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Summary 

Aims ​: to investigate the spatiotemporal distribution of COVID-19 cases in England; to provide spatial              
quantification of risk at a high resolution; to provide information for prospective antigen and              
serological testing. 

Approach​: We fit a spatiotemporal Negative Binomial generalised linear model to Public Health             
England SARS-CoV-2 testing data at the Lower Tier Local Authority region level. We assume an               
order-1 autoregressive model for case progression within regions, coupling discrete spatial units via             
observed commuting data and time-varying measures of traffic flow. We fit the model via maximum               
likelihood estimation in order to calculate region-specific risk of ongoing transmission, as well as              
measuring regional uncertainty in incidence. 

Results​: We detect marked heterogeneity across England in COVID-19 incidence, not only in raw              
estimated incidence, but in the characteristics of within-region and between-region dynamics of PHE             
testing data. There is evidence for a spatially diverse set of regions having a higher daily increase of                  
cases than others, having accounted for current case numbers, population size, and human mobility.              
Uncertainty in model estimates is generally greater in rural regions. 

Conclusions ​: A wide range of spatial heterogeneity in COVID-19 epidemic distribution and infection             
rate exists in England currently. Future work should incorporate fine-scaled demographic and health             
covariates, with continued improvement in spatially-detailed case reporting data. The method           
described here may be used to measure heterogeneity in real-time as behavioural and social              
interventions are relaxed, serving to identify “hotspots” of resurgent cases occurring in diverse areas              
of the country, and triggering locally-intensive surveillance and interventions as needed.  

Caveats ​: There is general concern over the ability of PHE testing data to capture the true prevalence                 
of infection within the population, though this approach is designed to provide measures of spatial               
prevalence based on testing that can be used to guide further future testing effort. Now-casts of                
epidemic characteristics are presented based on testing data alone (as opposed to “true” prevalence in               
any one area). The model used in this analysis is phenomenological for ease and speed of principled                 
parameter inference; we choose the model which best fits the current spatial case timeseries, without               
attempting to enforce “SIR”-type epidemic dynamics. 
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1. Introduction 

As the UK enters the next stage of the COVID-19 pandemic, and considers relaxation of current BSI                 
(Behavioural and Social Interventions, i.e. “lockdown”), accurate estimation of disease prevalence at a             
fine spatial scale is vital for informing and underpinning proactive disease management. A common              
characteristic of previous infectious disease outbreaks, most notably in the West African Ebola             
outbreak 2013-2016, is that post-peak epidemics are typically characterised by small focal outbreaks             
of disease occurring in disparate regions at different times. Spatial heterogeneity in incidence was              
observed in the UK for pandemic influenza, and the COVID-19 epidemic in the UK is exhibiting                
spatial heterogeneities. The ability to detect such spatial outbreaks is therefore key to efficient local               
containment, preventing local foci of infection degenerating into a nationally resurgent epidemic            
wave. 

In determining a suitably “fine” spatial scale at which to perform surveillance, report the occurrence               
of disease cases, and be able to predict risk from continued outbreaks, it is necessary to consider the                  
spatial variation of underlying population characteristics determining transmission of, and          
susceptibility to, COVID-19. For example, clinical studies have highlighted the importance of            
comorbidities, such as obesity and diabetes, and socioeconomic and ethnic background on severity of              
COVID-19 infection [Docherty ​et al., 2020; Fang ​et al 2020; Pareek ​et al., 2020], factors which are                 
known to vary with space, even over short distances. Such potential risk factors are routinely collected                
via Census information at geographically small scales, such as Lower Super Output Area. Thus there               
is a pressing need for reliable COVID-19 case reporting data at a spatial resolution to match                
underlying covariate data. 

