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COVID‑19 image classification 
using deep features 
and fractional‑order marine 
predators algorithm
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Currently, we witness the severe spread of the pandemic of the new Corona virus, COVID‑19, 
which causes dangerous symptoms to humans and animals, its complications may lead to death. 
Although convolutional neural networks (CNNs) is considered the current state‑of‑the‑art image 
classification technique, it needs massive computational cost for deployment and training. In this 
paper, we propose an improved hybrid classification approach for COVID‑19 images by combining 
the strengths of CNNs (using a powerful architecture called Inception) to extract features and a 
swarm‑based feature selection algorithm (Marine Predators Algorithm) to select the most relevant 
features. A combination of fractional‑order and marine predators algorithm (FO‑MPA) is considered 
an integration among a robust tool in mathematics named fractional‑order calculus (FO). The 
proposed approach was evaluated on two public COVID‑19 X‑ray datasets which achieves both high 
performance and reduction of computational complexity. The two datasets consist of X‑ray COVID‑
19 images by international Cardiothoracic radiologist, researchers and others published on Kaggle. 
The proposed approach selected successfully 130 and 86 out of 51 K features extracted by inception 
from dataset 1 and dataset 2, while improving classification accuracy at the same time. The results are 
the best achieved on these datasets when compared to a set of recent feature selection algorithms. 
By achieving 98.7%, 98.2% and 99.6%, 99% of classification accuracy and F‑Score for dataset 1 and 
dataset 2, respectively, the proposed approach outperforms several CNNs and all recent works on 
COVID‑19 images.

Currently, a new coronavirus, called COVID-19, has spread to many countries, with over two million infected 
people or so-called con�rmed cases. Also, it has killed more than 376,000 (up to 2 June 2020) [Coronavirus 
disease (COVID-2019) situation reports: (https ://www.who.int/emerg encie s/disea ses/novel -coron aviru s-2019/
situa tion-repor ts/)]. �e family of coronaviruses is considered serious pathogens for people because they infect 
respiratory, hepatic, gastrointestinal, and neurologic diseases. �ey are distributed among people, bats, mice, 
birds, livestock, and other  animals1,2. In the last two decades, two famous types of coronaviruses SARS-CoV and 
MERS-CoV had been reported in 2003 and 2012, in China, and Saudi Arabia,  respectively3. Although outbreaks 
of SARS and MERS had con�rmed human to human  transmission3, they had not the same spread speed and 
infection power of the new coronavirus (COVID-19).

For diagnosing COVID-19, the RT-PCR (real-time polymerase chain reaction) is a standard diagnostic 
test, but, it can be considered as a time-consuming test, more so, it also su�ers from false negative  diagnosing4. 
However, using medical imaging, chest CT, and chest X-ray scan can play a critical role in COVID-19 diagnosis.

open

1Computer Department, Damietta University, Damietta, Egypt. 2Electrical Engineering Department, Faculty of 
Engineering, Fayoum University, Fayoum, Egypt. 3State Key Laboratory for Information Engineering in Surveying, 
Mapping, and Remote Sensing, Wuhan University, Wuhan, China. 4Department of Applied Informatics, Vytautas 
Magnus University, Kaunas, Lithuania. 5Department of Mathematics, Faculty of Science, Zagazig University, 
Zagazig, Egypt. 6School of Computer Science and Robotics, Tomsk Polytechnic University, Tomsk, Russia. *email: 
robertas.damasevicius@polsl.pl

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-71294-2&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15364  | https://doi.org/10.1038/s41598-020-71294-2

www.nature.com/scientificreports/

Medical imaging techniques are very important for diagnosing diseases. Image segmentation is a necessary 
image processing task that applied to discriminate region of interests (ROIs) from the area of outsides. Also, 
image segmentation can extract critical features, including the shape of tissues, and  texture5,6.

In general, feature selection (FS) methods are widely employed in various applications of medical imaging 
applications. For example, Lambin et al.7 proposed an e�cient approach called Radiomics to extract medical 
image features. �ey showed that analyzing image features resulted in more information that improved medical 
imaging. Chong et al.8 proposed an FS model, called Robustness-Driven FS (RDFS) to select futures from lung 
CT images to classify the patterns of �brotic interstitial lung diseases. �ey applied the SVM classi�er with and 
without RDFS. �e evaluation showed that the RDFS improved SVM robustness against reconstruction kernel 
and slice thickness.  In9, to classify ultrasound medical images, the authors used distance-based FS methods and 
a Fuzzy Support Vector Machine (FSVM). Moreover, a multi-objective genetic algorithm was applied to search 
for the optimal features subset.

More so, a combination of partial di�erential equations and deep learning was applied for medical image 
classi�cation  by10. �ey employed partial di�erential equations for extracting texture features of medical images. 
Acharya et al.11 applied di�erent FS methods to classify Alzheimer’s disease using MRI images. �e Shearlet 
transform FS method showed better performances compared to several FS methods. Also,  in12, an Fs method 
based on SVM was proposed to detect Alzheimer’s disease from SPECT images. Duan et al.13 applied the Gauss-
ian mixture model (GMM) to extract features from pulmonary nodules from CT images. �e optimum path 
forest (OPF) classi�er was applied to classify pulmonary nodules based on CT images.  In14, the authors proposed 
an FS method based on a convolutional neural network (CNN) to detect pneumonia from lung X-ray images.

Afzali et al.15 proposed an FS method based on principal component analysis and contour-based shape 
descriptors to detect Tuberculosis from lung X-Ray Images. �ey used K-Nearest Neighbor (kNN) to classify 
x-ray images collected from Montgomery dataset, and it showed good performances. Zhang et al.16 proposed 
a kernel feature selection method to segment brain tumors from MRI images. �ey applied the SVM classi�er 
for new MRI images to segment brain tumors, automatically. To segment brain tissues from MRI images, Kong 
et al.17 proposed an FS method using two methods, called a discriminative clustering method and the infor-
mation theoretic discriminative segmentation. Harikumar et al.18 proposed an FS method based on wavelets 
to classify normality or abnormality of di�erent types of medical images, such as CT, MRI, ultrasound, and 
mammographic images. It can be concluded that FS methods have proven their advantages in di�erent medical 
imaging  applications19.

