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Abstract	

We	 describe	 a	 large-scale	 community	 effort	 to	 build	 an	 open-access,	 interoperable,	 and	
computable	repository	of	COVID-19	molecular	mechanisms	-	the	COVID-19	Disease	Map.	We	
discuss	the	tools,	platforms,	and	guidelines	necessary	for	the	distributed	development	of	its	
contents	by	a	multi-faceted	community	of	biocurators,	domain	experts,	bioinformaticians,	
and	computational	biologists.	We	highlight	the	role	of	relevant	databases	and	text	mining	
approaches	 in	 enrichment	 and	 validation	 of	 the	 curated	 mechanisms.	 We	 describe	 the	
contents	of	the	Map	and	their	relevance	to	the	molecular	pathophysiology	of	COVID-19	and	
the	analytical	and	computational	modelling	approaches	that	can	be	applied	for	mechanistic	
data	interpretation	and	predictions.	We	conclude	by	demonstrating	concrete	applications	of	
our	work	through	several	use	cases	and	highlight	new	testable	hypotheses.	

1.	Introduction	

The	 coronavirus	 disease	 2019	 (COVID-19)	 pandemic	 due	 to	 severe	 acute	 respiratory	
syndrome	coronavirus	2	(SARS-CoV-2)	already	resulted	in	the	infection	of	over	106	million	
people	worldwide,	of	whom	2.3	million	have	died1.	The	molecular	pathophysiology	that	links	
SARS-CoV-2	infection	to	the	clinical	manifestations	and	course	of	COVID-19	is	complex	and	
spans	multiple	 biological	 pathways,	 cell	 types	 and	 organs	 [1,2].	 To	 gain	 insight	 into	 this	
network	 of	 molecular	 mechanisms	 we	 need	 knowledge	 collected	 from	 the	 scientific	
literature	and	bioinformatic	databases,	integrated	using	formal	systems	biology	standards.	
A	 repository	 of	 such	 computable	 knowledge	 will	 support	 data	 analysis	 and	 predictive	
modelling.	

With	 this	goal	 in	mind,	we	 initiated	a	collaborative	effort	 involving	over	230	biocurators,	
domain	experts,	modellers	and	data	analysts	from	120	institutions	in	30	countries	to	develop	
the	COVID-19	Disease	Map,	an	open-access	 collection	of	 curated	computational	diagrams	
and	models	of	molecular	mechanisms	implicated	in	the	disease	[3].		

To	 this	 end,	 we	 aligned	 the	 biocuration	 efforts	 of	 the	 Disease	 Maps	 Community	 [4,5],	
Reactome	 [6],	 and	 WikiPathways	 [7]	 and	 developed	 common	 guidelines	 utilising	
standardised	encoding	and	annotation	 schemes,	based	on	community-developed	systems	
biology	 standards	 [8–10],	 and	 persistent	 identifier	 repositories	 [11].	 Moreover,	 we	
integrated	relevant	knowledge	from	public	repositories	[12–15]	and	text	mining	resources,	
providing	a	means	to	update	and	refine	the	contents	of	the	Map.	The	fruit	of	these	efforts	was	
a	series	of	pathway	diagrams	describing	key	events	in	the	COVID-19	infectious	cycle	and	host	
response.	

	
1	https://covid19.who.int/	
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This	comprehensive	diagrammatic	description	of	disease	mechanisms	is	machine-readable	
and	 computable.	 This	 allows	 us	 to	 develop	 novel	 bioinformatics	 workflows,	 creating	
executable	networks	 for	analysis	and	prediction.	 In	 this	way,	 the	Map	 is	both	human	and	
machine-readable,	lowering	communication	barriers	between	biocurators,	domain	experts,	
and	computational	biologists	significantly.	Computational	modelling,	data	analysis,	and	their	
informed	 interpretation	 using	 the	 contents	 of	 the	 Map	 have	 the	 potential	 to	 identify	
molecular	 signatures	 of	 disease	 predisposition	 and	 development,	 and	 to	 suggest	 drug	
repositioning	for	improving	current	treatments.	

The	 current	 COVID-19	 Disease	 Map	 is	 a	 collection	 of	 41	 diagrams	 containing	 1836	
interactions	 between	 5499	 elements,	 supported	 by	 617	 publications	 and	 preprints.	 The	
summary	 of	 diagrams	 available	 in	 the	 COVID-19	 Disease	 Map	 can	 be	 found	 online2	 in	
Supplementary	Material	1.	The	Map	is	a	constantly	evolving	resource,	refined	and	updated	
by	ongoing	efforts	of	biocuration,	sharing	and	analysis.	Here,	we	report	its	current	status.	

In	Section	2,	we	explain	the	set	up	of	our	community	effort	to	construct	the	interoperable	
content	of	the	resource,	involving	biocurators,	domain	experts	and	data	analysts.	In	Section	
3,	we	demonstrate	that	the	scope	of	the	biological	maps	in	the	resource	reflects	the	state-of-
the-art	about	the	molecular	biology	of	COVID-19.	Next,	we	outline	analytical	workflows	that	
can	be	used	on	the	contents	of	the	Map,	including	initial,	preliminary	outcomes	of	two	such	
workflows,	discussed	in	detail	as	use	cases	in	Section	4.	We	conclude	in	Section	5	with	an	
outlook	to	further	development	of	the	COVID-19	map	and	the	utility	of	the	entire	resource	in	
future	efforts	to	build	and	apply	disease-relevant	computational	repositories.	

	 	

	
2	https://covid.pages.uni.lu/map_contents	
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2.	Building	and	sharing	the	interoperable	content	

The	COVID-19	Disease	Map	project	 involves:	(i)	biocurators,	(ii)	domain	experts,	and	(iii)	
analysts	and	modellers:	

i.	Biocurators	develop	a	collection	of	 systems	biology	diagrams	 focused	on	 the	molecular	
mechanisms	of	SARS-CoV-2.	

ii.	Domain	experts	refine	the	contents	of	the	diagrams,	supported	by	interactive	visualisation	
and	annotations.	

iii.	Analysts	and	modellers	develop	computational	workflows	to	generate	hypotheses	and	
predictions	about	the	mechanisms	encoded	in	the	diagrams.		

All	 three	 groups	 have	 an	 essential	 role	 in	 the	 process	 of	 building	 the	Map,	 by	 providing	
content,	refining	it,	and	defining	its	computational	use.	Figure	1	illustrates	the	ecosystem	of	
the	 COVID-19	 Disease	 Map	 Community,	 highlighting	 the	 roles	 of	 different	 participants,	
available	format	conversions,	interoperable	tools,	and	downstream	uses.	Information	about	
the	community	members	and	their	contributions	is	disseminated	via	the	FAIRDOMHub	[16],	
so	that	content	distributed	across	different	collections	can	be	uniformly	referenced.	

2.1 Creating and accessing the diagrams 

The	biocurators	of	the	COVID-19	Disease	Map	diagrams	follow	the	guidelines	developed	by	
the	 Community,	 and	 specific	 workflows	 of	 WikiPathways	 [7]	 and	 Reactome	 [6].	 The	
biocurators	 build	 literature-based	 systems	 biology	 diagrams,	 representing	 the	molecular	
processes	 implicated	 in	 COVID-19	 pathophysiology,	 their	 complex	 regulation	 and	 the	
phenotypic	outcomes.	These	diagrams	are	the	main	building	blocks	of	the	Map,	composed	of	
biochemical	reactions	and	interactions	(altogether	called	interactions)	taking	place	between	
different	 types	of	molecular	entities	 in	various	 cellular	 compartments.	As	multiple	 teams	
work	 on	 related	 topics,	 biocurators	 can	 provide	 an	 expert	 review	 across	 pathways	 and	
across	platforms.	This	is	possible,	as	all	platforms	offer	intuitive	visualisation,	interpretation,	
and	analysis	of	pathway	knowledge	to	support	basic	and	clinical	research,	genome	analysis,	
modelling,	 systems	 biology,	 and	 education.	 Table	 1	 lists	 information	 about	 the	 created	
content.	For	more	details	see	Supplementary	Material	1.	
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Figure	1:	The	ecosystem	of	the	COVID-19	Disease	Map	Community.	The	main	groups	of	COVID-

19	 Disease	 Map	 Community	 are	 biocurators,	 domain	 experts,	 analysts,	 and	 modellers;	

communicating	to	refine,	interpret	and	apply	COVID-19	Disease	Map	diagrams.	These	diagrams	are	

created	 and	 maintained	 by	 biocurators,	 following	 pathway	 database	 workflows	 or	 standalone	

diagram	editors,	and	reviewed	by	domain	experts.	The	content	is	shared	via	pathway	databases	or	a	

GitLab	 repository;	 all	 can	 be	 enriched	 by	 integrated	 resources	 of	 text	 mining	 and	 interaction	

databases.	 The	 COVID-19	 Disease	 Map	 diagrams	 are	 available	 in	 several	 layout-aware	 systems	

biology	 formats	 and	 integrated	 with	 external	 repositories,	 allowing	 a	 range	 of	 computational	

analyses,	including	network	analysis	and	Boolean,	kinetic	or	multiscale	simulations.	

