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Abstract In the last 2 years, medical researchers and clinical scientists have paid close attention to the
problem of respiratory sound classification to classify COVID-19 disease symptoms. In the physical world,
very few AI-based (Artificial Intelligence) techniques are often used to detect COVID-19/SARS-CoV-
2 respiratory disease symptoms from the human respiratory system-generated acoustic sounds such as
acoustic voice sound, breathing (inhale and exhale) sounds, and cough sound. We propose a light-weight
Convolutional Neural Network (CNN) with Modified-Mel-frequency Cepstral Coefficient (M-MFCC) using
different depths and kernel sizes to classify COVID-19 and other respiratory sound disease symptoms such
as Asthma, Pertussis, and Bronchitis. The proposed network outperforms conventional feature extraction
models and existing Deep Learning (DL) models for COVID-19/SARS-CoV-2 classification accuracy in
the range of 4–10%. The model’s performance is compared with the COVID-19 crowdsourced benchmark
dataset and gives a competitive performance. We applied different receptive fields and depths in the pro-
posed model to get different contextual information that should aid in classification. And our experiments
suggested 1 × 12 receptive fields and a depth of 5-Layer for the light-weight CNN to extract and identify
the features from respiratory sound data. The model is also trained and tested with different modalities of
data to showcase its effectiveness in classification.

1 Introduction

The World Health Organization (WHO) announced
COVID-19/SARS-CoV-2 epidemic was the biggest pan-
demic in the entire world in March 2020. It claims over
4,539,723 lives worldwide as of September 3rd, 2021. As
of September 3, 2021, there have been 218,946,863 con-
firmed COVID-19 cases, 4,539,723 deaths, and 5,289,
724,918 are completed vaccinations as of August 31st
[1]. According to the biomedical experts, data collec-
tion and tracing contacts is very difficult for spread-
ing the COVID-19 disease. Although advancements in
testing have increased the popularity of these meth-
ods in recent months, there is an essential need for
COVID-19 screening technology that is inexpensive,
quick, and flexible. The severity of the COVID-19
virus is categorized into three parts: mild, moderate,
and extreme. Over the last year, biomedical scientists
and researchers have paid special attention to identi-
fying abnormalities in the classification of respiratory
sounds [2] and COVID19 disease diagnosis [3]. Many
AI-based frameworks have joined the real world to
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solve this problem [4–6]. Biomedical researchers and
scientists have proposed various Deep-Learning (DL),
Signal-Processing (SP), and Machine-Learning (ML)
approaches to diagnosis various diseases from human
respiratory-generated sounds [7–9]. Recent research
focused on prognostic models diagnostic models, and
pertained ensemble models for the first wave, second
wave, and third waves in India to identify SARS-CoV-
2/COVID-19 disease symptoms [10–13].

The COVID-19 epidemic is now widespread in reality,
creating fear in people’s opportunity to connect physi-
cally. As a result, several techniques are used to detect
respiratory COVID-19 disease symptoms with respira-
tory generated sounds [14]. Biomedical experts used res-
piratory sounds (lung sounds, cough, breath, voice, food
absorption, body vibration, sighs, and heart sound) to
diagnose the different human diseases (Asthma, Bron-
chitis, Pertussis, and SARS-CoV-2/COVID-19) [15].
In recent times, such signals were commonly extracted
during clinical interactions through manual ausculta-
tion. Biomedical scientific and public health researchers
have already officially started to use electronic methods
for collecting audio sounds from the human body and
perform automated analyses of infection of the respira-
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tory sound data, such as recognizing wheeze in patients
with Asthma [16].

Researchers have also performed experiments with
using a person’s speech to aid in the early diagnosis
of many illnesses: Alzheimer’s, Parkinson’s can have
many effects on the voice, the intensity of speech
with cardiovascular disease, unidentifiable abnormali-
ties like fatigue, head injuries, and psychological condi-
tions directly relate with voice tone, voice style, voice
rhythm, and intensity [17–19]. The use of such a res-
piratory system sounds like early diagnosis treatment
for future diseases holds enormous promise for early
identification and low-cost response that can be made
available to the general public if integrated into pri-
mary commodities. It is common for individuals if the
remedy can be discreetly monitored in different indi-
viduals during their daily lives [20]. Over the last year,
the performance of respiratory acoustic sound classifi-
cation of abnormalities on the respiratory COVID-19
sounds dataset can be built using different Artificial
Intelligence (AI) techniques.

Recent studies have started to investigate how res-
piratory sound records can be classified using smart
devices from patient respiratory sound data like breath
auscultation sound, cough sound, heartbeat sound, and
lung auscultation [21,22]. Deep learning and Machine
Learning methods with various feature extraction tech-
niques such as Data De-noising auto-encoder, Mel-
frequency coefficients, LSF (Line Spectral Frequency),
DCT (Discrete Wavelet Transformation) and Gama-
tone frequency [23]. Till then, the framework can
only automatically identify the patient’s condition and
analyzes the illnesses of the concerned patients from
human respiratory sounds. This is not the scenario
in our research, which involves studying human res-
piratory sounds in unregulated crowdsourced records
to identify COVID-19 disease. This research majorly
focuses on respiratory sound classification and diag-
nosis of different human respiratory diseases (Asthma,
COVID-19, Pertussis, and Bronchitis) using light-weight
CNN model with Modified-Mel-frequency Cepstral Coef-
ficients (M-MFCC) and Enhanced-Gamma-tone Fre-
quency Cepstral Coefficients (EGFCC) feature extrac-
tion technique.

This research work is arranged in the following sec-
tions: Sect. 2 demonstrates the existing approaches
on the identification of COVID 19 respiratory dis-
ease. Sect. 3 describes the dataset preparation and pre-
processing methods such as Modified-Mel-frequency
Cepstral Coefficients (M-MFCC) and Enhanced-Gamma-
tone Frequency Cepstral Coefficients (EGFCC) imple-
mented using the proposed light-weight CNN model to
extract the best features from respiratory sound data.
Sect. 4 summarized the performance of the proposed
light-weight CNN model and compared it with cur-
rent techniques. And finally, we have concluded this
research with preliminary findings using the proposed
model performance.

2 Background work

Both extractions of audio features and sound extrac-
tion have a long history. As a result, many other stud-
ies covering such essential issues were published. The
more relevant studies focus on a single sound problem
domain, including COVID-19 and other respiratory dis-
eases with human respiratory sound data and encom-
pass a small set. Following are summaries of significant
studies in the ground of sound features extraction.

Brown Chloe and the team implemented an Android
application to gather respiratory COVID-19 sound
records from human respiratory sound data of over 200
COVID-19 positives from over 7000 distinctive users.
The authors have implemented majorly three binary
tasks (Task-I: COVID-19_Positive/Asthma_Cough,
Task-II: COVID-19_Positive_Cough/COVID-19_Nega
tive _Cough, Task-III: COVID-19_Positive_Cough/Heal
thy_Cough) on a crowdsourced respiratory dataset.
Task-I achieves around 80% precision from 220 unique
users with breath and cough modalities using the SVM
model; Task-II and Task-III achieve approximately 88%
accuracy with VGGNet [24].