Furthermore, deep learning using CNN is considered one of the best choices in medical imaging 
 applications20, especially classi�cation. CNNs are more appropriate for large datasets. Also, they require a lot of 
computational resources (memory & storage) for building & training. In some cases (as exists in this work), the 
dataset is limited, so it is not su�cient for building & training a CNN. In such a case, in order to get the advan-
tage of the power of CNN and also, transfer learning can be applied to minimize the computational  costs21,22. 
In transfer learning, a CNN which was previously trained on a large & diverse image dataset can be applied to 
perform a speci�c classi�cation task  by23. �erefore, several pre-trained models have won many international 
image classi�cation competitions such as  VGGNet24,  Resnet25,  Nasnet26,  Mobilenet27,  Inception28 and  Xception29.

However, some of the extracted features by CNN might not be su�cient, which may a�ect negatively the 
quality of the classi�cation images. �erefore, a feature selection technique can be applied to perform this task by 
removing those irrelevant features. Among the FS methods, the metaheuristic techniques have been established 
their performance overall other FS methods when applied to classify medical images. For example, Da Silva 
et al.30 used the genetic algorithm (GA) to develop feature selection methods for ranking the quality of medical 
images. �ey used di�erent images of lung nodules and breast to evaluate their FS methods. Evaluation outcomes 
showed that GA based FS methods outperformed traditional approaches, such as �lter based FS and traditional 
wrapper methods. Johnson et al.31 applied the �ower pollination algorithm (FPA) to select features from CT 
images of the lung, to detect lung cancers. �ey also used the SVM to classify lung CT images. �e evaluation 
con�rmed that FPA based FS enhanced classi�cation accuracy. kharrat and  Mahmoud32proposed an FS method 
based on a hybrid of Simulated Annealing (SA) and GA to classify brain tumors using MRI. �e combination 
of SA and GA showed better performances than the original SA and GA. Narayanan et al.33 proposed a fuzzy 
particle swarm optimization (PSO) as an FS method to enhance the classi�cation of CT images of emphysema. 
�ey applied a fuzzy decision tree classi�er, and they found that fuzzy PSO improved the classi�cation accuracy. 
Li et al.34 proposed a self-adaptive bat algorithm (BA) to address two problems in lung X-ray images, rebalancing, 
and feature selection. �ey compared the BA to PSO, and the comparison outcomes showed that BA had better 
performance. Dhanachandra and  Chanu35 proposed a hybrid method of dynamic PSO and fuzzy c-means to 
segment two types of medical images, MRI and synthetic images. �ey concluded that the hybrid method out-
performed original fuzzy c-means, and it had less sensitive to noises. Li et al.36 proposed an FS method using a 
discrete arti�cial bee colony (ABC) to improve the classi�cation of Parkinson’s disease. �e evaluation outcomes 
demonstrate that ABC enhanced precision, and also it reduced the size of the features.

In this paper, we proposed a novel COVID-19 X-ray classi�cation approach, which combines a CNN as a 
su�cient tool to extract features from COVID-19 X-ray images. �en, using an enhanced version of Marine 
Predators Algorithm to select only relevant features. In general, MPA is a meta-heuristic technique that simulates 
the behavior of the prey and predator in  nature37. �is algorithm is tested over a global optimization problem. 
However, it has some limitations that a�ect its quality. In addition, up to our knowledge, MPA has not applied 
to any real applications yet. So, based on this motivation, we apply MPA as a feature selector from deep features 
that produced from CNN (largely redundant), which, accordingly minimize capacity and resources consumption 
and can improve the classi�cation of COVID-19 X-ray images.
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In this work, the MPA is enhanced by fractional calculus memory feature, as a result, Fractional-order 
Marine Predators Algorithm (FO-MPA) is introduced. Moreover, the Weibull distribution employed to modify 
the exploration function.

�e proposed COVID-19 X-ray classi�cation approach starts by applying a CNN (especially, a powerful 
architecture called Inception which pre-trained on Imagnet dataset) to extract the discriminant features from raw 
images (with no pre-processing or segmentation) from the dataset that contains positive and negative COVID-
19 images. �en, applying the FO-MPA to select the relevant features from the images. �is task is achieved by 
FO-MPA which randomly generates a set of solutions, each of them represents a subset of potential features. �e 
next process is to compute the performance of each solution using �tness value and determine which one is the 
best solution. �erea�er, the FO-MPA parameters are applied to update the solutions of the current population. 
�e updating operation repeated until reaching the stop condition. �en the best solutions are reached which 
determine the optimal/relevant features that should be used to address the desired output via several performance 
measures. Inspired by our recent  work38, where VGG-19 besides statistically enhanced Salp Swarm Algorithm 
was applied to select the best features for White Blood Cell Leukaemia classi�cation. Also, other recent published 
 works39, who combined a CNN architecture with Weighted Symmetric Uncertainty (WSU) to select optimal 
features for tra�c classi�cation. It is obvious that such a combination between deep features and a feature selec-
tion algorithm can be e�cient in several image classi�cation tasks.

�e main contributions of this study are elaborated as follows: 

1. Propose an e�cient hybrid classi�cation approach for COVID-19 using a combination of CNN and an 
improved swarm-based feature selection algorithm. �is combination should achieve two main targets; high 
performance and resource consumption, storage capacity which consequently minimize processing time.

2. Propose a novel robust optimizer called Fractional-order Marine Predators Algorithm (FO-MPA) to select 
e�ciently the huge feature vector produced from the CNN.

3. Test the proposed Inception Fractional-order Marine Predators Algorithm (IFM) approach on two publicity 
available datasets contain a number of positive negative chest X-ray scan images of COVID-19.

