wavelet is a ‘tiny wave’ function, generally indicated as ψ(·), defined over the
main axis (−∞, ∞). It must fulfill three basic properties to be classified as a wavelet, as
presented in Equations (4) and (5). The integral of ψ(·) is zero, as presented in Equation (4):∫ ∞

−∞
ψ(u)du = 0 (4)

The integral of the square of ψ(·) is unity, as presented in Equation (5):∫ ∞

−∞
ψ2(u)du = 1 (5)

Equation (6) explicitly expresses the admissibility condition:

Cψ =
∫ ∞

0

|ψ( f )|2
f

d f satis f ies 0 < Cψ < ∞ (6)

By converting and stretching this mother wavelet as shown in Equation (7), a two-fold
indexed family of wavelets can be formed:

ψλ,t(u) =
1√
λ

ψ

(
u− t

λ

)
(7)

where λ > 0 and t is 1; the normalization on the right-hand side of Equation (7) is chosen
such that ||ψλ,t|| = ||ψ|| for all λ, t and 1√

λ
is the normalizing term.

3.7. Multi-Resolution Analysis (MRA)

The core of wavelet principle is multi-resolution analysis (MRA), which divides an
image into wavelets (wave-like functions) that are scaled and time-shifted copies of the
genuine or mother wavelet. Low- and high-pass filters are implemented using the scaling
and wavelet functions, respectively. As a result, the image is sub-sampled to distinguish
low and high frequencies after passing via the low- and high-pass filters. The relation-
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ship between the decomposition components and the original image f (t) is expressed in
Equation (8).

f (t) = CA4 + CD4 + CD3 + CD2 + CD1 (8)

where f (t) is the original image; CA4 is the approximate component of the fourth-level
decomposition; CD4, CD3, CD2, and CD1 are the detail components for the fourth-, third-,
second-, and first-level decompositions, respectively. DWT is a method used by MRA to
describe a time-varying signal in respect to frequency constituents. The genuine image is
disintegrated into many other images with varying levels of resolution (scale). The image
f (t) is disintegrated into scaling and wavelet functions, which can be expressed mathemat-
ically as in Equation (9).

f (t) = ∑
k

Aj(k)∅(t− k) + ∑
k

j=1

∑
j=0

Dj(k)2(j/2)ψ(2jt− k) (9)

As shown in Figure 4, the wavelet function ψ(2jt− k) generates the low-frequency
constituents (detailed) of the disintegrated image, while the scaling function ∅(t− k) gen-
erates the high-frequency constituents (approximate). These frequency constituents were
derived using a filter bank with low-pass and high-pass filters for detail and approximate,
respectively. The wavelet is scaled by a factor of two for every stage of decomposition.
The high-frequency constituent is broken down again to obtain more information about
the input image. The beginning section of the right-hand side is a projection of f (t)in the
scaling space, with coefficients Aj(k) representing image f (t)’s discrete smoothing approxi-
mations, and the other section is a projection of f (t) in the wavelet space, with coefficients
Dj(k) representing image f (t)’s discrete informative features of the image that are the
wavelet transform coefficients. Wavelet multi-resolution analysis is widely used and effi-
cient in image processing applications. Centered on an improved wavelet multi-resolution
analysis CNN, this paper uses this technique to create a Siamese wavelet multi-resolution
convolutional neural network for COVID-19 classification tasks, as illustrated in Figure 4.
For the image input, the discrete wavelet transform (DWT) is presented numerically in
Equations (10) and (11).

W∅(j0, z1, z2) =
1√

M× N

M

∑
x=1

N

∑
y=1

I(x, y)∅j0,z1,z2 x, y (10)

Wψ(j0, z1, z2) =
1√

M× N

M

∑
x=1

N

∑
y=1

I(x, y)ψi
j0,z1,z2

x, y (11)

where M× N indicates the image dimension, I(x, y) is the pixel intensity at position (x, y),
∅ and ψ are the scaling and wavelet functions, and i = (H, V, D) is the wavelet function’s
path index. The wavelet function generates 4 sub-bands for one image at separate levels
ψ: smooth version (LL), vertical borders (LH), horizontal borders (HL), and diagonal
borders (HH) of the image.