Lara et al. [25] proposed an Artificial Intelligence
(AI) based framework for analysis of COVID-19 symp-
toms with cough sounds from a crowdsourced “COU
GHVID” dataset. The COUGHVID dataset contains
over 20k user-generated cough audio representing a
wide scope of subject age, geographical area, gen-
der, and SARS-CoV-2/COVID-19 prior medical his-
tory. The authors collected around 120 cough sound
signals and 95 other respiratory sound signals first-
hand, including speech, laughing, acquiescence, and
various other background murmuring sound noises to
improve the classification performance. Menghan et al.
[26] implemented a model framework to detect COVID-
19 disease from extensive scale screening of the differ-
ent peoples with different breathing auscultation pat-
terns that helps in the physical world. In this research,
an accurate model for the respiratory system is imple-
mented to bridge between a massive volume of training
input data and insufficient real-world existing data to
identify the COVID-19 features from human respira-
tory sound data.

Imran et al. proposed Artificial Intelligence (AI)
based framework with the name AI4COVID-19 [27] to
identify COVID-19 symptoms from the cough sound
signals. In this work, the authors have been imple-
mented a mobile application to collect the respiratory
sound data; after that, they have applied AI techniques
to classify COVID-19 symptoms from the respiratory
sound data. Badar et al. [28] introduced a substan-
tial framework that uses Sound Signal Processing tech-
niques and Mel-frequency coefficients to extract the
best sound features from COVID cough sounds and
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Non-COVID cough sounds. This research shows a high
correlation between COVID cough samples and Non-
COVID cough samples using the MFCC technique. The
authors proved that this MFCC method is better for
extracting the features from COVID respiratory cough
sound Non-COVID respiratory cough sounds.

Gunvant et al. [29] implemented one mobile appli-
cation to collect the respiratory sound data to recog-
nize SARS-CoV-2 symptoms. The authors collected the
data using a mobile application and then applied Deep
Learning (DL) models to classify COVID-19 symptoms
from the cough sounds dataset. However, most of the
Deep Learning (DL) networks have been trained on res-
piratory sound data from various file structures and
audio data configurations in multiple environments.
Rita et al. [30] implemented a framework for ana-
lyzing vocal fold parameters to identify SARS-CoV-2
symptoms because most of the symptoms of COVID-
19 are concerned with respiratory sounds. The COVID-
19 symptoms can be detectable by analyzing vocal fold
parameters, and authors have contributed their innova-
tions to detecting COVID-19 symptoms with vocal fold
parameters from voice and sound data.

Lagarta et al. [31] introduced a Deep Learning (DL)
framework to classify respiratory COVID-19 symptoms
from human cough sound samples. The model enables
an alternative to the initial screening of SARS-CoV-
2 symptoms from human respiratory sound samples
across the world at no cost. Hasan et al. [32] proposed
a Recurrent Neural Network (RNN) model using Sig-
nal Processing (SP) techniques for the classification of
SARS-CoV-2 symptoms from pulmonary sounds like a
cough, speech, and breathing sounds. This pertained
model is used to identify SARS-CoV-2 disease symp-
toms by evaluating the sound features from the respi-
ratory cough sounds.

Tanya et al. [33] introduced a biomarkers framework
for classifying SARS-CoV-2 /COVID-19 symptoms
using speech processing techniques and Signal Pro-
cessing (SP) techniques from respiratory sound data.
This existing pertained model extract features from
lower inflammation and upper respiratory inflammation
parameters, which helps detect COVID-19 symptoms.
Lella and Alphonse [34,35] implemented an Artificial
Intelligence (AI) framework to automatically classify
COVID-19 symptoms using a 1D CNN network and
Deep CNN from respiratory sound data. The 1D CNN
model is implemented using a Data De-noising Auto-
Encoder (DDAE) mechanism, which helps to give good
performance to identify SARS-CoV-2 disease symp-
toms from various respiratory sounds (cough, voice, and
breath). All of these background studies indicate that
there is no appropriate prediction method for classify-
ing SARS-CoV-2 disease symptoms.

In recent years, there has been a lot of research in the
area of human respiratory sound analytics. However, we
discovered that far too many studies concentrated on a
very small no. of regularly utilized basic features, while
the most newly respiratory sound features are discussed
very infrequently. In contrast to previous studies, we
focus on deep sound extracting features, covering a

broader range of respiratory sound features, and incor-
porating some framework into the field. As per previous
studies, we introduce the light-weight network model
with modified Mel-Frequency coefficients and enhanced
Gama-tone frequency techniques to function more effec-
tively on SARS-CoV-2/COVID-19 sounds data to clas-
sify SARS-CoV-2 disease symptoms, and it enhances to
perform much better on the crowdsourced dataset.

3 Materials and methods

3.1 Dataset

The respiratory COVID-19 sounds crowdsourced dataset
was collected with mutual agreement from Cambridge
University for research purposes. It was authorized
at Cambridge University in the department of com-
puter science and technology by adhering to all eth-
ical committee guidelines. Brown et al. [24] created
an android based mobile application and a browser-
based web application to obtain respiratory COVID-
19 sounds; the fundamental features of this applica-
tion are nearly identical. The user’s past medical back-
ground has been compiled for those who have previously
been admitted to the treatment center. Users are then
asked to enter their symptoms and collect the three
respiratory audio sounds (breath sound for 30 s, cough
sound for 3–5 intervals, sample voice of reading a single
sentence). Further to that, the users have to enter addi-
tional symptoms and sounds to provide a unique oppor-
tunity to investigate and discover the previous medical
history of the user. This data is extremely secure in
the local data centers of the University of Cambridge;
the acquired information is stored internally until it is
linked with the Wi-Fi network. The data is removed
from the database if the required data is received from
the user’s device. If a user requests that information be
removed from the server, it will be updated.

Kun et al. implemented an intelligent technology on
voice data by taking different considerations like the
quality of sleep, anxiety, severity, and fatigue [36]. The
Cambridge University researchers have acquired data
from the “COVID-19 sounds” applications, and Mel-
lon University research scientists have been obtained
data from the “COVID-19” application. This prelimi-
nary study yielded 378 components and 256 audio files
for feature analysis, according to the authors. These 256
audio sound features were gathered from approximately
fifty COVID-19 infected patients. In this work, the poly
signals with a sampling frequency rate of 0.016MHz
have been converted for two acoustic sound feature sets.

3.1.1 Collection of human respiratory COVID-19 sounds

The Cambridge University researchers gathered around
25,000 samples from an android-based application
and 45,000 samples from a web-based application.
The researchers have collected around 6000 and 5000
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samples from various countries. Approximately about
325 users reported COVID-19 positivity from both
datasets. The Android app collects multiple samples
from different users. It creates redundant informa-
tion and vast data, and further work will eliminate
this to improve performance. They gathered and ana-
lyzed basic details (historical and contemporary health
records, age, and gender) and three different audio res-
piratory data (speech sound, cough sound, breath
sound) from distinctive uses through web-based and
android-based applications. In this classification, the
most widely accepted symptoms to identify COVID-19
disease are dry cough and sore throat while coughing.
Surprisingly, the most normal observed symptoms are
wet-cough, dry-cough, as well as loss of smell, and tight-
ness of the chest being the most widely known mixed
symptom. These symptoms will match with informa-
tion obtained from the respiratory COVID-19 disease
monitor. The truth is that the human respiratory cough
sound is one of the commonly identified symptoms of
a respiratory disease like COVID-19 ads to the case
for using respiratory sound as the distinct symptom of
the human being. Nonetheless, it is a common symp-
tom of a variety of many other diseases. As a result, the
light-weight CNN network model is used to identify and
diagnose respiratory COVID-19 disease based on all of
these symptoms.