4. Evaluate the proposed approach by performing extensive comparisons to several state-of-art feature selec-
tion algorithms, most recent CNN architectures and most recent relevant works and existing classi�cation 
methods of COVID-19 images.

We do not present a usable clinical tool for COVID-19 diagnosis, but o�er a new, e�cient approach to optimize 
deep learning-based architectures for medical image classi�cation purposes. Such methods might play a signi�-
cant role as a computer-aided tool for image-based clinical diagnosis soon. Remainder sections are organized as 
follows: “Material and methods” section presents the methodology and the techniques used in this work includ-
ing model structure and description. �e experimental results and comparisons with other works are presented 
in “Results and discussion” section, while they are discussed in “Discussion” section Finally, the conclusion is 
described in “Conclusion” section.

Material and methods
Features extraction using convolutional neural networks. In this paper, we apply a convolutional 
neural network (CNN) to extract features from COVID-19 X-Ray images. We adopt a special type of CNN called 
a pre-trained model where the network is previously trained on the ImageNet dataset, which contains millions of 
variety of images (animal, plants, transports, objects,..) on 1000 classe categories. So, transfer learning is applied 
by transferring weights that were already learned and reserved into the structure of the pre-trained model, such 
as Inception, in this paper.

In Inception, there are di�erent sizes scales convolutions (conv.), such as 5 × 5 , 3 × 3 , 1 × 1 . For instance,1 × 1 
conv. is applied before larger sized kernels are applied to reduce the dimension of the channels, which accord-
ingly, reduces the computation cost. Pool layers are used mainly to reduce the input’s size, which accelerates the 
computation as well. So, for a 4 × 4 matrix, will result in 2 × 2 matrix a�er applying max pooling. �ere are three 

Figure 1.  Overview of inception.
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main parameters for pooling, Filter size, Stride, and Max pool. In this paper, �lters of size 2, besides a stride of 
2 and 2 × 2 as Max pool, were adopted. Inception architecture is described in Fig. 1.

�e main purpose of Conv. layers is to extract features from input images. In this paper, di�erent Conv. 
Layers are applied to extract di�erent types of features such as edges, texture, colors, and high-lighted patterns 
from the images. �e combination of Conv. and pool layers, three fully connected layers, the last one performs 
classi�cation. �e So�max activation function is used for this purpose because the output should be binary 
(positive COVID-19 negative COVID-19). Inception’s layer details and layer parameters of are given in Table 1.

As seen in Table 1, we keep the last concatenation layer which contains the extracted features, so we removed 
the top layers such as the Flatten, Drop out and the Dense layers which the later performs classi�cation (named 
as FC layer). We have used RMSprop optimizer for weight updates, cross entropy loss function and selected 
learning rate as 0.0001.

In this paper, Inception is applied as a feature extractor, where the input image shape is (229, 229, 3). Since 
its structure consists of some parallel paths, all the paths use padding of 1 pixel to preserve the same height & 
width for the inputs and the outputs.

One of the drawbacks of pre-trained models, such as Inception, is that its architecture required large memory 
requirements as well as storage capacity (92 M.B), which makes deployment exhausting and a tiresome task. �e 
shape of the output from the Inception is (5, 5, 2048), which represents a feature vector of size 51200. So some 
statistical operations have been added to exclude irrelevant and noisy features, and by making it more compu-
tationally e�cient and stable, they are summarized as follows:

• Chi-square is applied to remove the features which have a high correlation values by computing the depend-
ence between them. It is calculated between each feature for all classes, as in Eq. (1): 

 where Ok and Ek refer to the actual and the expected feature value, respectively. In this paper, a�er applying 
Chi-square, the feature vector is minimized for both datasets from 51200 to 2000.

• Tree based classi�er are the most popular method to calculate feature importance to improve the classi�cation 
since they have high accuracy, robustness, and  simple38. For each decision tree, node importance is calculated 
using Gini importance, Eq. (2) calculated two child nodes. 

where nij is the importance of node j, while wj refers to the weighted number of samples reaches the node j, 
also Cj determines the impurity value of node j. le�(j) and right(j) are the child nodes from the le� split and 
the right split on node j, respectively. In Eq. (3), the importance of each feature is then calculated. 

(1)χ2
=

n∑

k=1

(Ok − Ek)
2

Ek

(2)nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j)

Table 1.  Layer parameters of Inception.

Layer number Layer type Output Shape Number of trainable parameters

1 conv2d_1 (114, 114, 324) 864

| | | |

10 conv2d_1_0 (26, 26, 96) 55296

| | | |

20 conv2d_2_0 (26, 26, 64) 18432

| | | |

30 conv2d_3_0 (12, 12, 96) 82944

| | | |

40 conv2d_4_0 (12, 12, 192) 147456

| | | |

50 conv2d_5_0 (12, 12, 192) 147456

| | | |

60 conv2d_6_0 (12, 12, 192) 147456

| | | |

70 conv2d_7_0 (12, 12, 192) 147456

| | | |

80 conv2d_8_0 (5, 5, 384) 442368

| | | |

94 conv2d_9_4 (5, 5, 192) 393216

| | | |

159 mixed10 (Concatenate) (5, 5, 2048) 0



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15364  | https://doi.org/10.1038/s41598-020-71294-2

www.nature.com/scientificreports/

where fii represents the importance of feature I, while nij refers to the importance of node j. In order to 
normalize the values between 0 and 1 by dividing by the sum of all feature importance values, as in Eq. (4). 

 Finally, the sum of the feature’s importance value on each tree is calculated then divided by the total number 
of trees as in Eq. (5). 

 where REfii represents the importance of feature i that were calculated from all trees, where normfiij is the 
normalized feature importance for feature i in tree j, also T is the total number of trees.

  A�er applying this technique, the feature vector is minimized from 2000 to 459 and from 2000 to 462 for 
Dataset1 and Dataset 2, respectively.