Both	 interactions	 and	 interacting	 entities	 are	 annotated	 following	 a	 uniform,	 persistent	
identification	 scheme,	using	either	MIRIAM	or	 Identifiers.org	 [17],	 and	 the	guidelines	 for	
annotations	of	computational	models	[18].	Viral	protein	interactions	are	explicitly	annotated	
with	 their	 taxonomy	 identifiers	 to	highlight	 findings	 from	strains	other	 than	SARS-CoV-2.	
Moreover,	 tools	 like	 ModelPolisher	 [19],	 SBMLsqueezer	 [20]	 or	 MEMOTE3	 help	 to	
automatically	complement	the	annotations	in	the	SBML	format	and	validate	the	model	(see	
also	Supplementary	Material	2).	
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Table	1.	COVID-19	Disease	Map	contents.	The	table	summarises	biocuration	resources	and	content	

of	the	Map	across	three	main	parts	of	the	repository.	All	diagrams	are	listed	in	Supplementary	Table	

1.	Available	online	at	https://covid.pages.uni.lu/map_contents.	

	 Source	

Individual	diagrams	 Reactome	 WikiPathways	

Diagram	

contents	

21	diagrams	

1334	interactions	

4272	molecular	entities	

397	publications	

2	diagrams	

101	interactions	

489	molecular	entities	

227	publications	

19	diagrams	

401	interactions	

738	molecular	entities	

61	publications	

Access	 Gitlab	
git-r3lab.uni.lu/covid/models	

SARS-CoV-1	and	SARS-CoV-2	

infections	collection	
reactome.org/PathwayBrowser/	

#/R-HSA-9679506	

COVID	pathways	collection	
covid.wikipathways.org	

Exploration	 The	MINERVA	Platform	[21]	
covid19map.elixir-luxembourg.org	

Guide:	
covid.pages.uni.lu/	

minerva-guide	

Native	web	interface	
	

Guide:	

covid.pages.uni.lu/	
reactome-guide	

Native	web	interface	
	

Guide:	

covid.pages.uni.lu/	
wikipathways-guide	

Biocuration	

guidelines	

Community4	 Community5	

Platform-specific5	

Community6	

Platform-specific6	

Diagram	

Editors	

CellDesigner7,	Newt8	

SBGN-ED	[22],	yEd+ySBGN9	

Reactome	pathway	editor5	 PathVisio	[23]	

Formats	 CellDesigner	SBML	[24]	

SBGNML	[25,26]	

Internal,		

SBML	and	SBGNML	compliant	

GPML	[23]	

	

2.2 Enrichment using knowledge from databases and text mining 

The	knowledge	on	COVID-19	mechanisms	is	rapidly	evolving,	as	demonstrated	by	the	rapid	
growth	of	 the	COVID-19	Open	Research	Dataset	 (CORD-19)	dataset,	a	 source	of	 scientific	
manuscripts	and	metadata	on	COVID-19	and	related	coronavirus	research	 [27].	CORD-19	

	
4	https://fairdomhub.org/documents/661	
5	https://reactome.org/community/training	
6	https://www.wikipathways.org/index.php/Help:Editing_Pathways	
7	http://celldesigner.org	
8	https://newteditor.org	
9	https://github.com/sbgn/ySBGN	
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currently	contains	over	130,000	articles	and	preprints,	over	four	times	more	than	when	it	
was	 introduced10.	 In	 such	a	quickly	evolving	environment,	biocuration	efforts	need	 to	be	
supported	by	repositories	of	structured	knowledge	about	molecular	mechanisms	relevant	
for	COVID-19,	 like	molecular	 interaction	databases,	or	 text	mining	resources.	Contents	of	
such	 repositories	 may	 suggest	 improvements	 in	 the	 existing	 COVID-19	 Disease	 Map	
diagrams,	 or	 establish	 a	 starting	 point	 for	 developing	 new	 pathways	 (see	 Section	
“Biocuration	of	database	and	text	mining	content”).	

Interaction	and	pathway	databases	

Interaction	and	pathway	databases	contain	structured	and	annotated	information	on	protein	
interactions	or	causal	relationships,	while	interaction	databases	focus	on	pairs	of	molecules,	
offering	 broad	 coverage	 of	 literature-reported	 findings,	 pathway	 databases	 describe	
biochemical	processes	and	their	regulations,	supported	by	diagrams.	Both	types	of	resources	
are	 valuable	 inputs	 for	 COVID-19	 Disease	 Map	 biocurators,	 given	 the	 comparability	 of	
identifiers	 used	 for	 molecular	 annotations,	 and	 the	 reference	 to	 publications	 used	 for	
defining	an	interaction	or	building	a	pathway.	Table	2	summarises	open-access	resources	
supporting	the	biocuration	of	the	Map.	See	Supplementary	Materials	[tools]	for	their	detailed	
description.	

Table	 2.	 Resources	 supporting	 biocuration	 of	 the	 COVID-19	 Disease	 Map.	 They	 include	 (i)	

collections	of	COVID-19	interactions,	published	by	the	IMEx	Consortium	[13]	and	SIGNOR	2.0	[14],	

(ii)	 a	 non-COVID	 interaction	database	OmniPath	 [12]	 and	 (iii)	 the	Elsevier	 Pathway	Collection,	 a	

manually	reconstructed	open-access	dataset	of	annotated	pathway	diagrams	for	COVID-1911.		

Resource	 Type	 Manually	

curated	

Directed	 Layout	 COVID-19	

specific	

IMEx	Consortium	database	[28]	 Interaction	 Yes	 No	 No	 Yes12	[13]	

SIGNOR	2.0	database	[14]	 Interaction	 Yes	 Yes	 Yes	 Yes13	

OmniPath	database	[12]	 Interaction	 No	 Yes	 No	 No	

Elsevier	Pathway	Collection14	 Pathway	 Yes	 Yes	 Yes	 Yes9	

	

	
10	https://www.semanticscholar.org/cord19/download	(accessed	on	20.10.2020)	
11	https://data.mendeley.com/datasets/h9vs5s8fz2/draft?a=f40961bb-9798-4fd1-8025-e2a3ba47b02e		
12	https://www.ebi.ac.uk/intact/imex/main.xhtml?query=annot:"dataset:coronavirus"	
13	https://signor.uniroma2.it/covid/	
14	https://pathwaystudio.com	
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Text	mining	resources	

Text-mining	approaches	can	help	to	sieve	through	such	rapidly	expanding	 literature	with	
natural	language	processing	(NLP)	algorithms	based	on	semantic	modelling,	ontologies,	and	
linguistic	analysis	to	automatically	extract	and	annotate	relevant	sentences,	biomolecules,	
and	their	interactions.	This	scope	was	recently	extended	to	pathway	figure	mining,	decoding	
pathway	 figures	 into	 their	 computable	 representations	 [29].	Altogether,	 these	automated	
workflows	lead	to	the	construction	of	knowledge	graphs:	semantic	networks	incorporating	
ontology	 concepts,	 unique	 biomolecule	 references,	 and	 their	 interactions	 extracted	 from	
abstracts	or	full-text	documents	[30].	