3.2 Feature extraction method representation

The model have been developed with two feature
extraction methods such as MMFCC (Modified Multi-
frequency Cepstral Coefficients) and EGFCC (Enhanced
Gamma-tone Frequency Cepstral Coefficients) to extract
in-depth features from human respiratory sound data
(breathing sounds, cough sounds, and voice sounds)
[37,38]. The system model compared with extracted
deep features according to the system metrics. The
light-weight CNN gives distinct features and similar fea-
tures for efficiently identifying respiratory sound acous-
tic signals by incorporating different Signal Process-
ing (SP) methods to gather various types of feature
attributes. The EGFCC method gives transient respi-
ratory audio sound features, while MMFCC serves as
the base for extracting in-depth features in this work.
We have compared the light-weight CNN model with
EGFCC features and MMFCC deep features concern-
ing the model performance.

3.2.1 Enhanced Gamma-tone filter bank implementation

The Gammatone frequency filter banks are indeed a
group of cochlear modeling filter banks [39,40]. A Gam-
matone filter bank frequency selection is very close to
the characteristics of an average human ear filter. It
can depict the components of various actions in the
Gammatone filter banks. A gammatone determines the
sampling frequency rate of a Gammatone filter and a
sinusoidal sound, the primary frequency of that is ‘fc’,

which can be depicted as Eq. (1).

g (x) =
(
Axn−1

) · e2πBx cos (2πfcx + ϕ), (1)

where B is the bandwidth (B = ERB (fc) + 1.019),
amplitude gain is A, core frequency is fc, the order
of the filter depends on n value, and ϕ is the shift-
phase value. We built the model with a fourth-order
filter because the fourth-order gamma-tone frequency
filter is similar to the features that are being used to
represent the human respiratory sound auditory filters
[20].

The model has created by setting the order of a filter
bank as four because the fourth-order Gamma-tone fil-
ter banks are identical to the features that are being
used to represent human respiratory sound auditory
filters [20]. The ERB is just a frequency modulation
index that indicates the frequency spectrum band of
the human respiratory sound acoustic filter range at
each point along the cochlea. The cubic band-pass fre-
quency filters are used to define human standard hear-
ing frequency bandwidth, which is a very unrealistic
and correct simplified representation of cubic modeling
prediction. The acoustic frequency filters bandwidth is
the frequency band value of an Equivalent Rectangu-
lar Bandwidth (ERB) primarily focused at frequency
f , and the relation between the f and ERB is the par-
ticular scale factor as shown in Eq. (2).

ERBs (f) = 21.40 log10 ((0.0043 ∗ f) + 1) . (2)

The Gamma tone frequency filter banks should con-
tain every feature to model the Gamma tone frequency
sound band accurately. The fundamental frequency
bands of each Gamma tone standard filters are adjusted
in this work using Eq. (2), and Gamma tone features
can be calculated with Eq. (3) from the human respi-
ratory sounds.

fci
= ERB−1

s

((
ki × ERBs (fhigh) − ERBs (flow)

N

)

+ERBs (flow)) . (3)

The inverse of the ERBs is described as ERB−1
s , fhigh

is the highest frequency (20000 Hz), flow is considered
as lowest frequency (10Hz) i is the index number, ki fil-
ter index and N is the total no. of gamma-tone filters.
We can compute the enhanced gamma-tone frequency
coefficients with gamma-tone filter banks. A technique
to measure the enhanced GFCC relates to a feature
extraction technique of modified Mel-frequency coef-
ficient. The length of the respiratory sound frame is
defined as 25ms by default in this work. The frame
response is then evaluated using the Fast Fourier Trans-
formation (FFT) for every frame. The Gamma tone,
band-pass frequency filters can be assessed based on
frame reactions at each point of the frequency filter. As
a result, the gamma-tone frequency band-pass filters are
used as an input signal for FFT to reach the sub-band
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Fig. 1 The block diagram of enhanced gamma-tone fre-
quency filter bank (N -extracted coefficients, m-filterbanks,
and the human respiratory sound signal is the frame signal)

spectrogram. The sub-band filter of the spectrogram is
depicted as Yn to compute sub-band energy. The Mel-
frequency logarithmic function and DCT (Discrete-
Cosine-Transformation) are used to emulate the per-
ception of cough sound wave (loudness). They are unre-
lated to the outcome of the frequency compact filters in
the final step, and the EGFCC can be calculated using
Eq. (4).

GFCCn =

√
2

M

(
M∑

m=1

log10 (Yn) · cos

[
πm

M

(
n − 1

2

)])

,

1 ≤ n ≤ N, (4)

M defines as total no. of gamma-tone filters, sub-band
energy is m, GFCCn defines the no. of gamma-tone
frequency filters and it always depends upon the range
of gamma-tone frequency (1 ≤ n ≤ N), Yn is define as
mth sub-band energy. The enhanced gamma-tone fre-
quency filer block diagram (N -extracted coefficients, m-
filterbanks, and the human respiratory sound acoustic
signal is the model window frame signal) is represented
in Fig. 1.

3.2.2 Preparation of Modified-Mel-Frequency Cepstral
Coefficients (M-MFCC)

The Modified-Mel-Frequency Cepstral Coefficients
(MMFCC) is applied to obtain acoustic depth respi-
ratory sound features from the input human respira-
tory audio sound data (cough sound, breath sound, or
acoustic voice sound) it exponentially scales the fre-
quency. This MMFCC model consists of seven differ-
ent steps, which are represented below. The modified
Mel-Frequency model with scale frequency structural
framework is illustrated in Fig. 2.

Step-1: Because of the rapid increase in the acous-
tic sound signals, the acoustic sound spectrogram sig-
nal is structured in short frames at this stage. This is
not much smaller or much bigger than having a per-
fect spectral estimate window frame. It is then done to
remove the disruptions at the start and the end of a
window frame. Wj (n) , 0 ≤ n ≤ Mn − 1 is the win-
dow, quantity samples of each frame are ‘Mn’, i and
j represents the index numbers, X (n) = Y (n)× Wj (n)
will be represented as an output frame with the inter-
val of ≤ n ≤ Mn − 1. Finally, we will get the ‘X (n)’
output signal by multiplying frame window of ‘Wj(n)’

and ‘Y (n)’ input signal. The frame window of ‘Wj (n)’
representation is shown in the Eq. (5).

Wj (n) = 0.54 − 0.46 sin
((π

2

)
−

(
2πn

Mn − 1

))
,

0 ≤ n ≤ Mn − 1 . (5)

Step-2: The FFT (Fast Fourier Transform) is used to
convert the frequency/spectral domain from the spatial
or time domain of the input respiratory input acoustic
sound signal. Each and every frame contains ‘Mn’ respi-
ratory sound samples are transformed to the frequency
or spectral domain. The respiratory sound frame repre-

sentation shows as
Mn∑

n=0
t(n), ‘Mn’ represents the number

of samples (around 160 samples), and the frequency and
time domain indexes ‘f ’ and ‘n’ are shown in the Eq.
(6).

|T (f)|2 =

∣
∣
∣
∣
∣

Mn−1∑

n=0

t(n) · e((
−j2πnf

Mn
))

∣
∣
∣
∣
∣

2

. (6)

Step-3: After creating the frames, we must estimate the
power spectral density for every frame by determining
the periodogram with Eq. (7), where i represents the
power spectral density for every frame and j represents
the window index numbers.

