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Abstract— Artificial Intelligence and Data Science 
community has contributed to the global response against the 
new coronavirus, COVID-19. Significant attention has been 
given to detection and diagnosis tools with rapid diagnostic tools 
based on X-rays using deep learning being proposed. In this 
paper we present an evaluation of several well-known 
pretrained deep CNN models in a transfer learning setup for 
COVID-19 detection from chest X-ray images. Two different 
publicly available datasets were employed and different setups 
were tested using each of them separately of mixing them. The 
best performing models among the evaluated ones were the 
DenseNet, ResNet and Xception models, with the results 
indicating the possibility of identifying COVID-19 positive cases 
from chest X-ray images. 

Keywords— COVID-19, X-rays, transfer learning, 
convolutional neural networks. 

I. INTRODUCTION

COVID-19 is a highly infectious disease, which is caused 
by the SARS-CoV-2 virus [1]. In March 2020 and after 
spreading to more than 100 countries and leading to several 
thousands of cases, the World Health Organization (WHO) 
officially declared the outbreak of the new coronavirus as a 
pandemic [2]. Although COVID-19 affects the entire 
population, young people that have been affected by COVID-
19 are in most cases either asymptomatic or present mild 
symptoms like cough, headache, fatigue and fever. For non-
young ages and especially for elders and/or for patients with 
chronic conditions COVID-19 positive cases may progress to 
more serious symptoms like diarrhea, dyspnea, pneumonia 
and death [3]. Young and middle-aged patients being 
diagnosed with COVID-19 are having significantly lower 
mortality rates comparing to elder patients with COVID-19 
which are more likely to progress to severe disease [4, 5]. With 
COVID-19 being highly infectious it can easily be spread 
from asymptomatic to vulnerable population. To stop the 
spread of COVID-19 virus and to protect vulnerable people 
many countries worldwide have introduced isolation 
measures like social distancing and lockdown and in parallel 
they perform diagnostic tests to key staff and the general 
population to detect COVID-19 positive cases. 

The diagnosis of COVID-19 is performed by the reverse-
transcription polymerase chain reaction (RT-PCR) test after 
collection of proper respiratory tract specimen, which is a 
laboratory-based test for detection and quantification of a 
targeted DNA molecule [6].  The RT-PCR test can be done 
only in laboratories that are equipped with the needed 
infrastructure. Moreover, in some cases the COVID-19 test 
may need be repeated after one or two days while the cost of 
the equipment and the required PCR reagents is not low, thus 
making this diagnostic test expensive and sometimes time 
consuming, without counting the need for specialized 
microbiologists to do the tests analyses and the appropriate 
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safety measures (personal protective equipment) that are 
required to keep laboratory staff safe [6]. Due to these 
difficulties and restrictions many countries are restricting the 
performed diagnostic tests for COVID-19 to only suspicious 
cases and/or vulnerable groups of population as it is not 
possible to do massive testing of the general population. At 
the same time governments introduce isolation measures, 
which are causing socioeconomical problems, such as 
increase of the number of domestic abuse cases [7], reduction 
of the economic growth [8] and the global trade [9]. Based on 
the above-mentioned facts, the development of alternative, 
complementary and low-cost tools for detection of COVID-
19 positive cases and for decision making support is essential. 

The recent development of technology in deep learning 
and medical image processing in combination with big data 
repositories for COVID-19 could offer support in the global 
effort against the new coronavirus. Several studies have 
investigated the potential of using X-ray and/or CT images 
identify COVID-19. An automatic X-ray COVID-19 lung 
image classification system was presented in [10], which first 
increases the contrast of the image by applying a median filter 
on it and using threshold based segmentation and support 
vector machines (SVM) it classifies infected from non-
infected lung images. A decompose, transfer and compose 
convolutional neural networks (CNNs) based method for 
classification of COVID-19 chest X-ray images was presented 
in [11], extracting deep local features of each image and a 
class-composition layer to refine the classification of the 
images. Pre-trained CNN models together with SVM 
classifier to detect the COVID-19 from chest X-ray images 
were reported in [12]. In [13] a deep convolutional neural 
network design was proposed tailored for detection of 
COVID-19 cases from chest X-ray images, named COVID-
Net, using a human-machine collaborative design strategy to 
design it. In [14] a 3D deep learning framework to detect 
COVID-19 cases from chest X-ray images called COVNet 
was presented, first extracting the lung region of interest using 
U-net [15]. An automated CT image analysis tools for
detection, quantification, and tracking of COVID-19 cases
was presented in [16], with the method consisting of two sub-
systems and analysing the CT case at two distinct levels. A
deep CNN based transfer learning approach for automatic
detection of COVID-19 pneumonia was presented in [17],
using four different popular CNN based deep learning
algorithms.