The	COVID-19	Disease	Map	Project	 integrates	 open-access	 text	mining	 resources,	 INDRA	
[31],	BioKB15,	AILANI	COVID-1916,	and	PathwayStudio14.	All	platforms	offer	keyword-based	
search	allowing	 interactive	 exploration.	Additionally,	 the	Map	benefits	 from	an	extensive	
protein-protein	interaction	network	(PPI)17	generated	with	a	custom	text-mining	pipeline	
using	OpenNLP18	and	GNormPlus	[32].	This	pipeline	was	applied	to	the	CORD-19	dataset	and	
the	 collection	 of	 MEDLINE	 abstracts	 associated	 with	 the	 genes	 in	 the	 SARS-CoV-2	 PPI	
network	 [33]	 using	 the	 Entrez	 Gene	 Reference-Into-Function	 (GeneRIF).	 For	 detailed	
descriptions	of	the	resources,	see	Supplementary	Material	3.	

Biocuration	using	database	and	text	mining	content	

Molecular	 interactions	from	databases	and	knowledge	graphs	from	text	mining	resources	
discussed	above	(from	now	on	called	altogether	‘knowledge	graphs’)	have	a	broad	coverage	
at	 the	 cost	 of	 depth	 of	 mechanistic	 representation.	 This	 content	 can	 be	 used	 by	 the	
biocurators	to	build	and	update	the	systems	biology	focused	diagrams.	Biocurators	can	use	
this	content	in	three	main	ways:	by	visual	exploration,	by	programmatic	comparison,	and	by	
direct	incorporation	of	the	content.		

First,	 the	 biocurators	 can	 visually	 explore	 the	 contents	 of	 the	 knowledge	 graphs	 using	
available	 search	 interfaces	 to	 locate	 new	 knowledge	 and	 encode	 it	 in	 the	 diagrams.	
Moreover,	solutions	like	COVIDminer	project19,	PathwayStudio14	and	AILANI	offer	a	visual	
representation	 of	 a	 group	 of	 interactions	 for	 a	 better	 understanding	 of	 their	 biological	
context,	allowing	search	by	interactions,	rather	than	just	isolated	keywords.	Finally,	INDRA	
and	 AILANI	 offer	 assistant	 bots	 that	 respond	 to	 natural	 language	 queries	 and	 return	
meaningful	answers	extracted	from	knowledge	graphs.	

	
15	https://biokb.lcsb.uni.lu	
16	https://ailani.ai	
17	https://git-r3lab.uni.lu/covid/models/-/tree/master/Resources/Text%20mining	
18	https://opennlp.apache.org	
19	https://rupertoverall.net/covidminer	
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Second,	 programmatic	 access	 and	 reproducible	 exploration	 of	 the	 knowledge	 graphs	 is	
possible	via	data	endpoints:	SPARQL	for	BioKB	and	Application	Programming	Interfaces	for	
INDRA,	AILANI,	and	Pathway	Studio.	Users	can	programmatically	submit	keyword	queries	
and	retrieve	functions,	interactions,	pathways,	or	drugs	associated	with	submitted	gene	lists.	
This	way,	otherwise	 time-consuming	tasks	 like	an	assessment	of	completeness	of	a	given	
diagram,	or	search	for	new	literature	evidence,	can	be	automated	to	a	large	extent.	

Finally,	 biocurators	 can	directly	 incorporate	 the	 content	 of	 knowledge	 graphs	 into	 SBML	
format	 using	 BioKC	 [34].	 Additionally,	 the	 contents	 of	 the	 Elsevier	 COVID-19	 Pathway	
Collection	 can	 be	 translated	 to	 SBGNML20	 preserving	 the	 layout	 of	 the	 diagrams.	 The	
SBGNML	content	can	then	be	converted	into	other	diagram	formats	used	by	biocurators	(see	
Section	2.3	below).	

2.3 Interoperability of the diagrams and annotations 

The	biocuration	of	 the	COVID-19	Disease	Map	 is	distributed	across	multiple	 teams,	using	
varying	 tools	 and	 associated	 systems	 biology	 representations.	 This	 requires	 a	 common	
approach	 to	 annotations	 of	 evidence,	 biochemical	 reactions,	molecular	 entities	 and	 their	
interactions.	Moreover,	interoperability	of	layout-aware	formats	is	needed	for	comparison	
and	integration	of	the	diagrams	in	the	Map.	

Layout-aware	formats	for	molecular	mechanisms	

The	COVID-19	Disease	Map	diagrams	are	encoded	in	one	of	three	layout-aware	formats	for	
standardised	representation	of	molecular	interactions:	SBML21	[35–37],	SBGNML	[26],	and	
GPML	[23].	These	XML-based	formats	focus	to	a	varying	degree	on	user-friendly	graphical	
representation,	standardised	visualisation,	and	support	of	computational	workflows.	For	the	
detailed	description	of	the	formats,	see	Supplementary	Material	1.	

Each	 of	 these	 three	 languages	 has	 a	 different	 focus:	 SBML	 emphasises	 standardised	
representation	 of	 the	 data	model	 underlying	molecular	 interactions,	 SBGNML	provides	 a	
standardised	 graphical	 representation	 of	 molecular	 processes,	 while	 GPML	 allows	 for	 a	
partially	 standardised	representation	of	uncertain	biological	knowledge.	Nevertheless,	 all	
three	formats	are	centred	around	molecular	interactions,	provide	a	constrained	vocabulary	
to	encode	element	and	interaction	types,	encode	layout	of	their	diagrams	and	support	stable	
identifiers	 for	 diagram	 components.	 These	 shared	 properties,	 supported	 by	 a	 common	
ontology22	 [38],	 allow	 cross-format	 mapping	 and	 enable	 translation	 of	 key	 properties	

	
20	https://github.com/golovatenkop/rnef2sbgn	
21	here,	SBML	stands	for	two	formats:	CellDesigner	SBML	and	SBML	with	layout	and	render	packages	
22	http://www.ebi.ac.uk/sbo/main/	
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between	the	formats.	Therefore,	when	developing	the	contents	of	the	Map,	biocurators	use	
the	tools	they	are	familiar	with,	facilitating	this	distributed	task.	

Format	interoperability	

The	 COVID-19	Disease	Map	Community	 ecosystem	of	 tools	 and	 resources	 (see	 Figure	 1)	
ensures	 interoperability	 between	 the	 three	 layout-aware	 formats	 for	 molecular	
mechanisms:	SBML,	SBGNML,	and	GPML.	Essential	elements	of	this	setup	are	tools	capable	
of	 providing	 cross-format	 translation	 functionality	 [39,40]	 and	 supporting	 harmonised	
visualisation	 processing.	 Another	 essential	 translation	 interface	 is	 a	 representation	 of	
Reactome	pathways	in	WikiPathways	GPML	[41]	and	SBML.	The	SBML	export	of	Reactome	
content	has	been	optimised	in	the	context	of	this	project	and	facilitates	integration	with	the	
other	COVID-19	Disease	Map	software	components.	

The	contents	of	the	COVID-19	Disease	Map	diagrams	can	be	directly	transformed	into	inputs	
of	computational	pipelines	and	data	repositories.	Besides	the	direct	use	of	SBML	format	in	
kinetic	simulations,	CellDesigner	SBML	files	can	be	transformed	into	SBML	qual	[42]	using	
CaSQ	[43],	enabling	Boolean	modelling-based	simulations	(see	also	Supplementary	Material	
3).	CaSQ	preserves	annotations	and	layout	information	for	transparency	and	reusability	of	
the	models.	In	parallel,	CaSQ	converts	the	diagrams	to	the	SIF	format23,	supporting	pathway	
modelling	workflows	using	simplified	interaction	networks.	Notably,	the	GitLab	repository	
features	an	automated	 translation	of	 stable	versions	of	diagrams	 into	SBML	qual.	Finally,	
translation	of	the	diagrams	into	XGMML	format	(the	eXtensible	Graph	Markup	and	Modelling	
Language)	 using	 Cytoscape	 [44]	 or	 GINSim	 [45]	 allows	 for	 network	 analysis	 and	
interoperability	with	molecular	interaction	repositories	[46].	