Pj (i) =
1
M

× |Sj(i)|2 . (7)

The spectral power estimation still contains essential
data not required for ASR (Automated Sound Recogni-
tion) of a human respiratory sound acoustic audio sys-
tem, so the variation in the two frequently separated
frequency ranges is not visible. The Mel-frequency fil-
ters are being used to determine how often periodogram
will exist in various frequency areas in the respiratory
sound spectrogram. The very first filter bank of the Mel
frequency can show how frequently the power spectrum
exists near to zero Hertz (minimal). The first filter is
straightforward, and the Mel-scale provides information
about establishing the frequency filters and how sub-
stantial to build them, as shown in Eq. (8). The spec-
trogram filter frequency function is denoted by ‘fa’.

fa (y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , y < fa(n − 1)
y−fa(n−1)

fa(n)−(fa(n−1)) , fa(n − 1) ≤ y ≤ fa(n)
fa(n+1)−y

(fa(n+1))−fa(n)
, fa(n) ≤ y ≤ fa(n + 1)

0 , y > fa(n = 1)

(8)

Step-4: In this case, we must determine the logarith-
mic significance of the active layer using Eq. (9),
which demonstrates the transformation of the acous-
tic sound frequency band to the Mel- frequency filter
spectrum scale.

Mf (y) = (2595) × Log.10

(
1 +

( y

100

))
. (9)
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Fig. 2 Modified Mel Frequency Cepstral Coefficient (MMFCC) structural frequency framework

Step-5: In this process, we must have to calculate
the DCT (Discrete-Cosine-Transformation) for the log-
arithmic filter band energy of the power spectrum.
The frequency-filter spectrum power bank energies are
linked with Mel-frequency filter spectrum scale. The
DCT (Discrete-Cosine-Transformation) can be calcu-
lated using Eq. (10). As ‘Cn’ determined in Eq. (10),
the frequency cepstral sound features will be identi-
fied with the range of k = 0 to S − 1, whereas S =
1, 2, 3 . . . ., n and constant factor value is ‘c’ for dis-
cretization.

Cn =

√

[2]
(

2
S

) S−1∑

k=0

(
(c × (k + 1)) · sin

(π

2

)

−
[
n ×

(
2k − 1

2

)
· π

S

])
. (10)

Step-6: In this process, we have to calculate the MFCC
(Mel-Frequency Coefficients) for the discretized log-
arithmic filter band energy of the power spectrum.
The frequency-filter spectrum power bank energies are
linked, and the newly implemented framework filter
banks will all be overlapped. So, the frequency Mel-
spectrogram can be calculated using Eq. (11), the fre-
quency cepstral sound features will be identified with
the range of k = 0 to S − 1, whereas S = 1, 2, 3, . . . .m
and constant factor value is ‘c’ for discretization.

Cn =

(

2

√(
2
S

))
S−1∑

k=0

(
(log10 [c × (k + 1)]) · sin

(π

2

)

−
[
n ×

(
2k − 1

2

)
· π

S

])
. (11)

Step-7: At the end of the process, we have to cal-
culate the Mel-frequency (MMFCC) with logarithmic
function for the logarithmic filter band energy of the
power spectrum. The frequency-filter spectrum power
bank energies are linked, and the newly implemented
framework filter banks will all be overlapped. Then the
processed input sound of the Modified-Mel-frequency
(MMFCC) is identified after DCT. As ‘Cn’ determined
in Eq. (12), the frequency cepstral sound features will
be identified with the range of k = 0 to S − 1, whereas
S = 1, 2, 3 . . . ., n and constant factor value is ‘c’ for

discretization.

Cn =

(

2

√(
2
S

))
S−1∑

k=0

((log10 . (log10 [c × (k + 1)])) ·

sin
(π

2

)
−

[
n ×

(
2k − 1

2

)
· π

S

])
. (12)

3.3 The CNN model

The light-weight CNN (Convolutional Neural Network)
classifies the human respiratory audio sounds based
on the different respiratory diseases (Normal Flue,
Asthma, Pertussis, Negative_ COVID-19, Positive_CO
VID-19, Bronchitis, and Healthy human respiratory
sound features) using enhanced gamma-tone frequency
filter banks and modified Mel-frequency feature extrac-
tion channels. Figure 3 depicts the proposed convolu-
tional model architecture with two feature extraction
techniques (EGFCC and MMFCC). In this work, we
have implemented a light-weight convolutional model
framework to diagnose human respiratory disease with
human respiratory-generated sound data. The model
shows comparative performance analysis using EGFCC
and MMFCC methods. The proposed light-weight CNN
model includes two pooling layer operations, three
convolutional (kernel) layers, and two fully connected
(dense) layers to protect the convolutional network lay-
ers.

Figure 4 depicts the light-weight CNN network flow
structure, which accepts time-stamps as input from the
input layer kernel filter values. The model consists of
pooling and convolutional layers to extract the deep
respiratory sound layer-by-layer. The light-weight CNN
layers are made up of various convolution kernels of
different sizes. The results are categorized by the fully
connected layers after max-pooling using the batch nor-
malization technique. Our idea is to build a light-weight
CNN network that is fully connected.

In this work, we have used the cross-entropy loss
function on the one-hot encoded output to calculate
model training loss. The single respiratory sound spec-
trogram one-hot encoded loss function looks like in the
below equation (Eq. (13)). Where N is the number of
classes, c represents class value, x is the vector value of
input respiratory sound spectrogram, xc is either 1 or 0
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Fig. 3 The proposed convolutional model architecture with two feature extraction techniques (EGFCC and MMFCC)

(we have given xc = 1), x̂c is model prediction class
(it represents the output of the “Softmax’ function for
‘c’ classes).

Li = −
N∑

c=1

xc × log10 x̂c . (13)

In this case, the activation function is ‘Softmax’. This
function ensures that all output nodes have values
between 0 and 1, and that the sum of all output node
values is always 1. The ‘Softmax’ function is represented
in Eq. (14).

Softmax (xc) =
exc

N∑

c=1
exc

. (14)

The light-weight CNN network model is developed with
a fully connected Neural Network (NN) model to pre-
vent various parameters of 5-layered depth features for
training and test sets. The model has been built with a
batch normalization function to normalize the output
of each light-weight CNN layer. For network sparsity,
the activation function Rectified Linear Unit (ReLU)
is being used to reduce parameter interconnection and
reduce the likelihood of overfitting issues. In this model,
the convolutional layers are divided into five levels,
and feature contracts are encoded into a single col-
umn matrix to fit them into the fully connected layer
just after the fifth convolutional layer output. Follow-
ing that, the layer is flattened with a single dense cell
and one dropout layer. Finally, an activation function of
“Softmax” is applied to classify the COVID-19/SARS-
CoV-2-positive symptoms and COVID-19/SARS-CoV-
2-negative symptoms. The exact process is applied to

compute the remaining classes (Asthma, Bronchitis,
Pertussis, and Healthy Symptoms).