Feature selection by fractional‑order calculus with Marine Predators Algorithm 
(FO‑MPA). Fractional calculus (FC). Fractional-order calculus (FC) gains the interest of many research-
ers in di�erent �elds not only in the modeling sectors but also in developing the optimization algorithms. �e 
memory properties of Fc calculus makes it applicable to the �elds that required non-locality and memory e�ect. 
FC provides a clear interpretation of the memory and hereditary features of the process. Accordingly, the FC 
is an e�cient tool for enhancing the performance of the meta-heuristic algorithms by considering the memory 
perspective during updating the solutions. One from the well-know de�nitions of FC is the Grunwald-Letnikov 
(GL), which can be mathematically formulated as  below40:

where

where Dδ(U(t)) refers to the GL fractional derivative of order δ . Ŵ(t) indicates gamma function.
�e GL in the discrete-time form can be modeled as below:

where T is the sampling period, and m is the length of the memory terms (memory window). �e δ symbol refers 
to the derivative order coe�cient.

For the special case of δ = 1 , the de�nition of Eq. (8) can be remodeled as below:

where D1[x(t)] represents the di�erence between the two followed events.

Marine Predators Algorithm. �e Marine Predators Algorithm (MPA)is a recently developed meta-heuristic 
algorithm that emulates the relation among the prey and predator in  nature37. MPA simulates the main aim for 
most creatures that is searching for their foods, where a predator contiguously searches for food as well as the 
prey. Inspired by this concept, Faramarzi et al.37 developed the MPA algorithm by considering both of a preda-
tor a prey as solutions. �e MPA starts with the initialization phase and then passing by other three phases with 
respect to the rational velocity among the prey and the predator.

• Initialization phase: this phase devotes for providing a random set of solutions for both the prey and predator 
via the following formulas: 

where the Lower and Upper are the lower and upper boundaries in the search space, rand1 is a random vec-
tor ∈ the interval of (0,1). According to the formula 10, the initial locations of the prey and predator can be 
de�ned as below: 

(3)fii =

∑
j:node j splits on feature i nij

∑
k∈all nodes nik

(4)normfii =

fii
∑

j∈all nodes fij

(5)REfii =

∑
j∈alltrees normfiij

T

(6)D
δ(U(t)) = lim

h→0

1

hδ

∞
∑

k=0

(−1)k
(

δ

k

)

U(t − kh),

(7)

(

δ

k

)

=
Ŵ(δ + 1)

Ŵ(k + 1)Ŵ(δ − k + 1)
=

δ(δ − 1)(δ − 2) . . . (δ − k + 1)

k!
,

(8)D
δ
[U(t)] =

1

Tδ

m∑

k=0

(−1)kŴ(δ + 1)U(t − kT)

Ŵ(k + 1)Ŵ(δ − k + 1)

(9)D
1
[U(t)] = U(t + 1) − U(t)

(10)U = Lower + rand1 × (Upper − Lower)
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where the Elite matrix refers to the �ttest predators.
• Stage 1: A�er the initialization, the exploration phase is implemented to discover the search space. �erefore 

in MPA, for the �rst third of the total iterations, i.e., 1
3
tmax ). Accordingly, the prey position is upgraded based 

the following equations. 

where R ∈ [0, 1] is a random vector drawn from a uniform distribution and P = 0.5 is a constant number. 
�e symbol RB refers to Brownian motion. 

⊗
 indicates the process of element-wise multiplications.

• Stage 2: �e prey/predator in this stage begin exploiting the best location that detects for their foods. Stage 2 
has been executed in the second third of the total number of iterations when 1

3
tmax < t <

2

3
tmax . Faramarzi 

et al.37 divided the agents for two halves and formulated Eqs. (14)–(15) to emulate the motion of the �rst half 
of the population (prey) and Eqs. (18)–(19) for the second half (predator) as represented below. 

where RL has random numbers that follow Lévy distribution. Eq. (14)-(15) are implemented in the �rst 
half of the agents that represent the exploitation. While the second half of the agents perform the following 
equations. 

where CF is the parameter that controls the step size of movement for the predator.
• Stage 3: �is stage executed on the last third of the iteration numbers ( t >

2

3
tmax ) where based on the fol-

lowing formula: 

• Eddy formation and Fish Aggregating Devices’ e�ect: Faramarzi et al.37 considered the external impacts from 
the environment, such as the eddy formation or Fish Aggregating Devices (FADs) e�ects to avoid the local 
optimum solutions. �is stage can be mathematically implemented as below: 

 In Eq. (20), FAD = 0.2 , and W is a binary solution (0 or 1) that corresponded to random solutions. If the 
random solution is less than 0.2, it converted to 0 while the random solution becomes 1 when the solutions are 
greater than 0.2. �e symbol r ∈ [0, 1] represents a random number. r1 and r2 are the random index of the prey.

• Marine memory: �is is the main feature of the marine predators and it helps in catching the optimal solu-
tion very fast and avoid local solutions. Faramarzi et al.37 implement this feature via saving the previous best 
solutions of a prior iteration, and compared with the current ones; the solutions are modi�ed based on the 
best one during the comparison stage.

Fractional-order Marine Predators Algorithm (FO-MPA). Recently, a combination between the fractional cal-
culus tool and the meta-heuristics opens new doors in providing robust and reliable  variants41. For this moti-
vation, we utilize the FC concept with the MPA algorithm to boost the second step of the standard version of 
the algorithm. Hence, the FC memory is applied during updating the prey locating in the second step of the 
algorithm to enhance the exploitation stage. Moreover, the RB parameter has been changed to depend on weibull 
distribution as described below.

(11)Elite =









U
1
11 U

1
12 . . . U

1
1d

U
1
21 U

1
22 . . . U

1
2d

. . . . . . . . . . . .

U
1
n1 U

1
n2 . . . U

1
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, U =







U11 U12 . . . U1d

U21 U22 . . . U2d

. . . . . . . . . . . .