3.	Structure	and	scope	of	the	COVID-19	Disease	Map	

The	COVID-19	Disease	Map	 is	 the	product	of	 a	 large-scale	 community	 effort.	 It	was	built	
bottom-up,	 exploiting	 a	 rich	 bioinformatics	 framework,	 on	 a	 skeleton	 provided	 from	
previous	 extensive	 studies	 of	 other	 coronaviruses	 [47]	 and	 contextualised	 with	 data	
emerging	 from	 studies	 of	 SARS-CoV-2	 [33].	 We	 developed	 and	 applied	 analytical	 and	
modelling	workflows,	using	text	mining	approaches	and	contents	of	interaction	databases,	
to	propose	preliminary	insights	into	COVID-19	molecular	mechanisms.	The	Map	continues	
to	 grow,	 following	 emerging	 scientific	 literature.	 Its	 content	 is	 currently	 centred	 on	
molecular	 processes	 involved	 in	 SARS-CoV-2	 entry	 and	 replication,	 and	 host-virus	
interactions.	As	scientific	evidence	of	host	susceptibility,	immune	response,	cell	and	organ	
specificity	emerge,	these	will	be	incorporated	into	future	versions	of	the	Map	(Figure	2).	

	
23	http://www.cbmc.it/fastcent/doc/SifFormat.htm	
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Figure	2:	The	structure	and	content	of	 the	COVID-19	Disease	Map.	The	areas	of	 focus	of	 the	

COVID-19	Map	biocuration.	

While	the	interactions	of	SARS-CoV-2	with	various	host	cell	types	are	vital	determinants	of	
COVID-19	pathology	[2,48–52],	the	current	Map	represents	an	infection	of	a	generic	host	cell.	
Several	pathways	included	in	the	COVID-19	Map	are	shared	between	different	cell	types,	for	
example	 the	 IFN-1	 pathway	 found	 in	 dendritic	 and	 epithelial	 cells,	 and	 in	 alveolar	
macrophages	[53–57].	Continued	annotations	of	emerging	expression	data	sets	and	other	
sources	 of	 information	will	 allow	 the	 construction	 of	 cell-specific	 versions	 of	 the	Map	 to	
provide	an	integrated	view	of	the	effects	of	SARS-CoV-2	on	the	human	organism.	

SARS-CoV-2	infection	and	COVID-19	progression	are	sequential	events	that	start	with	viral	
attachment	 and	 entry	 (Figure	 3).	 These	 events	 involve	 various	 dynamic	 processes	 and	
different	time	scales	that	are	not	captured	in	static	representations	of	pathways.	Correlation	
of	symptoms	and	potential	drugs	suggested	to	date	helps	downstream	data	exploration	and	
drug	target	interpretation	in	the	context	of	therapeutic	interventions.	
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Figure	3:	Overview	of	the	Map	in	the	context	of	COVID-19	progression.	Pathways	and	cell	types	

involved	 in	 COVID-19,	 including	 some	 of	 the	 most	 common	 clinical	 manifestations	 and	 medical	

management	from	the	moment	of	infection	to	disease	resolution.	The	distribution	of	the	elements	is	

for	illustrative	reference	and	does	not	necessarily	indicate	either	a	unique/static	interplay	of	these	

elements	or	an	unvarying	progression.	For	the	literature	on	clinical	manifestations	see	[58–64].	

Supplementary	Material	1	summarises	the	contents	of	the	COVID-19	Disease	Map	diagrams,	
their	central	platform	of	reference.	The	online	version	of	the	table	is	continuously	updated	
to	reflect	the	evolving	content	of	the	COVID-19	Disease	Map24.		

3.1 Contents of the Map 

Virus	replication	cycle	

The	 virus	 replication	 cycle	 includes	 binding	 of	 the	 spike	 surface	 glycoprotein	 (S)	 to	
angiotensin-converting	 enzyme	 2	 (ACE2)	 mediated	 by	 TMPRSS2	 [65–68],	 and	 other	
receptors	 [69,70].	 Viral	 entry	 occurs	 either	 by	 direct	 fusion	 of	 the	 virion	 with	 the	 cell	
membranes	 or	 by	 endocytosis	 [67,71,72]	 of	 the	 virion	 membrane,	 and	 the	 subsequent	
injection	of	the	nucleocapsid	into	the	cytoplasm.	Within	the	host	cell,	the	Map	depicts	how	
SARS-CoV-2	 hijacks	 the	 rough	 endoplasmic	 reticulum	 (RER)-linked	 host	 translational	
machinery	for	its	replication	[47,73–78].	The	RER-attached	translation	machinery	produces	
structural	proteins,	which	together	with	the	newly	generated	viral	RNA	are	assembled	into	

	
24	https://covid.pages.uni.lu/map_contents	
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new	virions	and	released	to	 the	extracellular	space	via	smooth-walled	vesicles	[47,73]	or	
hijacked	lysosomes	[79].	

Viral	subversion	of	host	defence	

Endoplasmic	reticulum	(ER)	stress	is	a	consequence	of	the	production	of	large	amounts	of	
viral	proteins	that	create	an	overload	of	unfolded	proteins	[80–82].	The	mechanisms	of	the	
unfolded	protein	response	(UPR)	[83]	include	the	mitigation	of	the	misfolded	protein	load	
by	 increased	protein	degradation	and	 reduced	protein	 synthesis	 [84–86].	Malfunctioning	
proteins	and	damaged	organelles	are	degraded	through	the	ubiquitin-proteasome	system	
(UPS)	and	autophagy	[87–91].	SARS-CoV-2	may	perturb	the	process	of	UPS-based	protein	
degradation	 via	 the	 interaction	 of	 the	Orf10	 virus	 protein	with	 the	 Cul2	 ubiquitin	 ligase	
complex	 and	 its	 potential	 substrates	 [33,92].	 Its	 involvement	 in	 autophagy	 is	 less	
documented	[93,94].	

This	 increased	 burden	 of	 misfolded	 proteins	 due	 to	 viral	 replication	 and	 subversion	 of	
mitigation	mechanisms	may	trigger	programmed	cell	death	(apoptosis).	The	Map	encodes	
major	 signalling	 pathways	 triggering	 this	 final	 form	 of	 cellular	 defence	 against	 viral	
replication	 [95–97].	Many	 viruses	 block	 or	 delay	 cell	 death	 by	 expressing	 anti-apoptotic	
proteins	to	maximise	the	production	of	viral	progeny	[98,99],	or	 induce	it	 in	selected	cell	
types	[97,100–105].	

Host	integrative	stress	response	

SARS-CoV-2	 infection	 damages	 the	 epithelium	 and	 the	 pulmonary	 capillary	 vascular	
endothelium	 [106,107],	 causing	 impaired	 respiratory	 capacity	 and	 leading	 to	 acute	
respiratory	 distress	 syndrome	 (ARDS)	 in	 severe	 forms	 of	 COVID-19	 [60,108,109].	 The	
release	 of	 pro-inflammatory	 cytokines	 and	 hyperinflammation	 are	 known	 complications,	
causing	further	widespread	damage	[110–113].	Coagulation	disturbances	and	thrombosis	
are	associated	with	severe	cases,	but	unique	specific	mechanisms	have	not	been	described	
yet	 [63,114–116].	 Nevertheless,	 it	 was	 shown	 that	 SARS-CoV-2	 disrupts	 the	 coagulation	
cascade	and	causes	renin-angiotensin	system	(RAS)	imbalance	[117,118].	

ACE2,	used	by	SARS-CoV-2	for	host	cell	entry,	is	a	regulator	of	RAS	and	is	widely	expressed	
in	 the	 affected	 organs.	 The	 diagrams	 in	 the	 repository	 describe	 how	 ACE2-converted	
angiotensins	trigger	the	counter-regulatory	arms	of	RAS,	and	the	downstream	signalling	via	
AGTR1,	regulating	the	coagulation	cascade	[119–121].		

Host	immune	response	

The	 innate	 immune	 system	 detects	 specific	 pathogen-associated	 molecular	 patterns,	
through	Pattern	Recognition	Receptors	(PRRs),	that	recognise	viral	RNA	in	the	endosome	
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during	 endocytosis,	 or	 in	 the	 cytoplasm	 during	 virus	 replication.	 The	 PRRs	 activate	
associated	 transcription	 factors	 promoting	 the	 production	 of	 antiviral	 proteins	 like	
interferon-alpha,	 beta	 and	 lambda	 [47,54,55,57,122–127].	 SARS-CoV-2	 impairs	 this	
mechanism	 [48],	 but	 the	exact	 components	 are	yet	 to	be	elucidated	 [128–134].	The	Map	
includes	both	the	virus	recognition	process	and	the	viral	evasion	mechanisms.	It	provides	
the	connection	between	virus	entry,	its	replication	cycle,	and	the	effector	pathways	of	pro-
inflammatory	cytokines,	especially	of	the	interferon	type	I	cascade	[2,47,57,130,135–141].	