3.8. The Proposed Super-Resolution Wavelet Multi-Resolution CNN (COVID-SRWCNN)

Our proposed COVID-SRWCNN is an integrated super-resolution CNN and Siamese
wavelet convolutional neural network for diagnosing COVID-19 from chest X-rays, as
presented in Figure 4. The proposed architecture consists of the super-resolution part,
which handles the image enhancement by reconstructing high-resolution images from
low-resolution image counterparts as the first part, while the second part is the Siamese
wavelet multi-resolution convolutional neural network, which extracts and learns high-
dimensional feature vectors from the super-resolution imagery generated by the super-
resolution network for COVID-19 classification. We adopted some evaluation metrics, such
as the receiver operating characteristic (ROC), area under curve (AUC), accuracy (ACC),
sensitivity (SEN), and specificity (SPE).
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Figure 4. The proposed super-resolution-based Siamese wavelet multi-resolution convolutional
neural network for COVID-19 classification (COVID-SRWCNN).

4. Results
4.1. Experimental Setup

We collected a public dataset of chest X-ray photographs from three open sources to
evaluate the performance of our proposed algorithm in screening COVID-19. To further
verify the efficacy of our proposed model, we carried out two stages of experiments, where
the first stage considered the complete proposed model and the second stage considered
the proposed model without the super-resolution section, as presented in Table 3. For a
fair comparison, we ran 11 famous ImageNet pre-trained models and four state-of-the-
art COVID-19 methods on the same dataset, as presented in Tables 4 and 5. From all
indications, our proposed model outperforms the other methods and deep learning models,
with promising performance.
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Table 3. We conducted two-stage experiments for the purpose of evaluating the influence of the SR
network on the classification performance of COVID-SRWCNN. The first experiment considered
COVID-SRWCNN with the SR network and the second experiment considered COVID-SRWCNN
without the SR network. The result shows that our proposed enhanced fast SR network is effective in
achieving high restoration quality.

Model ACC
(%)

AUC
(%)

SEN
(%)

SPE
(%)

PRE
(%)

Time
(min)

COVID-SRWCNN (With SR) 98.98 98.96 99.78 98.86 98.98 21.8
COVID-SRWCNN (Without SR) 94.68 95.74 97.85 95.84 96.24 17.2

Table 4. Performance comparison of selected deep pre-trained models. From all indications, our
proposed COVID-SRWCNN exhibits the highest score with the best performance.

Models PRE (%) SEN (%) SPE (%) ACC (%) AUC (%)

Xception V1 85.60 90.20 91.30 90.50 89.50
ResNet 50 86.70 89.90 90.50 91.71 90.90

MobileNet V2 87.70 89.82 90.89 89.23 90.51
ResNet 52 V2 89.60 90.92 91.81 90.81 91.64
DenseNet169 90.20 89.92 92.43 91.81 92.92
DenseNet121 92.65 92.83 91.57 90.87 91.67

MobileNet 95.67 95.91 96.86 94.17 94.23
Inception V3 93.78 92.91 93.13 94.83 92.81

VGG19 94.86 95.81 96.87 95.98 95.03
VGG16 95.96 94.89 96.01 94.25 95.12

EfficientNet 96.78 95.61 94.28 96.15 96.83
COVID-SRWCNN 98.98 99.78 98.86 98.98 98.96

Table 5. Comparison of our proposed COVID-SRWCNN model with other selected state-of-the-art
COVID-19 models using the same training data distribution.