Un1 Un2 . . . Und






,

(12)Si = RB

⊗
(Elitei − RB

⊗
Ui), i = 1, 2, . . . , n

(13)Ui = Ui + P.R

⊗
Si

(14)Si = RL

⊗
(Elitei − RL

⊗
Ui), i = 1, 2, . . . , n/2

(15)Ui = Ui + P.R

⊗
Si

(16)Si = RB

⊗
(RB

⊗
Elitei − Ui), i = 1, 2, . . . , n/2

(17)Ui = Elitei + P.CF
⊗

Si , CF =

(

1 −
t

tmax

)

(

2 t

tmax

)

(18)Si = RL

⊗
(RL

⊗
Elitei − Ui), i = 1, 2, . . . , n

(19)Ui = Elitei + P.CF
⊗

Si , CF =

(

1 −
t

tmax

)

(

2 t

tmax

)

(20)Ui =

{

Ui + CF[Umin + R
⊗

(Umax − Umin)]
⊗

W r5 < FAD

Ui + [FAD(1 − r) + r](Ur1 − Ur2) r5 > FAD
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• First: prey motion based on FC the motion of the prey of Eq. (15) can be reformulated to meet the special case 
of GL de�nition of Eq. (9) as follows. 

 For general case based on the FC de�nition, the Eq. (22) can be written as follows: 

 By using the discrete form of GL de�nition of Eq. (8) at T = 1 , the expression of Eq. (22) can be written as 
follows: 

 By taking into account the early mentioned relation in Eq. (23), the general formulation for the solutions of 
FO-MPA based on FC memory perspective can be written as follows: 

 A�er checking the previous formula, it can be detected that the motion of the prey becomes based on some 
terms from the previous solutions with a length of (m), as depicted in Fig. 2 (le�). With accounting the �rst 
four previous events ( m = 4 ) from the memory data with derivative order δ , the position of prey can be 
modi�ed as follow; 

• Second: Adjusting RB random parameter based on weibull distribution. For the exploration stage, the weibull 
distribution has been applied rather than Brownian to bost the performance of the predator in stage 2 and 
the prey velocity in stage 1 based on the following formula: 

 Where k, and ζ are the scale and shape parameters. �e Weibull Distribution is a heavy-tied distribution 
which presented as in Fig. 2 (right). In the current work, the values of k, and ζ are set to 2, and 2, respectively.

Our proposed approach is called Inception Fractional-order Marine Predators Algorithm (IFM), where 
we combine Inception (I) with Fractional-order Marine Predators Algorithm (FO-MPA). �e proposed IFM 
approach is summarized as follows: 

1. Extracting deep features from Inception, where about 51 K features were extracted.
2. Initialize solutions for the prey and predator. �e prey follows Weibull distribution during discovering the 

search space to detect potential locations of its food.
3. �e predator tries to catch the prey while the prey exploits the locations of its food. �e predator uses the 

Weibull distribution to improve the exploration capability. Meanwhile, the prey moves e�ectively based on 
its memory for the previous events to catch its food, as presented in Eq. (24).

4. Finally, the predator follows the levy �ight distribution to exploit its prey location. all above stages are 
repeated until the termination criteria is satis�ed.

(21)Ui(t + 1) − Ui(t) = P.R

⊗
Si

(22)D
δ
[Ui(t + 1)] = P.R

⊗
Si

(23)D
δ
[Ui(t + 1)] = Ui(t + 1) +

m∑

k=1

(−1)kŴ(δ + 1)Ui(t + 1 − k)

Ŵ(k + 1)Ŵ(δ − k + 1)
= P · R ⊗ Si .

(24)U(t + 1)i = −

m∑

k=1

(−1)kŴ(δ + 1)Ui(t + 1 − k)

Ŵ(k + 1)Ŵ(δ − k + 1)
+ P.R

⊗
Si .

(25)

Ui(t + 1) =
1

1!
δUi(t) +

1

2!
δ(1 − δ)Ui(t − 1) +

1

3!
δ(1 − δ)(2 − δ)Ui(t − 2)

+
1

4!
δ(1 − δ)(2 − δ)(3 − δ)Ui(t − 3) + P.R

⊗
Si .

(26)WF(x) = exp(
x

k )
ζ

Figure 2.  Memory FC prospective concept (le�) and weibull distribution (right).
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�e memory terms of the prey are updated at the end of each iteration based on �rst in �rst out concept. Figure 3 
illustrates the structure of the proposed IMF approach.

Dataset description. In this paper, we used two di�erent datasets. �e �rst one, dataset 1 was collected 
by Joseph Paul Cohen and Paul Morrison and Lan  Dao42, where some COVID-19 images were collected by an 
Italian Cardiothoracic radiologist. Negative COVID-19 images were collected from another Chest X-ray Kag-
gle published  dataset43. �e whole dataset contains around 200 COVID-19 positive images and 1675 negative 
COVID19 images. �e data was collected mainly from retrospective cohorts of pediatric patients from Guang-
zhou Women and Children’s medical center. While the second dataset, dataset 2 was collected by a team of 
researchers from Qatar University in Qatar and the University of Dhaka in Bangladesh along with collaborators 
from Pakistan and Malaysia medical  doctors44. Moreover, other COVID-19 positive images were added by the 
Italian Society of Medical and Interventional Radiology (SIRM) COVID-19  Database45. �is dataset consists of 
219 COVID-19 positive images and 1341 negative COVID-19 images.

�ese datasets contain hundreds of frontal view X-rays and considered the largest public resource for COVID-
19 image data. �ey were manually aggregated from various web based repositories into a machine learning (ML) 
friendly format with accompanying data loader code. �ey were also collected frontal and lateral view imagery 
and metadata such as the time since �rst symptoms, intensive care unit (ICU) status, survival status, intubation 
status, or hospital location.