Key	metabolic	pathways	modulate	the	availability	of	nutrients	and	critical	metabolites	of	the	
immune	microenvironment	 [142].	They	are	a	 target	of	 infectious	entities	 that	 reprogram	
host	 metabolism	 to	 create	 favourable	 conditions	 for	 their	 reproduction	 [143].	 The	 Map	
encodes	several	immunometabolic	pathways	and	provides	detailed	information	about	the	
way	 SARS-CoV-2	 proteins	 interact	 with	 them.	 The	 metabolic	 pathways	 include	 heme	
catabolism	 [144–146]	 and	 its	 downstream	 target,	 the	 NLRP3	 inflammasome	 [147–152],	
both	affected	by	SARS-CoV	and	SARS-CoV-2	proteins	[33,153–157],	tryptophan-kynurenine	
metabolism,	 governing	 the	 response	 to	 inflammatory	 cytokines	 [158–162],	 and	
nicotinamide	and	purine	metabolism	[163–166]	targeted	by	SARS-CoV-2	[33].	Finally,	we	
represent	the	pyrimidine	synthesis	pathway,	tightly	linked	to	purine	metabolism,	affecting	
viral	DNA	and	RNA	synthesis	[167–169].	

3.2 Exploration of the networked knowledge 

The	pathway	diagrams	of	the	COVID-19	Map	are	constructed	by	community	curators.	Their	
assembly	into	a	repository	with	standard	encoding	and	annotation,	linked	to	interaction	and	
text	 mining	 databases	 (see	 Section	 2.2)	 supports	 exploration	 to	 identify	 crosstalks	 and	
functional	 overlaps	 across	 pathways.	 These	 analyses	 allow	 us	 to	 fill	 gaps	 in	 our	
understanding	 of	 COVID-19	 mechanisms	 and	 generate	 new	 testable	 hypotheses	 (see	
Supplementary	Material	 4).	 Below,	 we	 discuss	 three	 examples	 of	 our	 exploration	 of	 the	
networked	knowledge	in	the	Map,	illustrated	in	Figure	4.	
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Figure	4:	Exploration	of	the	existing	and	new	crosstalks	between	the	diagrams	of	the	COVID-

19	Disease	Map.	The	network	structure	of	 the	diagrams	and	their	 interactions	based	on	existing	

crosstalk	 (shared	 elements),	 new	 crosstalks	 and	 new	 regulators.	 A)	 Existing	 crosstalks	 between	

individual	diagrams	of	 IFN-I	and	RELA-related	mechanisms;	B)	New	crosstalks	between	pathway	

groups,	and	C)	Novel	regulators	of	existing	diagrams	as	suggested	by	 text	mining	and	 interaction	

databases.	Colour	code:	green	-	pathways	or	pathway	groups,	blue	-	proteins	with	two	neighbors,	

yellow	-	proteins	with	three	or	four,	red	-	proteins	with	five	or	more.	See	Supplementary	Material	4	

for	details.	

Existing	crosstalks	between	COVID	19	Disease	Map	diagrams	

First,	the	existing	pathway	crosstalks	emerge	when	entities	are	matched	between	different	
diagrams	(Figure	4A).	For	instance,	they	link	different	pathways	involved	in	type	I	IFN	(IFN-
1)	 signalling.	 Responses	 to	 RNA	 viruses	 and	 pathogen-associated	 molecular	 patterns	
(PAMPs)	share	common	pathways,	involving	RIG-I/Mda-5,	TBK1/IKKE	and	TLR	signalling,	
leading	 to	 the	 production	 of	 IFN-1s,	 especially	 IFN-beta	 [170,171]	 and	 IFN-alpha	 [122].	
Downstream,	 IFN-1	 activates	 Tyk2	 and	 Jak1	 protein	 tyrosine	 kinases,	 causing	
STAT1:STAT2:IRF9	 (ISGF3)	 complex	 formation	 to	 promote	 the	 transcription	 of	 IFN-
stimulated	genes	(ISGs).	Importantly,	TBK1	also	phosphorylates	IKBA,	an	NF-kB	inhibitor,	
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for	proteasomal	degradation	 in	crosstalk	with	 the	UPS	pathway,	allowing	 free	NF-kB	and	
IRF3	 to	 co-activate	 ISGs	 [172].	 Another	 TBK1	 activator,	 STING,	 links	 IFN	 signalling	with	
pyrimidine	metabolism.	

SARS-CoV-2	 M	 protein	 affects	 these	 IFN	 responses	 by	 inhibiting	 the	 RIG-I:MAVS:TRAF3	
complex	and	TBK1,	preventing	IRF3	phosphorylation,	nuclear	translocation,	and	activation	
[173].	In	severe	COVID-19	cases,	elevated	NF-kB	activation,	associated	with	impaired	IFN-1	
[54]	may	be	a	host	attempt	to	compensate	for	the	lack	of	IFN-1	activation	[174],	leading	to	
NF-kB	hyperactivation	and	release	of	pro-inflammatory	cytokines.	Moreover,	SARS-CoV-1	
viral	papain-like-proteases,	contained	within	the	nsp3	and	nsp16	proteins,	inhibit	STING	and	
its	downstream	IFN	secretion	[175].	Defective	responses	involving	these	pathways	and	other	
regulatory	factors	may	impair	the	IFN	response	against	SARS-CoV-2,	and	explain	persistent	
blood	viral	load	and	an	exacerbated	inflammatory	response	in	COVID-19	patients	[54].	

New	crosstalks	from	interaction	and	text	mining	datasets	

New	 relationships	 emerging	 from	 associated	 interaction	 and	 text	mining	 databases	 (see	
Section	2.2)	suggest	new	pathway	crosstalks	(see	Figure	4B).	One	of	these	is	the	interaction	
of	ER	stress	and	the	immune	pathways,	as	PPP1R15A	regulates	the	expression	of	TNF	and	
the	 translational	 inhibition	 of	 both	 IFN-1	 and	 IL-6	 [176].	 This	 finding	 coincides	with	 the	
proposed	interaction	of	pathways	responsible	for	protein	degradation	and	viral	detection,	
as	 SQSTM1,	 an	autophagy	 receptor	 and	NFKB1	 regulator,	 controls	 the	 activity	of	 cGAS,	 a	
double-stranded	 DNA	 detector	 [177,178].	 Another	 association	 discovered	 in	 text	mining	
data	 is	 ADAM17	 and	 TNF	 release	 from	 the	 immune	 cells	 in	 response	 to	 ACE2-S	 protein	
interaction	with	 SARS-CoV-1	 [179],	 potentially	 increasing	 the	 risk	 of	 COVID-19	 infection	
[180].	This	new	interaction	connects	diagrams	of	the	i)	“Viral	replication	cycle”	via	ACE2-S	
protein	 interactions,	 ii)	 “Viral	 subversion	 of	 host	 defence	mechanisms”	 via	 ER	 stress,	 iii)	
“Host	 integrative	 stress	 response”	 via	 the	 renin-angiotensin	 system	 and	 iv)	 “Host	 innate	
immune	response”	via	pathways	implicating	TNF	signalling.	

Novel	regulators	of	key	pathway	proteins	

Finally,	 using	 interaction	 and	 text	 mining	 databases,	 we	 can	 identify	 potential	 novel	
regulators	of	proteins	in	the	Map	(see	Figure	4C).	These	proteins	take	no	part	in	the	current	
version	of	 the	Map	but	 interact	with	molecules	already	represented	 in	at	 least	one	of	 the	
diagrams.	An	example	of	such	a	novel	regulator	 is	NFE2L2,	which	controls	 the	activity	of	
HMOX1	 in	 the	 context	 of	 viral	 infection	 [181,182].	 In	 turn,	 HMOX1	 controls	
immunomodulatory	heme	metabolism	[144,145]	and	mechanisms	of	viral	replication	[183]	
and	 is	 a	 target	 of	 SARS-CoV-2	 Orf3a	 protein	 [157,183].	 The	 suggested	 NFE2L2-HMOX1	
interaction	 is	 supported	 by	 the	 literature	 reports	 of	 NFE2L2	 importance	 in	 COVID-19	
cardiovascular	complications	due	to	crosstalk	with	the	renin-angiotensin	signalling	pathway	
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[184]	 and	 potential	 interactions	 with	 viral	 entry	 mechanisms	 [185].	 Interestingly,	 the	
modulation	 of	 the	 NFE2L2-HMOX1	 axis	was	 already	 proposed	 as	 a	 therapeutic	measure	
[186],	making	it	an	interesting	extension	of	the	COVID-19	Disease	Map.	