The model’s input is given as 1 × 477 × 256 dimen-
sional vectors to the light-weight CNN, and the model
is trained with a two-dimensional convolutional net-
work. The light-weight CNN model has been imple-
mented with a sigmoid transfer function, and the pool-
ing sheet with stride one is generated using the max-
pooling layer. Finally, the “Softmax” classifier is used to
classify each class’s prior disease probability based on
respiratory sound data. The light-weight CNN struc-
ture is illustrated in Fig. 4 using a 5-layer network with
different kernel sizes like 1 × 12, 1 × 24, 1 × 36, 1
× 48, and 1 × 60. In the 2D convolutional network,
the convolutional kernel dimensions are increased based
on column transformation. While maintaining the same
size convolutional filters for the network model, the
outcome of various kernel sizes (1 × 12, 1 × 24, 1
× 36, 1 × 48, and 1 × 60) of a convolutional net-
work is tested on convolutional frameworks’ output. A
model’s framework is implemented with multiple hyper-
parameters such as categorical cross-entropy, batch size
32, ’Adam’ optimizer, three hidden layers, activation
function (ReLU), dropout (0.01), max pooling, the
classifier (Softmax), and the number of epochs (100).
There are 122,112 trainable parameters and 0 (zero)
non-trainable parameters. The hyper-parameter objec-
tive function was updated based on the initial analysis
results, and a subsequent better model framework was
examined.

The system acquired data consist of T-FP (Time-
Frequency Patches) collected values from the loga-
rithmic scaled Mel-spectrum framework of the respi-
ratory sound signal features, connected to the first
accepted feature training techniques adapted respira-
tory COVID-19 identification. The ‘Essentia’ python
library is used to generate a log-scaled Mel-spectrum
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Fig. 4 The proposed layered light-weight CNN architecture for respiratory disease classification

with two fifty-six bands. We have used the ‘Essentia’
python library to generate a logarithmic scaled Mel-
spectrum with two fifty-six bands chosen to represent
the recognizable respiratory sound frequency spectro-
gram range of 0–22 kHz at a frequency frame rate of 25
ms (the capacity of the frequency range is 0.440 MHz for
1024 different samples) with the same length of the hop-
ping spectrum. The model has acquired various types
of feature vectors along with 256 convolutional features
vectors. The combined modality (cough, voice, breath)
of feature vectors is 256, and 477-dimensions of fea-
ture vectors of handicrafts. The dataset evaluation is
described in Sect 3.1.1, and it varies the input respira-
tory acoustic sound period between 0 and 30 s.

We have fixed this input time duration T to 05 s
to 256 frames for respiratory sound data T-FP (Time-
Frequency Patches), i.e., T ∈ R256×256. T-FP is derived
instantly during training from the full logarithmic Mel-
spectrum of each respiratory sound excerpt. The model
is developed to learn Θ parameters to derive non-
linear function F (..|Θ), which maps time T (given input
value) to the estimated value Y is depicted in Eq. (15).

Y = F (T |Θ) = fK(. . . .. f2(f1 (((T |θ1) |θ2) |θK) . (15)

The layer of a convolutional network of every operation
can be depicted as fk (.. | θk), K = 5 in this proposed
framework. The proposed model architecture has con-
structed with three convolutional layers (k ∈ {1, 2, 3})
that can be expressed as Yk in Eq. (16).

Yk = fk (Tk|Θk) = h (W ∗ Tk + b) , θk = [W, b] . (16)

The sequence of 3-dimensional convolutional filters
have been represented as ‘W ’ of ‘N ’, the 3-dimensional
input vector is ‘Tk’ constructed with M feature maps,
h(·) is the point-wise activation function, the convolu-

tional operation is ‘∗’, and the biased function is ‘b’. The
shape of the network can be represented as W, Xk, Yk

are (M, d0, d1) , (N, M, n0, n1) , and (N, d0 − n0 + 1,
d1 − n1 + 1). The T-FP input layer dimensionality of
the first layer of the network is represented as d0 = d1 =
256. We have applied max-pooling after every convolu-
tional layer k ∈ {1}, k ∈ {3}, k ∈ {6}, to reduce the
dimensionality. This reduces the size of the resultant
feature map function, which enhances model training
performance and provides a certain level of classifica-
tion accuracy rate in the light-weight CNN network.
The matrix product of fully connected layers k ∈ {4, 5}
is represented in Eq. (17). Whereas Tk is the vector
representation that can be flattened to M , the shape of
the dimensionality is W (N,M), function activation is
h (·), and ‘b’ is the vector of ‘N ’. The layered architec-
ture of this proposed light-weight convolutional model
is represented in Fig. 4.

Yk = fk (Tk|Θk) = h (W · Tk + b) , Θk = [W, b] . (17)

3.3.1 Model analysis

The human respiratory COVID-19 crowdsourced dataset
is implemented to test the light-weight CNN model with
various data augmentation sets. The total dataset con-
sists of 1541 respiratory sound audio files (including
breath, voice, and cough) collected from different users
with a track size of 30 seconds. The model has cre-
ated various classes while training the dataset (COVID-
19_with_Cough, COVID-19_with_Breath, Non-COVID-
19_with_Cough, Non-COVID-19_with_Breath, Asthma
_with_Cough, Asthma_with_Breath, Pertussis_with
_Cough, Bronchitis_with_Cough, COVID-19_with
_Cough_and_Breath, COVID-19_with_Cough_and
_Breath_and_Voice, Healthy_Cough sounds, Healthy
_Breath sounds, Healthy_Speech sounds) to identify

123



Eur. Phys. J. Spec. Top. (2022) 231:3329–3346 3337

disease symptoms. The data are organized into five
distinct folders, each with its own label number (001
Asthma, 002 COVID-19, 003 Pertussis, 004 Bronchi-
tis, 005 Healthy Symptoms), and the labeled data are
analyzed using a higher accuracy model. With test-
ing precision, the model results obtained are compared
to previous works on this dataset. The newly imple-
mented model is tested and compared to earlier models
to test accuracy. The data have been partitioned into
two datasets as testing data and training data. We have
selected one of the five training folders in each section to
train the most recent light-weight CNN network struc-
ture as a test set to determine the learning epoch that
produces the best results when working with the four
remaining respiratory sound audio data folders.
The novel points of the research:

1. We have implemented new feature extraction meth-
ods (MMFCC and EGFCC) to extract depth fea-
tures from the respiratory sound data.

2. The model has made a comparison between MMFCC
and EGFCC for all respiratory sound diseases
(COVID-19, Pertussis, Bronchitis, and Asthma)
and regular respiratory sounds.

4. We made a comparative analysis of abnormalities
between COVID-19 diseases Vs. Other respiratory
sound diseases.

5. Customized light-weight convolutional framework
with input data using Modified Mel-frequency Cep-
stral Coefficient (MMFCC) and EGFCC optimized
for automated feature learning rather than individ-
ual feature extraction technique.

6. Self-adapting light-weight CNN framework is sug-
gested for automated parameter determination rather
than depending on individual experience.

7. An average pooling layer accompanies the feature
vector in the light-weight CNN framework to read
the performance in each level to prevent various
implications of features between training and val-
idation results.