In this paper, we analyse COVID-19 data since April 1st 2020 in England, disaggregating              
PHE-reported positive test cases at the Lower Tier Local Authority (LTLA). Our aim is to detect                
regions that have unusually high incidence of disease relative to the underlying population, and              
distinguish regions with high potential for self-sustaining transmission from those at risk of importing              
infection from other regions. We use established spatio-temporal methodology [Held ​et al.​, 2005] to              
outline an approach for providing now-casts of the spatial outbreak characteristics on a daily time               
scale, provided that reliable data are available at a high spatial resolution. Finally, we discuss these                
results in the context of spatial analysis of data from the “COVID Symptom Study”              
(​https://covid.joinzoe.com/​) which provides a far greater level of spatial granularity in self-reported            
COVID-19 symptom prevalence.  
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2. Methods 

In this section, we describe a spatiotemporal phenomenological approach to monitoring COVID-19 on             
a national scale, highlighting regions of higher than expected case incidence, regions that have high               
propensity for sustained transmission, and regions that are at risk from imported infection from other               
regions of the country. We begin by describing our various data sources, before describing the               
analytic model and fitting process. 

Data 

Case Data 

We base our analysis on positive test results in England, as reported by Public Health England (PHE,                 
https://coronavirus.data.gov.uk/​). Although these data may be subject to temporal biases due to            
changing testing regimes, they appear to provide the most spatially resolved measure of number of               
COVID-19 cases available to modellers with cases attributed to each of 315 Lower Tier Local               
Authorities (LTLAs) in England consistent with our aim of spatial analysis of the outbreak (modified               
from statutory LTLAs, see following section). As of 8th May 2020, these data contain 129320 cases                
attributed to a LTLA. The overall case time series is shown in Figure 1, exhibiting a decline from                  
early April, a strong weekend effect, and also evidence of a 4 day lag in reporting. The spatial weekly                   
case prevalence (number of cases divided by population size) for 6th April to 3rd May (discounting                
the latest 4 observations up to 7th May as unreliable) inclusive in Figure 2 shows marked variation                 
over England. 

Given the obvious change in overall epidemic dynamics after 23rd March (when BSI were              
implemented nationally), we henceforth perform our analysis on the time series from 1st April to 3rd                
May, discounting the 4 latest days’ observations as biased due to reporting lag. 

 

Figure 1: COVID-19 case time series up to 7th May 2020, England.  Data from 1st April to 3rd May 
only is analysed, denoted by the dashed box. 
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Figure 2: Spatial distribution of mean daily incidence per 100,000 people  in England by LTLA for 
weeks 8th April -- 3rd May inclusive.  

Inter-LTLA connectivity 

To establish connectivity between LTLAs in England, Census 2011 commuting volume data was             
aggregated from Middle Super Output Area (MSOA). This necessitated the aggregation of two pairs              
of LTLAs (Cornwall and Scilly, and City of Westminster and City of London) to allow mapping of                 
MSOAs onto LTLAs.  This reduced the statutory number of LTLAs from 317 to 315. 

Census 2011 commuting information provides an estimate of the number of journeys made from              
“Residence” to “Workplace” MSOAs, which when aggregated to our LTLA mapping provides a             
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matrix of dimension 315x315. Importantly is non-symmetric, reflecting commuting W       W       
behaviour rather than the reciprocity of disease transmission. We calculated a symmetric matrix             W ★  
of the daily number of ​journeys​ between each LTLA 

W ★ = W  + W T  

assuming that commuters return to their Residence each day, and go from their Residence to their                
Workplace and back at most once per day. The use of was found to degrade model fit compared           W ★         
to , and was therefore discarded.W  

Traffic volume 

Since inter-LTLA commuting data were derived from “business as usual” conditions in England, we              
assume that commuting is modulated during the COVID-19 outbreak by a relative measure of traffic               
flow provided by the UK Department for Transport (DfT). We construct a time series of traffic flow                 
by taking DfT’s estimate of daily domestic car usage across the UK, expressed as a fraction of car                  
usage on 1st February (Figure 3). The data used for our analysis covers the time period from 1st                  
February 2020 to 1st May 2020 inclusive, and so were extended back to 1st January 2020 and forward                  
to 7th May 2020 assuming values equal to their closest known neighbour in the overall time series.  