COVID-19 Models AUC (%) SPE (%) SEN (%) ACC (%) PRE (%) Time (min)

COVID-Net [56] 93.20 92.99 93.86 93.32 94.56 23.9
DeCoVNet [51] 96.21 96.68 96.78 96.21 96.41 24.7

Cov-Net [42] 96.92 95.28 97.20 96.75 97.89 26.2
COVID-SRWCNN 98.96 98.86 99.78 98.86 98.98 21.8

4.2. Implementation Details

In this study, the dataset is divided into three portions, and each class label has the
same number of CXR images. The training, validation, and test partitions contain 60%,
20%, and 20%, respectively. In this work, the whole training approach can be viewed in
two stages:

(1) The enhanced fast super-resolution convolutional neural network reconstructs
high-resolution images from the original scaled low-resolution images.

(2) The SWMRCNN network is constructed using super-resolution (SR) imagery.
The reconstructed high-resolution image is fed as input to the SWMRCNN framework for
COVID-19 classification. We trained the overall end-to-end network (COVID-SRWCNN),
which consists of EFSRCNN + SWMRCNN, on the NVIDIA GTX1070. Keras was used for
the construction of the proposed COVID-SRWCNN scheme. To construct our batch, we
paired a single image with two separate images. If the images were the same, we labeled
the pair as one; otherwise, we labeled it zero. This pairing process was repeated for a total
of 10,800 images and thus amounted to 21,600, from which 16,800 belong to the training
pairs and 4800 belong to the validation pairs. This is one of the significant advantages of
the Siamese neural network. We can generate a large number of training pairs using a
relatively smaller number of training images. In this work, we adopted a CNN as the base
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network. We introduce a Softmax with 12 units in the last fully connected layer. However,
the remaining 1200 images were tested by pairing them with the training images.

5. Evaluation

The evaluation is divided into two sections, the first of which demonstrates the
benefits of the super-resolution network in the image reconstruction process in terms
of PSNR and SSIM. In the second section of the report, Equations (12)–(15) are used to
evaluate the classification network. The following assessment criteria were used to assess
the performance of our proposed method: accuracy (ACC), precision (PRE), sensitivity
(SEN), specificity (SPE), and area under curve (AUC).

F1 = 2× Precision× Recall
Precision + Recall

(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Sensitivity =
TP

TP + FN
(14)

Speci f icity =
TN

TN + FP
(15)

where TP, FP, and FN indicate the outcomes of true positive, false positive, and false
negative, respectively.

5.1. Super-Resolution Evaluation

We demonstrate the performance of our proposed super-resolution model by compar-
ing it with well-known state-of-the-art models, namely SRCNN and FSRCNN. The compar-
ison of these methods is based on the implementation of their source code, using the same
dataset for fairness. The main focus of the study is the PSNR and the test time, in which
our proposed EFSRCNN proves to be the fastest. Our proposed method still outweighs
previous methods on PSNR and SSIM values. From the experiment, EFSRCNN achieves
satisfactory performance in run time and restoration quality by redesigning the FSRCNN
structure. Table 6 shows the structural configuration of SRCNN, FSRCNN, and our pro-
posed EFSRCNN. Table 7 summarizes the quantitative results of our proposed model, while
Figures 5 and 6 provide visual examples in comparison with other state-of-the-art models.

Table 6. We compare the structural configuration of the SRCNN, FSRCNN, and our proposed
EFSRCNN, including their reported PSNR using the same chest X-ray dataset.

SRCNN FSRCNN EFSRCNN

First layer Conv (9, 64, 1) Conv (5, 56, 1) Conv (3, 48, 1)

Middle layer Conv (5,32, 64)
Conv (1, 12, 56)

4 Conv (3, 12, 12)
Conv (1, 56, 12)

Conv (1, 12, 48)
6 Conv (3, 12, 12)
Conv (1, 48, 12)

Last layer Conv (5, 1, 32) DeConv (9, 1, 56) DeConv (9, 1, 48)
Input size HR LR HR
Model size 57,184 12,464 5178

Speed 12.7× 48.3× 52.1×
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Table 7. We compare the PSNR and SSIM results of the SRCNN, FSRCNN, and our proposed
EFSRCNN using the same chest X-ray dataset.