In this paper we present an evaluation of several pre-
trained deep convolutional neural network (CNN) models on 
the detection of positive cases the new COVID-19 virus from 
chest X-ray images. Different experimental setups are tested 
using two X-ray datasets either separately to each other or by 
mixing them. The remainder of this paper is organized as 
follows: In Section II the evaluation architecture followed is 
briefly described. In Section III the experimental setup and in 
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Section IV the experimental results are presented. 
Conclusions are provided in Section V. 

II. COVID-19 DETECTION FROM X-RAY IMAGES 
COVID-19 positive cases detection is performed using 

convolutional neural networks. In particular, we used well 
known deep CNN models for classification of images which 
have are pre-trained from large image databases and retrained 
them to learn COVID-19 positive vs negative cases. Chest X-
ray images which have been clinically diagnosed as COVID-
19 positive are preprocessed and afterwards are used to retrain 
existing deep CNN models for image classification.  X-ray 
images preprocessing consists of image resizing and pixel 
values normalization to meet the input specifications of each 
pretrained deep CNN model. The CNN models are retrained 
as binary classifiers to identify positive COVID-19 against 
non-COVID-19 chest X-ray images. 

The retrained deep CNN models and used for testing, 
receiving as input new chest X-rays with unknown clinical 
diagnosis in order to automatically label them as positive 
COVID-19 cases or not, i.e. providing a binary decision per 
chest scan. The block diagram of the evaluated architecture 
for detection of COVID-19 positive cases from chest X-ray 
images is illustrated in Fig 1. 
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CNN models

CNN 
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Test Chest
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COVID-19
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Fig. 1. Block diagram of the evaluated architecture for COVID-19 
positive/negative cases detection from chest X-ray images. 

III. EXPERIMENTAL SETUP 
For the retraining of the deep CNN models and the 

evaluation of the new/retrained ones two X-ray datasets were 
used which are available online. The first dataset [17] 
(Dataset-A) consists of grayscale chest X-ray images of size 
equal to 1024×1024 pixels. The dataset has three classes and 
each of the X-ray images has been labeled as ‘COVID-19’, 
‘normal’ or ‘viral pneumonia’. The number of X-ray images 
per class of [17] is tabulated in Table I. 

The second dataset [18] (Dataset-B) consists of grayscale 
chest X-ray images of size equal to 300×400 pixels. The 
dataset has four classes and each of the X-ray images has been 

labeled as ‘COVID-19’, ‘normal’, ‘viral pneumonia’ or 
‘bacterial pneumonia’. The number of X-ray images per class 
of [18] is tabulated in Table II. 

TABLE I.  NUMBER OF X-RAY IMAGES PER CLASS IN THE [17] 
DATASET (DATASET-A). 

Class Name Number of X-Ray Images 

COVID-19 219 

Normal 1341 

Viral Pneumonia 1345 

TABLE II.  NUMBER OF X-RAY IMAGES PER CLASS IN THE [18] 
DATASET (DATASET-B). 

Class Name Number of X-Ray Images 

COVID-19 60 

Normal 880 

Viral Pneumonia 412 

Bacterial Pneumonia 650 

 

During preprocessing of the X-ray images, they were 
resized to 224×224 pixels, using bilinear interpolation, in 
order to fit to the pretrained deep models input size. The 
resized X-ray images' pixel values were then normalized to the 
range [0, 1] in order the retraining of the deep CNN models to 
converge faster. For the preprocessing of the X-ray images the 
computer vision and image processing library OpenCV [19] 
was used. 

To apply transfer learning on the X-ray datasets described 
above and develop models for COVID-19 detection we relied 
on several well known and widely used deep CNN models for 
image classification. The pre-trained deep CNN models used 
are DenseNet-121, DenseNet-169 and DenseNet-201 [20]; 
Inception-ResNet-V2 [21]; Inception-V3 [22]; MobileNet 
[23]; MobileNet-V2 [24]; NASNet-Large and NASNet-
Mobile [25]; ResNet-50, ResNet-101 and ResNet-152 [26]; 
ResNet-50-V2, ResNet-101-V2 and ResNet-152-V2 [27]; 
VGG-16 and VGG-19 [28]; and Xception [29]. 