Both datasets shared some characteristics regarding the collecting sources. For both datasets, the Covid19 
images were collected from patients with ages ranging from 40-84 from both genders. It is also noted that both 
datasets contain a small number of positive COVID-19 images, and up to our knowledge, there is no other suf-
�cient available published dataset for COVID-19. Table 2 shows some samples from two datasets.

Table 2 depicts the variation in morphology of the image, lighting, structure, black spaces, shape, and zoom 
level among the same dataset, as well as with the other dataset.

Validation metrics. To evaluate the performance of the proposed model, we computed the average of both 
best values and the worst values (Max) as well as STD and computational time for selecting features. �e accu-
racy measure is used in the classi�cation phase. �e de�nitions of these measures are as follows:

(27)Accuracy =
TP + TN

TP + TN + FP + FN

(28)Sensitivity =
TP

TP + FN

(29)Specificity =
TN

TN + FP

Figure 3.  Proposed COVID-19 X-ray classi�cation.
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where “TP” (true positives) refers to the positive COVID-19 images that were correctly labeled by the classi�er, 
while “TN” (true negatives) is the negative COVID-19 images that were correctly labeled by the classi�er. “FP” 
(false positives) are the positive COVID-19 images that were incorrectly labeled as negative COVID-19, while 
“FN” (false negatives) are the negative COVID-19 images that were mislabeled as positive COVID-19 images.

• Best accuracy: 

• Best �tness value: 

• Worst �tness value: 

• Average of �tness value: 

• Standard deviation of �tness value 

where r is the run numbers. Fiti denotes a �tness function value.

Implementation environment. Convolutional neural networks were implemented in Python 3 under 
Google  Colaboratory46, commonly referred to as “Google Colab,” which is a research project for prototyping 
machine learning models on powerful hardware options such as GPUs and TPUs. In this paper, we used TPUs 
for powerful computation, which is more appropriate for CNN. �e model was developed using Keras  library47 
with Tensor�ow  backend48.

Results and discussion
Performance of the proposed approach. As Inception examines all X-ray images over and over again 
in each epoch during the training, these rapid ups and downs are slowly minimized in the later part of the train-
ing. A�er feature extraction, we applied FO-MPA to select the most signi�cant features.

In this subsection, the results of FO-MPA are compared against most popular and recent feature selection 
algorithms, such as Whale Optimization Algorithm (WOA)49, Henry Gas Solubility optimization (HGSO)50, 
Sine cosine Algorithm (SCA), Slime Mould Algorithm (SMA)51, Particle Swarm Optimization (PSO), Grey Wolf 
Optimization (GWO)52, Harris Hawks Optimization (HHO)53, Genetic Algorithm (GA), and basic MPA. In this 
paper, each feature selection algorithm were exposed to select the produced feature vector from Inception aiming 

(30)FScore = 2 ×
Specificity × Sensitivity

Specificity + Sensitivity

(31)Bestacc = max
1≤i≤r

Accuracy

(32)BestFiti = min
1≤i≤r

Fiti

(33)MaxFiti = max
1≤i≤r

Fiti

(34)µ =

1

r

N∑

i=1

Fiti

(35)STD =

√

√

√

√

1

r − 1

r
∑

i=1

(Fiti − µ)2

Table 2.  Samples from COVID-19 dataset  142 and dataset  244.
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at selecting only the most relevant features. �e parameters of each algorithm are set according to the default 
values. �ey shared some parameters, such as the total number of iterations and the number of agents which were 
set to 20 and 15, respectively. For fair comparison, each algorithms was performed (run) 25 times to produce 
statistically stable results.�e results are listed in Tables 3 and 4. Table 3 shows the numerical results of the feature 
selection phase for both datasets. Four measures for the proposed method and the compared algorithms are listed. 
As seen in Table 3, on Dataset 1, the FO-MPA outperformed the other algorithms in the mean of �tness value 
as it achieved the smallest average �tness function value followed by SMA, HHO, HGSO, SCA, BGWO, MPA, 
and BPSO, respectively whereas, the SGA and WOA showed the worst results. �e results of max measure (as 

Table 3.  Results of the feature selection phase based on �tness function. Highest results are in bold.

Dataset 1 Dataset 2

Mean STD Bestfi Max Mean STD Bestfi Max

SMA 0.0388 0.0054 0.0316 0.0471 0.0212 0.0025 0.0166 0.0257

FO-MPA 0.0361 0.0044 0.0290 0.0419 0.0249 0.0039 0.0193 0.0316

MPA 0.1362 0.0092 0.1256 0.1515 0.0189 0.0027 0.0161 0.0247

HHO 0.0409 0.0112 0.0285 0.0699 0.1124 0.0127 0.0894 0.1328

HGSO 0.0428 0.0038 0.0373 0.0472 0.0240 0.0034 0.0192 0.0316

WOA 0.5246 0.0024 0.5246 0.5246 0.0218 0.0034 0.0166 0.0268

SCA 0.0441 0.0026 0.0398 0.0492 0.0230 0.0030 0.0200 0.0306

bGWO 0.1300 0.0074 0.1202 0.1445 0.1570 0.0638 0.1087 0.3252

SGA 0.5050 0.0046 0.4982 0.5117 0.1135 0.0100 0.0995 0.1267

BPSO 0.2274 0.0068 0.2137 0.2362 0.4214 0.0074 0.4028 0.4298

Figure 4.  Average of the consuming time and the number of selected features in both datasets.

Table 4.  Performance of proposed approach.  Highest results are in bold.