Metrics SRCNN FSRCNN EFSRCNN

Region of Interest PSNR
SSIM

32.83 dB
0.9268

33.06 dB
0.9283

32.24 dB
0.9341

Whole region PSNR
SSIM

31.04 dB
0.9026

32.28 dB
0.9105

32.71 dB
0.9238

Figure 5. Comparison of the quantitative results of our proposed EFSRCNN with other selected
state-of-the-art models using the same dataset. The PSNR value is reported on the left while the SSIM
value is reported on the right for the whole region.

Figure 6. Comparison of the quantitative results of our proposed EFSRCNN with other selected
state-of-the-art models using the same dataset. The PSNR value is reported on the left while the SSIM
value is reported on the right for the region of interest.

5.2. COVID-19 Classification Evaluation

The experimental results show that our proposed COVID-SRWCNN architecture
outweighs state-of-the-art COVID-19 models and some selected deep learning models
pre-trained on ImageNet. For fairness, all implementations are based on their source code
using the same CXR dataset. From the experimental analysis of our comparative report,
as presented in Figure 7a, MobileNet V2 achieves the lowest sensitivity score of 89.8%,
whereas ResNet50 obtains the lowest specificity score of 90.5%, as depicted in Figure 7b.
From all indications, our proposed model outweighs all the pre-trained models, with a
high sensitivity score of 99.78% and a 98.86% specificity score. We conducted an ablation
study to evaluate the contribution and effect of the super-resolution technique on the
performance of the proposed framework. The first model is termed COVID-19-SRWCNN
with SR while the second model is termed COVID-19-SRWCNN without SR, as depicted in
Table 3. Figure 8a shows the training and validation accuracy of both models with smooth
progression and steady convergence. The training and validation loss of both models,
showing a gradual reduction in loss, are presented in Figure 8b. Moreover, the test accuracy
and loss are presented in Figure 9a,b, respectively. From all indications, the proposed
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model with super resolution (SR) shows satisfactory performance in training, validation,
and test accuracy with commendable loss reduction. Moreover, the accuracy and sensitivity
performance of the selected state-of-the-art COVID-19 models are reported in comparison
with our proposed model in Figure 10a,b. Our model performs better than the state-of-the-
art models, achieving high accuracy of 98.98% and 100% sensitivity, followed by Cov-Net,
with 96.75% accuracy and 97.2% sensitivity. We also compared our proposed model with
selected pre-trained models in terms of accuracy and AUC, as presented in Figure 11a,b.
Specificity and area under curve (AUC) are other important performance metrics that
we adopted in comparison with the state-of-the-art COVID-19 methods, as presented
in Figure 12a,b. Among the selected state-of-the-art COVID-19 models and pre-trained
models, Cov-Net and EfficientNet show good performance; however, our proposed model
achieves the best AUC value of 98.96%. In the course of our work, we reviewed several
studies related to COVID-19 diagnosis based on artificial intelligence and presented some
comparisons. Some studies reported few performance indicators to support their claims,
as seen in Table 8. More importantly, our proposed model achieves better performance,
with more indicators reported compared to the other state-of-the-art COVID-19 methods
cited from the literature. For fair comparison, we compared our proposed model with
selected state-of-the-art COVID-19 models using the same dataset, as presented in Table 5.
DeepPneumonia [49] obtained the lowest accuracy score of 90.06%, followed by COVID-
Net [56] with 93.32%.

Table 8. We compare our proposed COVID-SRWCNN model with state-of-the-art COVID-19 image-
based diagnosis models.