8. We applied different receptive fields and depths in
the proposed model to get different contextual infor-
mation that should aid in classification. And our
experiments suggested 1 × 12 receptive fields and

depth (5 Layer) for the light-weight CNN to extract
and identify the features from respiratory sound
data.

9. The proposed network outperforms conventional
feature extraction models and existing Deep Learn-
ing (DL) models for COVID-19/SARS-CoV-2 clas-
sification accuracy in the range of 4–10%.

4 Results and discussion

The model compares COVID-19 sounds with other res-
piratory sounds and identifies the relationship between
the COVID-19 symptoms with other respiratory dis-
eases. The model is identified deep features based on
audio sound parameters such as frequency, loudness,
air volume, subglottic pressure, acoustic signal, cough
peak flow rate, cough expire volume, peak velocity-
time, pitch, duration, intensity, sound quality, Signal
to Noise Ratio (SNR), Voice Activity Detection (VAD),
and Strength of Lombard Effect (SLE) for native speak-
ers. Figure 5 shows the comparisons for different respi-
ratory diseases among MMFCC and EGFCC.

In this section, we have conducted three relative
experiments. The first compares different kernel convo-
lution forms, the second different feature channels, and
the third other network-layer numbers. In the statisti-
cal study of multi-classification, the ‘F1’ score indicates
the specificity of a test. The mean average score of recall
and precision is defined as ‘F1’ score, with 100 percent
being the best and zero percent being the worst. The
accuracy rate and ‘F1’ score for recognition is used in
this analysis to assess the method’s efficiency. The ‘F1’
score and accuracy are calculated using the equations
(Eqs. (18) and (19)). TP—true positive, FP–false posi-
tive, FN—false negative, and TN–true negative. Table 1
compares the accuracy and F1 score of different kernel
types and the light-weight CNN kernel shape and size.
Table 1 shows a comparison of convolution with varying
channels in terms of accuracy.

F1Score =
True Positive (TP )

True Positive (TP )+False Positive (FP ) × True Positive (TP )
True Positive (TP )+False Negative (FN)

True Positive (TP )
True Positive (TP )+False Positive (FP ) + True Positive (TP )

True Positive (TP )+False Negative (FN)

(18)

Accuracy =
(TruePositive (TP ) + TrueNegative (TN))

(
TruePositive (TP ) + TrueNegative (TN) +
False Positive (FP ) + FalseNegative (FN)

) × 100 . (19)

The comparisons of various respiratory sounds are
represented in Figs. 5 and 6. It analyzes each respira-
tory sound’s significant parameters and shows the vari-
ations of the pitch of sound and synthesis value of each
respiratory sound. The comparison is made up with dif-
ferent modalities of respiratory sounds like frequency,
loudness, air volume, subglottic pressure, acoustic sig-
nal, cough peak flow rate, cough expires volume, peak
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Fig. 5 Comparing sample respiratory diseases (Asthma,
COVID-19 with cough, COVID-19 without cough) with
MMFCC and EGFCC feature spectrograms. a sample
asthma sound signal, b MMFCC feature spectrogram for
respiratory asthma cough sound, c EGFCC spectrogram
for respiratory asthma cough sound, d sample COVID-19

sound signal, e MMFCC feature spectrogram for respiratory
COVID-19 cough sound, f EGFCC spectrogram for respi-
ratory COVID-19 cough sound, g sample COVID-19 with
breath sound signal, h MMFCC feature spectrogram for res-
piratory COVID-19 with breath sound, i EGFCC spectro-
gram for respiratory COVID-19 with breath sound

velocity–time, pitch, duration, intensity, sound quality,
Signal to Noise Ratio (SNR), Voice Activity Detec-
tion (VAD), and Strength of Lombard Effect (SLE) for
native speakers.

The comparison is made up for different diseases like
Asthma, COVID-19 with cough, COVID-19 without
cough, Pertussis, and Bronchitis, along with healthy
symptoms for cough, breath, and voice using MMFCC
(Modified Mel-frequency Cepstral Coefficient) and
EGFCC (Enhanced Gama-tone Frequency Cepstral
Coefficient). Finally, the model is trained with MMFCC
generated feature spectrum and performs the anal-
ysis for each respiratory sound-based disease. Fig-
ure 7 depicts the comparative analysis of abnormali-
ties in COVID-19 disease with other respiratory infec-
tions for different classes like COVID-19_Cough Vs.
Asthma_Cough, COVID-19_Cough_Breath Vs. Bron

chitis_Cough_Breath, COVID-19_Cough Vs. Pertussis
_Whooping_Cough, COVID-19_Cough Vs. Healthy
_Cough symptoms. The convolutional kernels of light-
weight CNN play a vital role in detecting abnormalities
from human-generated respiratory sounds. The total
number of layers required for the convolutional level in
the model architecture is calculated with an observa-
tional analysis of respiratory sound data. The approxi-
mately 13,000 input respiratory sound data samples are
divided into 10% training data and 10% test data, and
the remaining 80% can be used for model training with
a 32-batch size of 70 epochs.

The researchers have been used prognostic mod-
els, pertained ensemble models, and different feature
extraction techniques to identify respiratory sound fea-
tures from respiratory sound data to detect COVID-
19/SARS-CoV-2 symptoms. Table 1 shows the new
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Fig. 6 Comparing sample respiratory diseases (Pertussis,
Bronchitis, and Healthy Symptoms) with MMFCC and
EGFCC feature spectrograms. j Sample pertussis whoop-
ing cough sound signal, k MMFCC feature spectrogram for
respiratory pertussis whooping cough sound, l EGFCC spec-
trogram for respiratory pertussis disease whooping cough
sound, m sample bronchitis disease sound signal, n MMFCC

feature spectrogram for respiratory bronchitis cough sound,
o EGFCC spectrogram for respiratory bronchitis cough
sound, p sample cough signal for healthy symptoms, q
MMFCC feature spectrogram for respiratory healthy cough
sound, r EGFCC spectrogram for respiratory healthy symp-
toms with cough sound

findings of this research for different feature depths
and various kernel shapes. The model’s performance
is compared with the COVID-19 crowdsourced bench-
mark dataset and gives a competitive performance. We
applied different receptive fields and depths in the pro-
posed model to get additional contextual information
that should aid in classification. And our experiments
suggested 1 × 12 receptive fields and a depth of 5-Layer
for the light-weight CNN to extract and identify the
features from respiratory sound data is represented in
Fig. 8. The light-weight CNN layers are entirely rele-
vant to obtain the required performance after adding
convolutional and pooling layers. When the hidden lay-
ers exceed five, the network output remains nearly con-
stant.