Method

Dataset 1 Dataset 2

Bestacc Mean STD Time S.F F-Score Bestacc Mean STD Time S.F F-Score

SMA 0.9569 0.9385 0.0107 6.77 430.12 0.97518 0.9808 0.9722 0.0054 4.81 436.70 0.98201

FO-MPA 0.9877 0.9726 0.0084 23.97 129.50 0.98208 0.9968 0.9869 0.0051 14.90 86.00 0.99079

MPA 0.9692 0.9508 0.0088 59.12 202.20 0.97183 0.9872 0.9812 0.0055 29.86 97.60 0.98502

HHO 0.9538 0.9295 0.0257 30.18 225.20 0.96014 0.9872 0.9690 0.0115 14.68 87.80 0.97552

HGSO 0.9385 0.9277 0.0087 31.24 146.10 0.9529 0.9840 0.9722 0.0114 29.34 87.30 0.97597

WOA 0.9508 0.9508 0.0080 58.17 158.40 0.97193 0.9904 0.9754 0.0096 18.05 99.90 0.97952

SCA 0.9569 0.9569 0.0030 59.91 358.20 0.97603 0.9872 0.9760 0.0071 15.13 92.50 0.99072

bGWO 0.9600 0.9492 0.0076 30.29 295.80 0.97364 0.9732 0.9808 0.0050 21.23 92.30 0.98535

SGA 0.9631 0.9560 0.0046 35.16 242.40 0.97213 0.9783 0.9840 0.0029 27.54 378.50 0.99065

BPSO 0.9600 0.9535 0.0068 19.79 187.00 0.97666 0.9904 0.9843 0.0051 17.70 185.40 0.98921
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in Eq. (33)), showed that FO-MPA also achieved the best value of the �tness function compared to others. SMA 
is on the second place, While HGSO, SCA, and HHO came in the third to ��h place, respectively. According to 
the best measure, the FO-MPA performed similarly to the HHO algorithm, followed by SMA, HGSO, and SCA, 
respectively. Although the performance of the MPA and bGWO was slightly similar, the performance of SGA 
and WOA were the worst in both max and min measures. Generally, the most stable algorithms On dataset 1 are 
WOA, SCA, HGSO, FO-MPA, and SGA, respectively. However, WOA showed the worst performances in these 
measures; which means that if it is run in the same conditions several times, the same results will be obtained. 
For Dataset 2, FO-MPA showed acceptable (not the best) performance, as it achieved slightly similar results to 
the �rst and second ranked algorithm (i.e., MPA and SMA) on mean, best, max, and STD measures. Also, WOA 
algorithm showed good results in all measures, unlike dataset 1, which can conclude that no algorithm can solve 
all kinds of problems. Whereas, the worst algorithm was BPSO.

For more analysis of feature selection algorithms based on the number of selected features (S.F) and con-
suming time, Fig. 4 and Table 4 list these results for all algorithms. Regarding the consuming time as in Fig. 4a, 
the SMA was considered as the fastest algorithm among all algorithms followed by BPSO, FO-MPA, and HHO, 
respectively, while MPA was the slowest algorithm. Also, As seen in Fig. 4b, FO-MPA algorithm selected suc-
cessfully fewer features than other algorithms, as it selected 130 and 86 features from Dataset 1 and Dataset 2, 
respectively. HGSO was ranked second with 146 and 87 selected features from Dataset 1 and Dataset 2, respec-
tively. �e largest features were selected by SMA and SGA, respectively.

�e convergence behaviour of FO-MPA was evaluated over 25 independent runs and compared to other 
algorithms, where the x-axis and the y-axis represent the iterations and the �tness value, respectively. Figure 5 
illustrates the convergence curves for FO-MPA and other algorithms in both datasets.

Figure 5, shows that FO-MPA shows an e�cient and faster convergence than the other optimization algo-
rithms on both datasets. Whereas, the slowest and the insu�cient convergences were reported by both SGA and 
WOA in Dataset 1 and by SGA in Dataset 2.

To further analyze the proposed algorithm, we evaluate the selected features by FO-MPA by performing 
classi�cation. In this experiment, the selected features by FO-MPA were classi�ed using KNN. Table 4 show clas-
si�cation accuracy of FO-MPA compared to other feature selection algorithms, where the best, mean, and STD 
for classi�cation accuracy were calculated for each one, besides time consumption and the number of selected 
features (SF). In Table 4, for Dataset 1, the proposed FO-MPA approach achieved the highest accuracy in the best 
and mean measures, as it reached 98.7%, and 97.2% of correctly classi�ed samples, respectively. While, MPA, 
BPSO, SCA, and SGA obtained almost the same accuracy, followed by both bGWO, WOA, and SMA. �e lowest 
accuracy was obtained by HGSO in both measures. Based on Standard Deviation measure (STD), the most stable 
algorithms were SCA, SGA, BPSO, and bGWO, respectively. Whereas, FO-MPA, MPA, HGSO, and WOA showed 
similar STD results. �e HGSO also was ranked last. In Dataset 2, FO-MPA also is reported as the highest clas-
si�cation accuracy with the best and mean measures followed by the BPSO. �e classi�cation accuracy of MPA, 
WOA, SCA, and SGA are almost the same. Whereas the worst one was SMA algorithm. Besides, all algorithms 
showed the same statistical stability in STD measure, except for HHO and HGSO. Generally, the proposed FO-
MPA approach showed satisfying performance in both the feature selection ratio and the classi�cation rate. 

Figure 5.  Convergence curves for both datasets.
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Moreover, from Table 4, it can be seen that the proposed FO-MPA provides better results in terms of F-Score, as 
it has the highest value in datatset1 and datatset2 which are 0.9821 and 0.99079, respectively.

Comparison with other CNN architectures. In this subsection, the performance of the proposed 
COVID-19 classi�cation approach is compared to other CNN architectures. It noted that all produced feature 
vectors by CNNs used in this paper are at least bigger by more than 300 times compared to that produced by FO-
MPA in terms of the size of the featureset. For example, as our input image has the shape 224 × 224 × 3 ,  Nasnet26 
produces 487 K features,  Resnet25 and  Xception29 produce about 100 K features and  Mobilenet27 produces 50 
K features, while FO-MPA produces 130 and 86 features for both dataset1 and dataset 2, respectively. Figure 6 
shows a comparison between our FO-MPA approach and other CNN architectures.