Literature Architecture Performance (%)

Wang et al. [56] 2D CNN 82.9 (ACC)

Shi et al. [44] Random forest-based CNN
87.9 (ACC)
83.3 (SEN)
90.7 (SPE)

Chen et al. [38] 2D Unet ++
95.2 (ACC)
100.0 (SEN)
93.6 (SPE)

Li et al. [42] 2D ResNet 50 90.0 (SEN)
96.0 (SPE)

Song et al. [49] 2D ResNet 50 86.0 (ACC)
Jin et al. [45] 2D Unet++ and 2D CNN 97.4 (SEN)

92.2 (SPE)
Xu et al. [47] 2D CNN 86.7 (ACC)
Jin et al. [46] 2D CNN 94.1 (SEN)

95.5 (SPE)

Wang et al. [48] 3D ResNet and attention
93.3 (ACC)
87.6 (SEN)
95.5 (SPE)

Zhang et al. [37] 2D Unet and 2D CNN 90.7 (SEN)
90.7 (SPE)

COVID-SRWCNN Super-Resolution CNN and Wavelet
99.79 (ACC)
99.78 (SEN)
99.86 (SPE)

98.96 (AUC)
98.98 (PRE)

To further validate the efficacy of our proposed COVID-SRWCNN model, We adopted
ROC and precision–recall metrics. For diagnosing sensitive conditions such as COVID-19,
it is important to adopt ROC as a method to measure the overall accuracy, as well as the
precision–recall curve to measure the mean average precision of our model. Figure 13a
shows the ROC curves for the two-stage experiment conducted with super resolution
(SR) and without super resolution (SR), while the precision–recall curve is presented in
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Figure 13b. We went a step further to compare our proposed model with some selected
state-of-the-art COVID-19 methods in terms of ROC and precision–recall, as presented in
Figure 14a,b.

Finally, it is worth mentioning that all the models were trained on the same dataset
for fair comparison. We only modified the last layer of the models to correspond to the
number of class labels in our dataset. From all indications, our proposed COVID-SRWCNN
outperformed the other models in terms of precision–recall and ROC. The precision–recall
graphs show that the curves of our proposed model are the closest to the upper-right corner
of the graph with the largest area, and therefore has higher precision associated with higher
sensitivity. Similarly, the ROC graphs indicate that the curves of our proposed model
are the closest to the upper-left corner of the graph with the largest area under the curve,
and therefore has higher sensitivity associated with higher specificity. More importantly,
as mentioned above, the stated result in terms of receiver operating characteristic (ROC)
and precision–recall can assist expert radiologists in striking a balance between accuracy
and precision.

(a) (b)
Figure 7. Performance report of our model and selected pre-trained models. (a) Sensitivity report for
the selected deep pre-trained models and our proposed model. (b) Specificity report for the selected
deep pre-trained models and our proposed model.

(a) (b)
Figure 8. Training and validation report of our model with and without super resolution (SR).
(a) Accuracy curves showing the performance of our proposed COVID-SRWCNN with and without
super resolution (SR). (b) Loss curves reported for our proposed COVID-SRWCNN with and without
super resolution (SR).
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(a) (b)
Figure 9. Test report of our model with and without super resolution (SR). (a) Test accuracy curves
showing the performance of our proposed COVID-SRWCNN with and without super resolution (SR).
(b) Test loss curves reported for our proposed COVID-SRWCNN with and without super resolution
(SR).

(a) (b)
Figure 10. Comparison report for the selected state-of-the-art COVID-19 models and our proposed
model. (a) Accuracy report for the selected state-of-the-art COVID-19 models and our proposed
model. (b) Sensitivity report for the selected state-of-the-art COVID-19 models and our proposed
model.