3.3 Biocuration roadmap 

COVID-19	 Disease	 Map	 pathways	 span	 a	 range	 of	 currently	 known	 host-cell	 virus	
interactions	 and	 mechanisms.	 Nevertheless,	 certain	 aspects	 of	 the	 disease	 are	 not	
represented	 in	 detail,	 particularly	 cell-type-specific	 immune	 response,	 and	 susceptibility	
features.	 Their	 mechanistic	 description	 is	 of	 great	 importance,	 as	 suggested	 by	 clinical	
reports	 on	 the	 involvement	 of	 these	 pathways	 in	 the	 molecular	 pathophysiology	 of	 the	
disease.	The	mechanisms	outlined	below	will	be	the	next	targets	in	our	curation	roadmap.		

Cell	type-specific	immune	response	

COVID-19	 causes	 serious	 disbalance	 in	 multiple	 populations	 of	 immune	 cells,	 including	
peripheral	CD4+	and	CD8+	cytotoxic	T	lymphocytes,	B	cells	and	NK	cells	[111,162,187–190].	
This	may	be	the	result	of	functional	exhaustion	due	to	SARS-CoV-2	S	protein	and	excessive	
pro-inflammatory	cytokine	response	[188,191],	promoted	by	an	abnormal	increase	of	the	
Th17:Treg	cell	ratio	[192].	Moreover,	the	ratio	of	naive-to-memory	helper	T-cells	increases	
while	the	level	of	T	regulatory	cells	decreases	in	severe	cases	[193].	Pulmonary	recruitment	
of	 lymphocytes	 into	 the	 airways,	 including	 Th17	 and	 cytotoxic	 CD8+	 T-cells	 [194],	 may	
explain	this	imbalance	and	the	increased	neutrophil-lymphocyte	ratio	in	peripheral	blood	
[187,195,196].	 To	 address	 this	 aspect	 of	 the	 disease	 we	 plan	 to	 implement	 cell	 type	
representations	 of	 different	 populations,	 and	 encode	 their	 cell	 surface	 receptors	 and	
transition	mechanisms.	With	the	help	of	single-cell	omics	profiling,	we	plan	to	adapt	these	to	
reflect	COVID-19	specificity.		

Susceptibility	features	of	the	host	

SARS-CoV-2	 infection	 is	associated	with	 increased	morbidity	and	mortality	 in	 individuals	
with	 underlying	medical	 conditions,	 chronic	 diseases	 or	 a	 compromised	 immune	 system	
[197–200].	Groups	at	risk	are	men,	pregnant	and	postpartum	women,	and	individuals	with	
high	occupational	 viral	 exposure	 [201–203].	Other	 susceptibility	 factors	 include	 the	ABO	
blood	groups	[204–211]	and	respiratory	conditions	[212–217].	

Importantly,	 age	 is	 one	 of	 the	 key	 aspects	 contributing	 to	 the	 severity	 of	 the	 disease	
[199,218].	Age-related	elevated	levels	of	inflammation	[218–221],	immunosenescence	and	
cellular	stress	of	ageing	cells	[108,199,218,222,223]	may	contribute	to	the	risk.	In	contrast,	
children	are	generally	less	likely	to	develop	severe	disease	[224,225],	with	the	exception	of	
infants	 [108,226–228].	 However,	 some	 previously	 healthy	 children	 and	 adolescents	 can	
develop	a	multisystem	inflammatory	syndrome	following	SARS-CoV-2	infection	[229–233].		
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Finally,	several	genetic	factors	have	been	proposed	and	identified	to	influence	susceptibility	
and	severity,	including	the	ACE2	gene,	HLA	locus,	errors	influencing	type	I	IFN	production,	
TLR	pathways,	myeloid	compartments,	as	well	as	cytokine	polymorphisms	[207,234–241].	

Connecting	 the	 susceptibility	 features	 to	 specific	molecular	mechanisms	will	 allow	 us	 to	
better	understand	the	contributing	factors.	These	features	can	be	directly	incorporated	as	
elements	of	relevant	diagrams.	Another	possibility	is	connecting	the	diagrams	of	the	Map	to	
clinical	and	phenotypic	data	following	big	data	workflows	as	demonstrated	in	other	settings	
[3,242].	 This	 can	 lead	 to	 a	 series	 of	 testable	 hypotheses,	 including	 the	 role	 of	 lipidomic	
reprogramming	[243,244]	or	of	vitamin	D	[245–247]	in	modifying	the	severity	of	the	disease.	
Another	testable	hypothesis	is	that	the	immune	phenotype	associated	with	asthma	inhibits	
pro-inflammatory	 cytokine	 production	 and	 modifies	 gene	 expression	 in	 the	 airway	
epithelium,	protecting	against	severe	COVID-19	[216,217,248].	

4.	Bioinformatics	analysis	and	computational	modelling	roadmap	for	

hypothesis	generation	

To	understand	complex	and	often	 indirect	dependencies	between	different	pathways	and	
molecules,	 we	 need	 to	 combine	 computational	 and	 data-driven	 analyses.	 Standardised	
representation	 and	 programmatic	 access	 to	 the	 contents	 of	 the	 COVID-19	 Disease	 Map	
support	 reproducible	 analytical	 and	modelling	workflows.	Here,	we	 discuss	 the	 range	 of	
possible	 approaches	 and	 demonstrate	 preliminary	 results,	 focusing	 on	 interoperability,	
reproducibility,	and	applicability	of	the	methods	and	tools.	

4.1 Data integration and network analysis 

Visualisation	 of	 omics	 datasets	 can	 help	 contextualise	 the	 Map	 with	 experimental	 data,	
creating	data-specific	blueprints.	They	can	highlight	parts	of	the	Map	that	are	active	in	one	
condition	versus	another.	Combining	information	contained	in	multiple	omics	platforms	can	
make	patient	stratification	more	powerful,	by	reducing	the	number	of	samples	needed	or	by	
augmenting	 the	 precision	 of	 the	 patient	 groups	 [249,250].	 Approaches	 that	 integrate	
multiple	data	 types	without	 the	 accompanying	mechanistic	 diagrams	 [251–253]	produce	
patient	 groupings	 that	 are	difficult	 to	 interpret.	 In	 turn,	 classical	 pathway	 analyses	 often	
produce	 long	 lists	 mixing	 generic	 and	 cell-specific	 pathways,	 making	 it	 challenging	 to	
pinpoint	 relevant	 information.	 Using	 disease	 maps	 to	 interpret	 omics-based	 clusters	
addresses	the	issues	related	to	contextualised	visual	data	analytics.	

Footprint	based	analysis	

Footprints	are	signatures	of	a	molecular	regulator	determined	by	the	expression	levels	of	its	
targets	[254].	Combining	multiple	omics	readouts	and	multiple	measurements	can	increase	
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the	robustness	of	such	signatures.	Nevertheless,	an	essential	component	is	the	mechanistic	
description	of	the	targets	of	a	given	regulator,	allowing	computation	of	its	footprint.	With	
available	 SARS-CoV-2	 related	 omics	 and	 interaction	datasets	 [255],	 it	 is	 possible	 to	 infer	
which	TFs	and	signalling	pathways	are	affected	upon	infection	[256].	Combining	the	COVID-
19	Disease	map	regulatory	 interactions	with	curated	collections	of	TF-target	 interactions	
like	DoRothEA	[257]	will	provide	a	contextualised	evaluation	of	 the	effect	of	SARS-CoV-2	
infection	at	the	TF	level.	