IV. EXPERIMENTAL RESULTS 
The evaluation architecture presented in Section II was 

evaluated using the experimental setup described in Section 
III. The performance of the evaluated deep CNN models was 
measured in terms of classification accuracy, precision and 
recall (or sensitivity), i.e. 
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where �� is the number of true positives, �� is the number of 
true negatives, �� is the number of false positives and �� is 
the number of false negatives of the classified dermatoscopic 
images. To avoid overlap between the training and testing 
subsets a 10-fold cross validation protocol was used. 
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The X-ray image classification results for Dataset-A [25] 
and for Dataset-B [31] for all evaluated deep CNN models 
after retraining them are tabulated in Table III. The best 
performance is indicated in bold. 

TABLE III.   CLASSIFICATION ACCURACY, PRECISION AND RECALL (IN 
PERCENTAGES) FOR DIFFERENT RETRAINED DEEP CNN MODELS IN BINARY 
COVID-19 CLASSIFICATION FOR DATASETS A AND B USING 10-FOLD CROSS 
VALIDATION. 

 Dataset A Dataset B 

Model Name Acc Prec Rec Acc Prec Rec 

DenseNet-121 99.38 94.67 97.26 99.90 98.33 98.33 

DenseNet-169 99.72 97.31 99.09 99.85 98.31 96.67 

DenseNet-201 99.31 98.07 92.69 99.85 96.72 98.33 

Incept.-ResNet-V2 99.90 99.09 99.54 99.90 98.33 98.33 

Inception-V3 97.15 73.29 97.72 99.75 95.08 96.67 

MobileNet 99.69 96.88 99.09 99.55 96.36 88.33 

MobileNet-V2 99.45 99.51 93.15 99.75 98.25 93.33 

NASNet-Large 95.21 68.02 68.95 98.20 96.15 41.67 

NASNet-Mobile 88.04 37.48 88.13 99.05 85.96 81.67 

ResNet-50 99.52 95.96 97.72 99.75 95.08 96.67 

ResNet-101 99.66 96.44 99.09 99.70 95.00 95.00 

ResNet-152 99.90 99.54 99.09 99.55 89.23 96.67 

ResNet-50-V2 99.52 100 93.61 99.85 100.00 95.00 

ResNet-101-V2 90.24 43.52 98.17 99.35 84.06 96.67 

ResNet-152-V2 99.69 98.61 97.26 99.30 87.10 90.00 

VGG-16 92.67 100 2.74 97.00 0.00 0.00 

VGG-19 92.46 0.00 0.00 97.00 0.00 0.00 

Xception 99.90 99.09 99.54 99.90 98.33 98.33 

 

As can be seen in Table III the best performing models in 
terms of accuracy and recall are the Inception-ResNet-V2 and 
Xception, in both datasets. ResNet-50-V2 achieved high 
precision score, however, recall scores were significantly 
worse in both datasets when compared with the previously 
mentioned two best performing models. VGG models failed 
to classify COVID-19 vs non COVID-19 chest X-ray images. 

In addition, we performed binary classification by using 
each of datasets A/B as training/test and vice versa, with the 
results being tabulated in Table IV. In specific, the first set of 
three columns tabulate the accuracy, precision and recall 
scores when dataset A was used to train CNN models and test 
them on dataset B, while in the second set of three columns 
the same performance metrics were used with dataset B being 
used to train the COVID-19 identification models and dataset 
B to test them. The results presented in Table IV demonstrate 
the transferability of the COVID-19 models as models that 
were trained on one dataset preserved high accuracy, precision 
and recall scores when tested on another dataset. 

Finally, in Table V we evaluated COVID-19 identification 
performance in terms of accuracy, precision and recall when 
merging the two datasets A and B. The evaluation results in 
Table V show that with the increase of the available data to 
retrain the deep CNN models the performance of them is in 
general improved. Data augmentation with artificially 

generated chest X-ray images was not evaluated as considered 
outside the scope of the present study. 