(a) (b)
Figure 11. Comparison report for the selected deep pre-trained models and our proposed model.
(a) Accuracy report for the selected deep pre-trained models and our proposed model. (b) AUC
report for the selected deep pre-trained models and our proposed model.
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(a) (b)
Figure 12. Comparison report for the selected state-of-the-art COVID-19 models and our proposed
model. (a) Specificity report for the selected state-of-the-art COVID-19 models and our proposed
model. (b) AUC report for the selected state-of-the-art COVID-19 models and our proposed model.

(a) (b)
Figure 13. Comparison report of our proposed COVID-SRWCNN with and without super resolution
(SR). (a) ROC–AUC curves of our proposed COVID-SRWCNN with and without super resolution (SR).
(b) Precision–recall curves of our proposed COVID-SRWCNN with and without super resolution (SR).

(a) (b)
Figure 14. Comparison report of our proposed COVID-SRWCNN in comparison with selected
state-of-the-art COVID-19 models using the same dataset. (a) ROC–AUC curves of our proposed
COVID-SRWCNN in comparison with selected state-of-the-art COVID-19 models using the same
dataset. (b) Precision–recall curves of our proposed COVID-SRWCNN in comparison with selected
state-of-the-art COVID-19 models using the same dataset.

Comparative Study

We compare the findings of our proposed model with previous up-to-date COVID-19
screening methods. To diagnose COVID-19 from CT and CXR scans, a number of stud-
ies have been performed. We compare the results of the proposed wavelet-integrated
CNN model to previously published research. U-Net was used by Chen et al. [38] to
extract high-resolution features from CT. COVID-19 is detected using a CNN approach by
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Wang et al. [48], who achieved 93.3% accuracy, 87.6% sensitivity, and 95.5% specificity. Our
model obtained much higher results than Wang et al. [48] in terms of accuracy, sensitivity,
and specificity, with a margin of 5.89% , 12.19%, and 4.36%, respectively. COVID-19 is
classified by Shi et al. [44] using a random forest technique, which achieved 87.9% accuracy,
83.3% sensitivity, and 90.7% specificity. To discover COVID-19, Jin et al. [45] used a logistic
regression approach. Li et al. [42] suggested a ResNet50 model for classifying COVID-19
with a method of weight sharing. To detect COVID-19, Jin et al. [46] built an AI-based
approach. Xu et al. [47] and Wang et al. [56] present remarkable research, although only
a few indicators are mentioned. To detect COVID-19 from CT images, Song et al. [49]
used a deep learning algorithm. Zhang et al. [37] proposed an 18-layer residual CNN
pre-trained on ImageNet with a separate anomaly detection mechanism for the classifi-
cation of COVID-19. The authors recorded an impressive result of 90.7% sensitivity and
90.7% specificity, whereas our model achieved much higher results in comparison with
Zhang et al. [37], as depicted in Table 4, with a margin of 8.30% and 8.16% in sensitivity
and specificity, respectively. The results of the aforementioned procedures are summarized
in Table 8. Mohamed et al. [57] proposed a COVID-19 algorithm using hybridization and
swarm-based models for image classification. Using MobileNetV3 for the feature extraction
and Aquila as the optimizer, the proposed framework was tested on two datasets of both
CXR and CT COVID-19 scans. The comparison results show the high performance of the
proposed model over other methods. Dalia et al. [58] presented four different fractional-
order cuckoo search optimization algorithms (FO-CS) using heavy-tailed distributions from
COVID-19 datasets. The FO-CS model introduced in the classification task achieved high
accuracy performance when compared to other approaches. Mucahid et al. [59] proposed
the detection of COVID-19 using machine learning algorithms by introducing different
patch sizes of the CT images. An SVM classifier and different cross-validation value were
applied for the classification task. Thus, the best performance for accuracy was 99.68%
using Grey-Level Size Zone Matrix (GLSZM) feature extraction methods and 10-fold cross-
validation. As demonstrated in Table 8, our suggested model has competitive efficiency for
COVID-19 diagnosis. In comparison to famous deeper neural networks and the selected
COVID-19 state-of-the-art models, as presented in Tables 4 and 5, our model is capable of
handling small-scale datasets with significantly lower computing costs, as presented in
Table 5.