Here, we have compared the results for different chan-
nels (MFCC, EGFCC, and MMFCC) with various ker-

nel sizes (1 × 12, 1 × 24, 1 × 36, 1 × 48, 1 × 60). The
model achieves around 78.12% using MFCC with 1 × 60
kernel size, 82.27% using EGFCC ( Enhanced Gamma-
tone Frequency) with 1 × 60 kernel size, 84.13% using
MMFCC (Modified Mel-Frequency) with 1 × 60 ker-
nel size. The model achieves around 79.38% using
MFCC with 1 × 48 kernel size, 83.16% using EGFCC (
Enhanced Gamma-tone Frequency) with 1 × 48 kernel
size, 85.42% using MMFCC (Modified Mel-Frequency)
with 1 × 48 kernel size. The model achieves accuracy
around 81.26% using MFCC with 1 × 36 kernel size,
83.97% using EGFCC ( Enhanced Gamma-tone Fre-
quency) with 1 × 36 kernel size, 86.18% using MMFCC
(Modified Mel-Frequency) with 1 × 36 kernel size. The
model achieves around 82.87% using MFCC with 1 × 24
kernel size, 84.68% using EGFCC ( Enhanced Gamma-
tone Frequency) with 1 × 24 kernel size, 88.34% using
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Fig. 7 The comparative analysis of abnormalities in COVID-19 disease with other respiratory diseases

MMFCC (Modified Mel-Frequency) with 1 × 24 ker-
nel size. The model achieves accuracy around 83.264%
using MFCC with 1 × 12 kernel size, 85.68% using
EGFCC ( Enhanced Gamma-tone Frequency) with 1
× 12 kernel size, 91.32% using MMFCC (Modified Mel-
Frequency) with 1 × 12 kernel size.

The new findings of various feature channels for dif-
ferent layers are shown in Table 2. The results sug-
gest that the neural network’s growth in this research
enhanced the identification, including the accuracy of
the sound signals for various tests. The three-layered
and five-layered light-weight CNN model comparison
results with different light-weight CNN kernel sizes
are depicted in Fig. 9. The experimental findings indi-
cate that the present model’s in-depth features preserve

additional information on COVID-19 sound signals by
enhancing classification accuracy. Table 2 compares the
model with different channels of various light-weight
CNN layers for five different light-weight CNN kernel
shapes. Here, we have compared the results for different
channels (MFCC (Mel-Frequency), EGFCC (Enhanced
Gamma-tone), MMFCC (Modified Mel-Frequency)) for
3 layered architecture and 5-layered architecture of
light-weight CNN model with various kernel sizes like
1 × 60, 1 × 48, 1 × 36, 1 × 24, 1 × 12. The pro-
posed method achieves approximately 4% to 10% accu-
racy improvement than that of the existing MFCC tech-
nique for the classification of COVID-19 disease. And it
gives a state-of-the-art performance with other existing
models for detecting respiratory diseases. In the future,
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Table 1 The comparison of results with different kernel shapes and feature types

Name of the channel CNN Kernel size Accuracy (%) F1 Score

MFCC (Mel-Frequency) 1 × 60 78.12 80.18
EGFCC ( Enhanced Gamma-tone Frequency) 82.27 83.12
MMFCC (Modified Mel-Frequency) 84.13 85.13
MFCC (Mel-Frequency) 1 × 48 79.38 80.14
EGFCC ( Enhanced Gamma-tone Frequency) 83.16 84.31
MMFCC (Modified Mel-Frequency) 85.42 86.18
MFCC (Mel-Frequency) 1 × 36 81.26 82.13
EGFCC ( Enhanced Gamma-tone Frequency) 83.97 85.12
MMFCC (Modified Mel-Frequency) 86.18 87.87
MFCC (Mel-Frequency) 1 × 24 82.87 83.26
EGFCC ( Enhanced Gamma-tone Frequency) 84.68 86.18
MMFCC (Modified Mel-Frequency) 88.34 89.45
MFCC (Mel-Frequency) 1 × 12 83.64 84.42
EGFCC ( Enhanced Gamma-tone Frequency) 85.68 86.92
MMFCC (Modified Mel-Frequency) 91.32 92.48

Fig. 8 The accuracy
comparison for various
feature channels with
different kernel sizes
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Fig. 9 The model comparison with different channels for five kernel shapes with different CNN layers (5-layer and 3-layer
approach)

we will develop multi-feature channel-based CNN to
improve the performance of respiratory disease diag-
nosis on the crowdsourced COVID-19 sounds dataset.

We have observed in this research that the model
performance is raised when the kernel size is 1 × 12,
and the model performance varies 4% to 10% by com-
paring with existing models on the benchmark dataset.
The new findings represent that the proposed approach

is better to identify COVID-19/SARS-CoV-2 symp-
toms on respiratory sounds data. Compared to regu-
lar conventional input, the selection of deep respira-
tory sound features does not require pre-processing for
any time frame of COVID-19-based sounds. As a result,
the respiratory COVID-19 sounds can be decided to
enter into the classification techniques. Using the light-
weight CNN model network instead of other models
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Table 2 The comparison of the model with different channels of various light-weight CNN layers for five different light-
weight CNN kernel shapes

Name of the channel No. of CNN layers CNN Kernel size Accuracy (%) F1 Score (%)

MFCC (Mel-Frequency) 5L 1 × 60 78.12 80.18
3L 76.42 77.23

EGFCC ( Enhanced Gamma-tone) 5L 82.27 83.12
3L 79.82 81.23

MMFCC (Modified Mel-Frequency) 5L 84.13 85.13
3L 82.92 83.48

MFCC (Mel-Frequency) 5L 1 × 48 79.38 80.14
3L 77.92 78.83

EGFCC ( Enhanced Gamma-tone) 5L 83.16 84.31
3L 80.76 81.52

MMFCC (Modified Mel-Frequency) 5L 85.42 86.18
3L 83.46 84.31

MFCC (Mel-Frequency) 5L 1 × 36 82.26 83.13
3L 79.42 80.62

EGFCC ( Enhanced Gamma-tone) 5L 83.97 85.12
3L 81.63 83.34

MMFCC (Modified Mel-Frequency) 5L 87.18 88.87
3L 85.63 86.58

MFCC (Mel-Frequency) 5L 1 × 24 83.87 84.26
3L 81.74 82.92

EGFCC ( Enhanced Gamma-tone) 5L 84.78 86.18
3L 82.23 84.06

MMFCC (Modified Mel-Frequency) 5L 88.34 89.45
3L 85.69 86.36

MFCC (Mel-Frequency) 5L 1 × 12 84.64 85.42
3L 82.76 83.93

EGFCC ( Enhanced Gamma-tone) 5L 86.68 87.92
3L 84.82 86.06

MMFCC (Modified Mel-Frequency) 5L 91.32 92.48
3L 87.38 89.13

Table 3 The respiratory disease classification with five different class labels (COVID-19, Bronchitis, Pertussis, Asthma,
and Healthy sound classes) for various sound modalities (Voice, Cough, and Breath)

Class Sound modality Accuracy (%) F1-Score (%)

Asthma Disease Cough + Breath 89.78 91.12
COVID-19 Disease Cough + Breath + Voice 92.32 93.48
Pertussis Disease Whooping Cough 89.69 90.31
Bronchitis Disease Cough + Breathing shortness 88.74 89.14
Healthy Symptoms Cough + Breath + Voice 93.65 94.83

Fig. 10 The respiratory
sound disease diagnosis for
five different classes
(COVID-19, Bronchitis,
Pertussis, Asthma, and
Healthy sound classes) for
various sound modalities
(Voice, Cough, and
Breath)
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Table 4 Proposed light-weight CNN model accuracy comparison with existing methods on COVID-19 respiratory sounds
dataset

Model Dataset Accuracy (%)

SVM with PCA Crowdsourced COVID-19 Sounds Dataset Task-1: 80
Task-2: 82
Task-3: 80

VGG-Net with Augmentation Crowdsourced COVID-19 Sounds Dataset Task-2: 87
Task-3: 88

1DCNN with DDAE Crowdsourced COVID-19 Sounds Dataset Task-1: 90
Task-2: 88
Task-3: 88
Task-4: 84
Task-5: 86

Light-Weight CNN with MMFCC (Proposed) Crowdsourced COVID-19 Sounds Dataset Class-1: 89.78
Class-2: 92.32
Class-3: 89.69
Class-4: 88.74
Class-5: 93.65

Fig. 11 Proposed
light-weight CNN model
accuracy comparison with
existing methods
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The accuracy comparison of proposed model with existing models
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frameworks in this study greatly improves the overall
system model’s ability to interpret respiratory COVID-
19 respiratory sound acoustic signals without using an
X-ray, pulse oximeter, or CT-scanning, and some other
disease diagnosis techniques.