V. CONCLUSION 
The new COVID-19 virus has caused thousands of deaths, 

especially in elders and patients with health conditions. The 
standard method for detection and diagnosis of COVID-19 is 
the reverse-transcription polymerase chain reaction (RT-PCR) 
test after collection of proper respiratory tract specimen, 
which is time-consuming and in many cases not affordable 
thus the development of new low-cost rapid tests of diagnostic 
tools to support clinical assessment is needed. 

We presented an evaluation of transfer learning using 
pretrained deep convolutional neural network models for 
COVID-19 identification using chest X-ray images. Two 
publicly available datasets were used in different experimental 
setups. In specific, we tested the binary COVID-19 
identification performance of several convolutional neural 
network models using 10-fold cross validation on each dataset 
separately, then we tested the transferability of the models by 
using one dataset for training and the other for testing and vice 
versa. Finally, we merged the two datasets and performed 10-
fold cross validation to investigate the effect of the size of 
available data in accuracy, precision and recall. The 
experimental evaluation demonstrated the potential of 
building diagnostic tools for automatic detection of COVID-
19 positive cases from chest X-ray images and deep 
convolutional neural networks and the development of larger 
and clinically standardized datasets would further help in this 
direction. 

TABLE IV.   CLASSIFICATION ACCURACY, PRECISION AND RECALL (IN 
PERCENTAGES) FOR DIFFERENT RETRAINED DEEP CNN MODELS IN BINARY 
COVID-19 CLASSIFICATION FOR DATASETS A AND B USED AS 
TRAINING/TEST SUBSETS. 

 Train: A/ Test: B Train: B/ Test: A 

Model Name Acc Prec Rec Acc Prec Rec 

DenseNet-121 100.00 100.00 100.00 99.00 95.67 90.87 

DenseNet-169 100.00 100.00 100.00 98.38 90.95 87.21 

DenseNet-201 100.00 100.00 100.00 98.42 93.47 84.93 

Incept.-ResNet-V2 99.85 96.77 100.00 98.97 97.49 88.58 

Inception-V3 99.78 95.24 100.00 98.55 89.33 91.78 

MobileNet 100.00 100.00 100.00 99.24 94.57 95.43 

MobileNet-V2 85.72 23.51 98.33 98.73 88.56 95.43 

NASNet-Large 96.15 100.00 13.33 92.56 80.00 1.83 

NASNet-Mobile 95.56 0.00 0.00 92.77 100.00 4.11 

ResNet-50 100.00 100.00 100.00 96.97 90.68 66.67 

ResNet-101 17.01 5.08 100.00 98.66 90.54 91.78 

ResNet-152 100.00 100.00 100.00 95.25 85.84 44.29 

ResNet-50-V2 99.48 93.44 95.00 98.00 88.15 84.93 

ResNet-101-V2 100.00 100.00 100.00 93.70 55.14 88.13 

ResNet-152-V2 97.26 61.86 100.00 97.01 95.21 63.47 

VGG-16 95.56 0.00 0.00 92.46 0.00 0.00 

VGG-19 95.56 0.00 0.00 92.46 0.00 0.00 

Xception 100.00 100.00 100.00 98.90 93.49 91.78 
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TABLE V.  CLASSIFICATION ACCURACY, PRECISION AND RECALL (IN 
PERCENTAGES) FOR DIFFERENT RETRAINED DEEP CNN MODELS IN BINARY 
COVID-19 CLASSIFICATION FOR MERGED DATASETS A AND B USING 10-
FOLD CROSS VALIDATION. 

Model Name Acc Prec Rec 

DenseNet-121 99.98 100.00 99.64 

DenseNet-169 99.88 100.00 97.85 

DenseNet-201 96.29 60.52 100.00 

Incept.-ResNet-V2 99.94 100.00 98.92 

Inception-V3 99.92 99.64 98.92 

MobileNet 99.86 98.23 99.28 

MobileNet-V2 99.23 99.59 86.74 

NASNet-Large 98.08 84.13 81.72 

NASNet-Mobile 97.78 81.25 79.21 

ResNet-50 96.88 64.58 100.00 

ResNet-101 99.90 99.28 98.92 

ResNet-152 99.63 94.54 99.28 

ResNet-50-V2 99.82 98.56 98.21 

ResNet-101-V2 99.78 97.18 98.92 

ResNet-152-V2 99.74 97.50 97.85 

VGG-16 94.31 0.00 0.00 

VGG-19 94.31 0.00 0.00 

Xception 99.98 100.00 99.64 
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