Virus–host	interactome	

The	virus–host	interactome	is	a	network	of	viral-human	protein-protein	interactions	(PPIs)	
that	 can	 help	 to	 understand	 the	 mechanisms	 of	 viral	 diseases	 [33,258–260].	 It	 can	 be	
expanded	by	merging	virus-host	PPI	data	with	human	PPI	and	protein	data	[261]	to	discover	
clusters	of	interactions	indicating	human	mechanisms	and	pathways	affected	by	the	virus	
[262].	These	clusters	 can	be	 interpreted	at	 the	mechanistic	 level	by	visual	exploration	of	
COVID-19	Disease	Map	diagrams.	In	addition,	these	clusters	can	potentially	reveal	additional	
pathways	 to	 add	 to	 the	 COVID-19	 Disease	 Map	 (e.g.	 E	 protein	 interactions	 or	 TGF	 beta	
diagrams)	or	suggest	new	interactions	to	introduce	into	the	existing	diagrams.	

4.2 Mechanistic and dynamic computational modelling 

Computational	modelling	is	a	powerful	approach	that	enables	in	silico	experiments,	produces	
testable	hypotheses,	helps	elucidate	regulation	and,	finally,	can	suggest	via	predictions	novel	
therapeutic	targets	and	candidates	for	drug	repurposing.		

Mechanistic	pathway	modelling		

Molecular	 interactions	 of	 a	 given	 pathway	 can	 be	 coupled	 with	 its	 endpoint	 and	
contextualised	using	omics	datasets.	For	instance,	HiPathia	uses	transcriptomic	or	genomic	
data	to	estimate	the	functional	profiles	of	a	pathway	in	relation	to	their	endpoints	of	interest	
[263,264].	Such	mechanistic	modelling	can	be	used	to	predict	the	effect	of	interventions,,	for	
example	 effects	 of	 drugs	 on	 their	 targets	 [265].	 HiPathia	 integrates	 directly	 with	 the	
diagrams	of	the	COVID-19	Map	using	the	SIF	format	provided	by	CaSQ	(see	Section	2.3),	as	
well	as	with	the	associated	interaction	databases	(see	Section	2.2).	The	drawback	of	such	
approaches	 is	 their	 computational	 complexity,	 limiting	 the	 size	 of	 the	diagrams	 they	 can	
process.	 Large-scale	 mechanistic	 pathway	 modelling	 requires	 their	 transformation	 into	
causal	networks.	CARNIVAL	[266]	combines	the	causal	representation	of	networks	[12]	with	
transcriptomics,	(phospho)proteomics,	or	metabolomics	data	[254]	to	contextualise	cellular	
networks	 and	 extract	mechanistic	 hypotheses.	 The	 algorithm	 identifies	 a	 set	 of	 coherent	
causal	links	connecting	upstream	drivers	such	as	stimulations	or	mutations	to	downstream	
changes	in	transcription	factor	activities.	
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Discrete	computational	modelling	

Discrete	modelling	allows	analysis	of	 the	dynamics	of	molecular	networks	 to	understand	
their	 complexity	 under	 disease-related	 perturbations.	 COVID-19	 Disease	 Map	 diagrams,	
translated	to	SBML	qual	using	CaSQ	(see	Section	2.3),	can	be	directly	imported	by	tools	like	
Cell	 Collective	 [267]	 or	 GINsim	 [45]	 for	 analysis.	 Cell	 Collective	 is	 an	 online	 modelling	
platform25	 that	 provides	 features	 for	 real-time	 simulations	 and	 analysis	 of	 complex	
signalling	networks.	References	and	layout	are	used	for	model	visualisation,	supporting	the	
interpretation	of	the	results.	In	turn,	GINsim	provides	a	range	of	analysis	methods,	including	
identification	of	 the	states	of	 convergence	of	a	given	model	 (attractors).	Model	 reduction	
functionality	can	also	be	employed	to	facilitate	the	analysis	of	large-scale	models.	

Multiscale	and	stochastic	computational	modelling		

Viral	infection	and	immune	response	are	processes	that	span	many	scales,	from	molecular	
interactions	 to	 multicellular	 behaviour.	 Modelling	 of	 such	 complex	 scenarios	 requires	 a	
multiscale	computational	architecture,	where	single	cell	models	run	in	parallel	to	capture	
behaviour	 of	 heterogeneous	 cell	 populations	 and	 their	 intercellular	 communications.	
Multiscale	 agent-based	 models	 offer	 such	 architecture,	 and	 can	 simulate	 processes	 at	
different	 time	 scales,	 e.g.	 diffusion,	 cell	 mechanics,	 cell	 cycle,	 or	 signal	 transduction	
[268,269].	 An	 example	 of	 such	 approach	 is	 PhysiBoSS	 [270],	 which	 combines	 the	
computational	 framework	 of	 PhysiCell	 [271]	 with	 MaBoSS	 [272],	 a	 tool	 for	 stochastic	
simulations	 of	 logical	 models	 to	 study	 of	 transient	 effects	 and	 perturbations	 [273].	
Implementing	detailed	COVID-19	signalling	models	in	the	PhysiBoSS	framework	may	help	to	
better	understand	complex	dynamics	of	interactions	between	immune	system	components	
and	the	host	cell.	

4.3 Case study: RNA-Seq-based analysis of transcription factor activity 

We	measured	the	effect	of	COVID-19	at	the	transcription	factor	(TF)	activity	level	by	applying	
VIPER	[274]	combined	with	DoRothEA	regulons	[257]	on	RNA-seq	datasets	of	the	SARS-CoV-
2	 infected	Calu-3	 cell	 line	 [126].	Then,	we	mapped	 the	TFs	normalised	enrichment	 score	
(NES)	on	the	Interferon	type	I	signalling	pathway	diagram	of	the	COVID-19	Disease	Map	using	
the	SIF	files	generated	by	CaSQ	(see	Section	2.3).	As	highlighted	in	Figure	4,	our	manually	
curated	pathway	included	some	of	the	most	active	TFs	after	SARS-CoV-2	infection,	such	as	
STAT1,	STAT2,	IRF9	and	NFKB1.	These	are	well	known	components	of	cytokine	signalling	
and	 antiviral	 responses	 [275,276].	 Interestingly,	 they	 are	 located	downstream	of	 various	
viral	proteins	 (E,	S,	Nsp1,	Orf7a	and	Orf3a)	and	members	of	 the	MAPK	pathway	 (MAPK8,	
MAPK14	and	MAP3K7).	SARS-CoV-2	infection	is	known	to	promote	MAPK	activation,	which	

	
25	https://cellcollective.org	
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mediates	the	cellular	response	to	pathogenic	infection	and	promotes	the	production	of	pro-
inflammatory	cytokines	[255].	These	conclusions	can	be	used	to	investigate	response	of	the	
human	cells	to	SARS-CoV-2	infection.	

Figure	 4:	 The	 Interferon	 type	 I	 signalling	 pathway	 diagram	 of	 the	 COVID-19	 Disease	 Map	

integrated	with	TF	activity	derived	from	transcriptomics	data	after	SARS-CoV-2	infection.	A	

zoom	was	applied	in	the	area	containing	the	most	active	TFs	(red	nodes)	after	infection.	Node	shapes:	

host	 genes	 (rectangles),	 host	 molecular	 complex	 (octagons),	 viral	 proteins	 (V	 shape),	 drugs	

(diamonds)	and	phenotypes	(triangles).		

4.4 Case study: RNA-seq-based analysis of pathway signalling  

The	Hipathia	[263]	algorithm	was	used	to	calculate	the	level	of	activity	of	the	subpathways	
from	the	COVID-19	Apoptosis	diagram.	We	used	a	public	RNA-seq	dataset	from	human	SARS-
CoV-2	infected	lung	cells	(GEO	GSE147507).	We	treated	the	RNA-seq	gene	expression	data	
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with	the	Trimmed	Mean	of	M	values	(TMM)	normalisation	[277],	rescaled	to	range	[0;1]	for	
the	calculation	of	the	signal	and	normalised	using	quantile	normalisation	[278].	Using	the	
normalised	gene	expression	values	we	calculated	the	level	of	activation	of	the	subpathways,	
then	we	used	case/control	contrast	with	a	Wilcoxon	test	to	assess	differences	in	signalling	
activity	between	the	two	conditions.	