According to [60], the manual detection of COVID-19 by an expert utilizing CXR
can have high sensitivity but low specificity of 25%. This inadequate specificity leads to
false-positive predictions, which leads to ineffective therapy and a waste of money. Our
suggested model, COVID-SRWCNN, has high specificity of 98.86%, and it can be used to
help expert radiologists to reduce the number of false-positive instances reported. More
importantly, the stated result in terms of the receiver operating characteristic (ROC) can aid
expert radiologists in achieving a balance of accuracy and precision.

Furthermore, some comments on COVID-SRWCNN’s computational cost and model
complexity are necessary. We avoided the use of max pooling at each convolutional block
by using the wavelet transform, which reduced the model complexity and computation
time. Another intriguing feature of our COVID-SRWCNN is its capacity to minimize noise
in input images by concatenating the combination of the generated detail coefficients at
each decomposition level to each convolutional block through a 1× 1 convolutional layer.
In terms of computing costs, our model was trained on an NVIDIA GTX 1080. For the
implementation of our architecture, we used the Keras framework.

6. Discussion

For the performance enhancement of our proposed network (COVID-SRWCNN), we
integrated distinct input images into the convolutional neural networks via channel-wise
concatenation. The sole purpose of introducing wavelet multi-resolution analysis (WMRA)
is to provide a varying depiction of the input images at different scales to achieve full-
spectral analysis. DWT can interpret the input images at various scales. While it is general
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knowledge that CNNs process images mainly in the spatial domain and only partially on
the spectral domain, WMRA allows for the full-spectral processing of images, resulting in
these algorithms possessing different properties.

By the integration of WMRA into the convolutional neural network, it enhances the
network’s ability to obtain the magnitude of the frequency data that are not found both
in the average pooling and the convolutional layers, which comprehensively reduces the
spectral analysis. In addition to this, at different phases, wavelets extract the required
multi-resolution spectral information from the input data. In a manner that is similar to the
process of pooling, a multi-resolution analysis of the data used as input will show the input
in various scales. Wavelet transform works in such a way that every sub-sampling stage
can be seen as a distinct pooling process. This caused us not to employ wavelet transform
as a clear substitute for the pooling layers in the proposed framework utilized in this study;
instead, we incorporated wavelet transform to extract information from the input data and
pass it into the convolutional layers.

If the output of the estimated wavelet transform for every image is added to the con-
volutional neural network with the intention of adding the wavelet coefficients generated
at different decomposition levels, it will amount to the loss of multi-scale information. This
act will limit or restrict the proposed network from learning insightful details from the CXR
data at varying resolutions. One of the aspects that we have deemed necessary in solving
this dilemma is multi-scale input processing, where the CXR images are used for analysis
at various resolutions in every stage of wavelet decomposition. To accomplish not only
different resolution analysis but also low- and high-frequency domain analysis, various
decomposition phases of wavelet transform are integrated into the CNN.

7. Conclusions

In this work, we proposed a CNN-based super-resolution with a Siamese wavelet
multi-resolution framework for COVID-19 classification, with the aim of addressing the
challenge of the low-resolution characteristics of CXR images. We utilized our proposed
enhanced fast super-resolution CNN to solve the problem of CXR’s low quality by re-
constructing high-resolution images from their low-resolution counterparts. Finally, our
modified Siamese wavelet multi-resolution CNN was used to extract meaningful features
from the reconstructed high-resolution CXR images for the classification of COVID-19. We
have shown that our model has the ability to reconstruct high-resolution images that are
similar to the ground-truth low-resolution images and further captures deep features for the
classification of COVID-19. By a well-observed margin, our proposed COVID-SRWCNN
performs better than some famous pre-trained models and some previously proposed
state-of-the-art COVID-19 diagnosis techniques.
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