From Fig. 6 (le�), for dataset 1, it can be seen that our proposed FO-MPA approach outperforms other CNN 
models like VGGNet, Xception, Inception, Mobilenet, Nasnet, and Resnet. It also shows that FO-MPA can select 
the smallest subset of features, which re�ects positively on performance. Accordingly, that re�ects on e�cient 
usage of memory, and less resource consumption. On the second dataset, dataset 2 (Fig. 6, right), our approach 
still provides an overall accuracy of 99.68%, putting it �rst with a slight advantage over MobileNet (99.67 %).

Comparison with related works. In this subsection, a comparison with relevant works is discussed. Figure 7 
shows the most recent published works as  in54–57  and44 on both dataset 1 and dataset 2.  In54, AlexNet pre-trained 
network was used to extract deep features then applied PCA to select the best features by eliminating highly cor-
related features. Based  on54, the later step reduces the memory requirements, and improve the e�ciency of the 
framework.  While55 used di�erent CNN structures. However, it was clear that VGG19 and MobileNet achieved 
the best performance over other CNNs. Also,  in58 a new CNN architecture called E�cientNet was proposed, 
where more blocks were added on top of the model a�er applying normalization of images pixels intensity to 
the range (0 to 1). Also, some image transformations were applied, such as rotation, horizontal �ip, and scaling. 
 In57, ResNet-50 CNN has been applied a�er applying horizontal �ipping, random rotation, random zooming, 
random lighting, and random wrapping on raw images. As seen in Fig. 7, most works are pre-prints for two main 
reasons; COVID-19 is the most recent and trend topic; also, there are no su�cient datasets that can be used for 
reliable results. However, the proposed FO-MPA approach has an advantage in performance compared to other 
works. Also, all other works do not give further statistics about their model’s complexity and the number of 

Figure 6.  Number of extracted feature and classi�cation accuracy by FO-MPA compared to other CNNs on 
dataset 1 (le�) and on dataset 2 (right).

Figure 7.  Comparison with other previous works using accuracy measure.
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featurset produced, unlike, our approach which extracts the most informative features (130 and 86 features for 
dataset 1 and dataset 2) that imply faster computation time and, accordingly, lower resource consumption. Com-
pared  to59 which is one of the most recent published works on X-ray COVID-19, a combination between You 
Only Look Once (YOLO) which is basically a real time object detection system and DarkNet as a classi�er was 
proposed. �ey achieved 98.08 % and 96.51 % of accuracy and F-Score, respectively compared to our approach 
with 98.77 % and 98.2% for accuracy and F-Score, respectively. While no feature selection was applied to select 
best features or to reduce model complexity.

Discussion
�e proposed IMF approach successfully achieves two important targets, selecting small feature numbers with 
high accuracy. �erefore, reducing the size of the feature from about 51 K as extracted by deep neural networks 
(Inception) to be 128.5 and 86 in dataset 1 and dataset 2, respectively, a�er applying FO-MPA algorithm while 
increasing the general performance can be considered as a good achievement as a machine learning goal. Besides, 
the used statistical operations improve the performance of the FO-MPA algorithm because it supports the 
algorithm in selecting only the most important and relevant features. It also contributes to minimizing resource 
consumption which consequently, reduces the processing time.

In addition, the good results achieved by the FO-MPA against other algorithms can be seen as an advantage 
of FO-MPA, where a balancing between exploration and exploitation stages and escaping from local optima 
were achieved. As a result, the obtained outcomes outperformed previous works in terms of the model’s general 
performance measure.

Furthermore, using few hundreds of images to build then train Inception is considered challenging because 
deep neural networks need large images numbers to work e�ciently and produce e�cient features. However, 
the proposed IMF approach achieved the best results among the compared algorithms in least time. One of the 
main disadvantages of our approach is that it’s built basically within two di�erent environments. �e �rst one is 
based on Python, where the deep neural network architecture (Inception) was built and the feature extraction 
part was performed. �e second one is based on Matlab, where the feature selection part (FO-MPA algorithm) 
was performed. So, there might be sometimes some con�ict issues regarding the features vector �le types or 
issues related to storage capacity and �le transferring.

Conclusion
Computational image analysis techniques play a vital role in disease treatment and diagnosis. Taking into con-
sideration the current spread of COVID-19, we believe that these techniques can be applied as a computer-aided 
tool for diagnosing this virus. �erefore, in this paper, we propose a hybrid classi�cation approach of COVID-
19. It based on using a deep convolutional neural network (Inception) for extracting features from COVID-19 
images, then �ltering the resulting features using Marine Predators Algorithm (MPA), enhanced by fractional-
order calculus(FO).

�e proposed IMF approach is employed to select only relevant and eliminate unnecessary features. Extensive 
evaluation experiments had been carried out with a collection of two public X-ray images datasets. Extensive 
comparisons had been implemented to compare the FO-MPA with several feature selection algorithms, includ-
ing SMA, HHO, HGSO, WOA, SCA, bGWO, SGA, BPSO, besides the classic MPA. �e results showed that the 
proposed approach showed better performances in both classi�cation accuracy and the number of extracted 
features that positively a�ect resource consumption and storage e�ciency. �e results are the best achieved 
compared to other CNN architectures and all published works in the same datasets.

According to the promising results of the proposed model, that combines CNN as a feature extractor and 
FO-MPA as a feature selector could be useful and might be successful in being applied in other image classi�ca-
tion tasks.

Data availability
All data used in this paper is available online in the repository, [https ://githu b.com/ieee8 023/covid -chest xray-
datas et], [https ://stanf ordml group .githu b.io/proje cts/chexn et], [https ://www.kaggl e.com/pault imoth ymoon ey/
chest -xray-pneum onia] and [https ://www.sirm.org/en/categ ory/artic les/covid -19-datab ase/]. �e code of the 
proposed approach is also available via the following link [https ://drive .googl e.com/�le/d/1-oK-eeEgd CMCny 
kH364 IkAK3 opmqa 9Rvas x/view?usp=shari ng].
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