 

Figure	5.	Representation	of	the	activation	level	of	Apoptosis	pathway	in	SARS-CoV-2	infected	

lung	cell	lines.	Activation	levels	were	calculated	using	transcriptional	data	from	GSE147507	and	the	

Hipathia	mechanistic	pathway	analysis	algorithm.	Each	node	represents	a	gene	(ellipse),	a	metabolite	

(circle)	or	a	function	(square).	The	pathway	is	composed	of	circuits	from	a	receptor	gene/metabolite	

to	 an	 effector	 gene/function,	 which	 take	 into	 account	 interactions	 simplified	 to	 inhibitions	 or	

activations	(see	Section	2.3,	SIF	format).	Significantly	deregulated	circuits	are	highlighted	by	color	

arrows	(red:	activated	in	infected	cells).	The	color	of	the	node	corresponds	to	the	level	of	differential	

expression	in	SARS-CoV-2	infected	cells	vs	normal	lung	cells.	Blue:	down-regulated	elements,	red:	

up-regulated	elements,	white:	elements	with	no	statistically	significant	differential	expression.	

Results	 of	 the	 Apoptosis	 pathway	 analysis	 can	 be	 seen	 in	 Figure	 5	 and	 Supplementary	
Material	 5.	 The	 analysis	 shows	 an	 overactivation	 of	 several	 circuits	 (series	 of	 causally	
connected	 elements),	 specifically	 upstream	 of	 the	 effector	 protein	 BAX,	 led	 by	 the	
overexpression	of	the	BAD	protein,	inhibiting	BCL2-MCL1-BCL2L1	complex,	which	in	turn	
inhibits	BAX.	 Indeed,	SARS-CoV-2	 infection	can	 invoke	caspase8-induced	apoptosis	 [279],	
where	 BAX	 together	 with	 the	 ripoptosome/caspase-8	 complex,	 may	 act	 as	 a	 pro-
inflammatory	checkpoint	[280].	This	result	is	supported	by	studies	in	SARS-CoV-1,	showing	
BAX	 overexpression	 following	 infection	 [104,281].	 Overall,	 our	 findings	 recapitulate	
reported	outcomes	and	suggest	that	with	evolving	contents	of	the	COVID-19	Disease	Map	
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and	new	transcriptomic	data	becoming	available,	new	mechanism-based	hypotheses	can	be	
formulated.	

4.5 Parallel efforts 

There	 are	 parallel	 efforts	 towards	 modelling	 of	 COVID-19	 mechanisms,	 providing	 a	
complementary	 source	 of	 information	 and	 their	 future	 integration	 will	 create	 an	 even	
broader	toolset	to	tackle	the	pandemic.	

The	modified	Edinburgh	Pathway	Notation	(mEPN)	[282]	is	a	scheme	for	visual	encoding	of	
molecular	 processes	 in	 diagrams	 that	 also	 function	 as	 Petri	 nets,	 allowing	 activity	
simulations	using	the	BioLayout	tool	[283].	The	current	mEPN	COVID-19	model	details	the	
replication	cycle	of	SARS-CoV-2,	integrated	with	a	range	of	host	defence	systems.	Currently,	
models	 constructed	 in	mEPN	 can	 be	 translated	 to	 SBGNML,	 but	without	 the	 information	
related	to	their	function	as	Petri	nets.	

The	COVID-19	Disease	Map	can	also	support	kinetic	modelling	to	quantify	the	behaviour	of	
pathways	 and	 evaluate	 the	 dynamic	 effects	 of	 perturbations.	However,	 it	 is	 necessary	 to	
assign	a	kinetic	equation	or	a	rate	law	to	every	reaction	in	the	diagram	to	be	analysed.	This	
process	 is	challenging	and	requires	support	of	tools	 like	SBMLsqueezer	[20]	and	reaction	
kinetics	 databases	 like	 SABIO-RK	 [284].	 Nevertheless,	 the	 most	 critical	 factor	 is	 the	
availability	of	experimentally	validated	parameters	that	can	be	reliably	applied	in	SARS-CoV-
2	modelling	scenarios.		

5.	Discussion	

COVID-19	literature	is	growing	at	great	speed,	fueled	by	global	research	efforts	to	investigate	
the	pathophysiology	of	SARS-CoV-2	infection	and	to	better	understand	susceptibility	factors	
and	identify	molecular	targets	of	therapeutic	intervention.	We	need	to	improve	the	use	of	
this	 knowledge	 by	 tools	 and	 approaches	 to	 extract,	 formalise	 and	 integrate	 relevant	
information,	and	by	application	of	analytical	 frameworks	to	generate	 testable	hypotheses	
from	systems	level	models.		

The	COVID-19	Disease	Map	is	an	open	access	knowledgebase	and	computational	repository.	
On	the	one	hand,	it	is	a	graphical,	interactive	representation	of	disease-relevant	molecular	
mechanisms	 linking	 many	 knowledge	 sources.	 On	 the	 other	 hand,	 it	 is	 a	 computational	
resource	 of	 curated	 content	 for	 graph-based	 analyses	 and	 disease	 modelling.	 It	 offers	 a	
shared	mental	map	for	understanding	the	dynamic	nature	of	the	disease	at	the	molecular	
level	and	also	its	dynamic	propagation	at	a	systemic	level.	Thus,	it	provides	a	platform	for	a	
precise	 formulation	 of	 models,	 accurate	 data	 interpretation,	 monitoring	 of	 therapy,	 and	
potential	for	drug	repositioning.		
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The	COVID-19	Disease	Map	diagrams	describe	molecular	mechanisms	of	COVID-19.	These	
diagrams	are	grounded	 in	 the	relevant	published	SARS-CoV-2	research,	completed	where	
necessary	by	mechanisms	discovered	in	related	beta-coronaviruses.	With	an	unprecedented	
effort	of	community-driven	biocuration,	over	forty	diagrams	with	molecular	resolution	were	
constructed	since	March	2020,	shared	across	three	platforms.	

This	large	community	effort	shows	that	expertise	in	biocuration,	clear	guidelines	and	text	
mining	solutions	can	accelerate	the	passage	from	data	generated	in	the	published	literature	
to	a	meaningful	mechanistic	representation	of	knowledge.	This	exercise	in	quick	research	
data	generation	and	knowledge	accumulation	may	serve	as	a	blueprint	for	a	formalised	and	
standardised	streamline	of	well-defined	tasks.		

Moreover,	 by	 developing	 reproducible	 analysis	 pipelines	 for	 the	 contents	 of	 the	Map	we	
promote	early	harmonisation	of	formats,	support	of	standards,	and	transparency	in	all	steps.	
Preliminary	 results	 of	 such	 efforts	 are	 illustrated	 in	 case	 studies	 above.	 Importantly,	
biocurators	and	domain	experts	participate	in	the	analysis,	helping	to	evaluate	the	outcomes	
and	correct	the	curated	content	if	necessary.	This	way,	we	improve	the	quality	of	the	analysis	
and	increase	reliability	of	the	models	in	generating	useful	predictions.	

This	approach	to	an	emerging	pandemic	leveraged	the	capacity	and	expertise	of	an	entire	
swath	of	the	bioinformatics	community,	bringing	them	together	to	improve	the	way	we	build	
and	 share	 knowledge.	 By	 aligning	 our	 efforts,	 we	 strive	 to	 provide	 COVID-19	 specific	
pathway	models,	synchronise	content	with	similar	resources	and	encourage	discussion	and	
feedback	at	every	stage	of	the	curation	process.	

The	 COVID-19	 Disease	 Map	 community	 is	 open	 and	 expanding	 as	 more	 people	 with	
complementary	expertise	join	forces.	In	the	longer	run,	the	COVID	19	Disease	Map	content	
will	be	used	 to	 facilitate	 the	 finding	of	 robust	 signatures	 related	 to	SARS-CoV-2	 infection	
predisposition	 or	 response	 to	 various	 treatments,	 along	 with	 the	 prioritization	 of	 new	
potential	drug	targets	or	drug	candidates.	The	project	aims	to	provide	the	tools	to	deepen	
our	understanding	of	the	mechanisms	driving	the	infection	and	help	boost	drug	development	
supported	by	testable	suggestions.	Such	an	approach	may	help	dealing	with	new	waves	of	
COVID-19	or	similar	pandemics	in	the	long-term	perspective.	
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