4.1 Difference between COVID-19-positive
symptoms versus other respiratory diseases with
sounds

The respiratory sound classification model for five dif-
ferent classes (Asthma, Bronchitis, Pertussis, COVID-
19, Healthy sounds class) is represented in Table 3. The
first class discriminates the patient is having asthma
problem from respiratory cough and breathing sounds.
Class second discriminating users have bronchitis dis-
ease from shortness of breath sound and dry cough. The
third class is for discriminating the symptoms of per-
tussis disease with respiratory whooping cough sound.

The fourth category denotes the classification used
to determine whether the user is having respira-
tory COVID-19-positive symptoms or COVID-19-negative
symptoms. Class five represents the healthy respiratory
symptoms from respiratory sounds (Voice, Cough, and
Breath). Table 3 illustrates the comparative results for
the proposed light-weight CNN model versus the exist-
ing classification techniques for various classes. The pro-

posed framework shows around 4% more accuracy than
existing methods, as shown in Fig. 10.

4.2 Proposed light-weight CNN model accuracy
comparison with existing methods on COVID-19
respiratory sounds dataset

The benchmark dataset shows few biased values iden-
tification in the respiratory sound data while examin-
ing for different respiratory disease user’s cough com-
bined with breath and voice may be the best predic-
tor. The network performs better results for class two
(COVID-19 disease) and class five (Healthy symptoms).
The model achieves around 92% accuracy to predict the
user has COVID-19 respiratory disease with three dif-
ferent modalities (voice, breath, and cough). The model
can diagnosis asthma disease using cough and breath
sounds with around 90% of best accuracy. The sys-
tem may diagnosis pertussis disease using whooping
cough with an accuracy of approximately 89%. The
model may predict bronchitis disease from user res-
piratory cough and breathing shortness with around
89% of good accuracy. The model performs better for
identifying healthy symptoms from cough, breath, and
voice with approximately 93% of accuracy. The pro-
posed light-weight CNN model accuracy comparison
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Table 5 The proposed model comparison with existing methods with different modalities

Model Dataset Modality Accuracy (%)

MFCC with DCT [28] Clinical sample
dataset1

Only Cough Class 1: 59

Clinical sample
dataset1

Class 2: 72

ResNet50 with MFCC [31] Open voice data
by MIT

Speech and
Cough

79

MFCC with DCT [28] Android App
developed for
COVID-19
sound samples.

Speech,
Cough, and
Breath

79

DTL + MC [4] Android App
developed for
COVID-19
sound samples.

Speech and
Cough

88

SVM with PCA [24] Crowdsourced
COVID-19
Sounds Dataset

Speech,
Cough, and
Breath

Task-1: 80

Task-2: 82
Task-3: 80

VGG Net with Augmentation [24] Crowdsourced
COVID-19
Sounds Dataset

Voice, Cough,
and Breath

Task-2: 87

Task-3: 88
1DCNN with DDAE [34] Crowdsourced

COVID-19
Sounds Dataset

Voice, Cough,
and Breath

Task - 1: 90

Task-2: 88
Task-3: 88
Task-4: 84
Task-5: 86

Light-Weight CNN with MMFCC (Proposed) Crowdsourced
COVID-19
Sounds Dataset

Voice, Cough,
and Breath

Class-1: 89.78

Class-2: 92.32
Class-3: 89.69
Class-4: 88.74
Class-5: 93.65

with existing methods on COVID-19 crowdsourced data
is represented in Table 4 and Fig. 11.

The primary benchmark dataset was collected from
Cambridge University (around 13,000 samples) on
mutual agreement, and data related to pertussis disease
and bronchitis disease is collected from different crowd-
sourced sound datasets. We are planning to collect more
samples to improve the light-weight CNN model’s per-
formance to identify COVID-19/SARS-CoV-2 disease
symptoms. The plan will be accomplished to neural
network model in future works to identify SARS-CoV-2
disease with different modalities such as body temper-
ature, pulse rate, cough sound, voice, and breathing
sounds. Table 5 depicts the proposed model’s compara-
tive analysis with current Deep Learning (DL) models
on respiratory sound data with different modalities.

In this analysis, the light-weight CNN convolutional
model network’s implementation rather than the other
Deep Learning (DL) models dramatically enhances the

entire model performance to detect the COVID-19 and
other respiratory acoustic sound signals. Without X-ray
and CT-scan images, the suggested framework will pro-
duce nearly accurate results to detect COVID-19 and
other respiratory diseases. The light-weight CNN model
with Enhanced-GFCC and Modified-MFCC network
will help the general public to prescreen the COVID-19
and other respiratory disease symptoms before visiting
the hospital. It is necessary to consult the hospital for
any additional tests if a disease is identified. The model
is restricted to identifying respiratory sound diseases
such as Asthma, Bronchitis, Pertussis, COVID-19, and
healthy respiratory sound symptoms from human respi-
ratory cough, voice, and breathing sound data. Thus, it
has never been used in clinical practice but can be used
to detect human respiratory disease. We will develop
Deep Learning (DL) model in future works to iden-
tify COVID-19 disease with different modalities like
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body temperature, pulse rate, cough sound, voice, and
breathing sounds.

5 Conclusion

We proposed and implemented a light-weight CNN
model using Modified-Mel-frequency Cepstral Coef-
ficient (M-MFCC) to identify symptoms of respira-
tory diseases such as Asthma, Bronchitis, Pertussis,
COVID-19, and Healthy symptoms in this study. The
proposed deep learning model classifier outperforms
feature-based methods in a wider band with different
datasets. The model’s adaptiveness with respect to dif-
ferent modalities shows the applicability of the model in
different scenarios. The key advantage of this model is
to unambiguously extract deep respiratory sound fea-
tures and classify it accordingly. The model’s perfor-
mance is compared with MFCC and EGFCC (a cus-
tomized version of GFCC) for various kernel sizes and
depths. The proposed method achieves approximately
4–10% accuracy improvement than that of the exist-
ing MFCC technique for the classification of COVID-
19 disease. And it gives a state-of-the-art performance
with other existing models for detecting respiratory
diseases. In the future, we will develop multi-feature
channel-based CNN to improve the performance of res-
piratory disease diagnosis on the crowdsourced COVID-
19 sounds dataset. The experiment also leads to the
importance of Neural Architecture Search (NAS) for
finding better architectures for classification.
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