Potential covariates associated with the decline in cases are firstly the implementation of BSI on 23th                
March 2020, as well as observational information on traffic flow in England, retrieved from a national                
summary of domestic car travel (Figure 3).  

 

Figure 3: Road travel flow in England, expressed as a fraction of flow on 1st February 2020. 

Other Covariates 

Other important covariates are the estimated total population size for each LTLA taken from ONS               
December 2019 predictions, together with a dummy variable encoding weekday vs weekend (to             
account for obvious weekend dips in case data). 
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Model 

We model the progression of positive tests at the LTLA region level in England using a spatially                 
coupled autoregressive time series. Let be the number of positive COVID-19 tests in LTLA on     Y it           i   
day which we model as a negative binomial distributed random variable with mean and t              μit   
overdispersion r  

B(μ , r) Y it ~ N it   

In each region, we model as the sum of a “intrinsic” time-homogeneous force of infection , an     μit            εi   
autoregressive component within each region measuring the effect of within-region transmission,     λit        
and a spatial autoregressive term  measuring the effect of between-region transmission ϕit  

Y Yμit = εi + λit it−1 + ϕit ∑
 

i=j/
wij jt−1 (1) 

This makes the implicit assumption that the number of susceptible individuals does not change              
through time. Given the current low prevalence of disease – and therefore immunity – generally, we                
consider this to be a good approximation to the underlying epidemic process.  

We decompose each component of transmission in turn. For the intrinsic transmission, we weight              
each region by the population size, such that 

) (N ) t δ xlog(εi = ε0 + log i + δ1 +  2 t  

where is an offset representing the population size of LTLA , and is the baseline intrinsic N i           i   ε0      
incidence. Furthermore, represents time and an indicator for weekend days with associated  t     xt         
coefficients .δ  

For the within-region autoregressive term, we assume 

og(λ ) log(N )l it = αi + β1 i  

where is a assumed to be a region-specific transmission rate, allowing some regions to be above or αi                  
below the national average in terms of ongoing (i.e. autoregressive) infection risk, independently             
Normally distributed with mean  and variance .λ0 τ 2  

(λ , τ ) ∀ iαi ~ N 0  2  

For the spatial force of infection term we assume 

og(ϕ ) )  l it = ϕ0 + γ log(N ) (z1 i + γ2 log t  

where is the mean spatial force of infection, is the observed England-wide traffic flow on day  ϕ0         zt          
expressed as a fraction of the flow on 1st February 2020. Importantly, the term in Equation 1 ist                wij      

the mean daily number of commuters between regions and , allowing us to compute the sum of the        i   j          
force of infection on region  from all other regions .i =j / i  
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Inference 

Since we are interested in investigating current dynamics of the COVID-19 outbreak between LTLAs              
in England, we fit to “lockdown” case data only, taken to be from 1st April 2020 to allow for a 7 day                      
delay since lockdown measures were imposed (23rd March), and up to 3rd May beyond which data                
are regarded as incomplete. Parameter inference is performed using maximum likelihood estimation            
in the R package “surveillance” (version 1.18, Meyer ​et al.​, 2017) and R version 3.6.3, allowing us to                  
calculate the contribution to incidence in each region due to the intrinsic, within-region             
autoregressive, and between-region autoregressive terms. This allows us to distinguish between           
regions with unusually high incidence due to within-region epidemics, and those with unusually high              
transmission emanating from other areas. An advantage of this method is in its rapidity, with models                
fitting within minutes in order to provide real-time estimates of epidemic risk. 

3. Results 

Our results show a marked heterogeneity across England in COVID-19 incidence up to 3rd May 2020,                
not only in raw estimated incidence (Figure 2), but in the characteristics of within-region and               
between-region dynamics of PHE testing data. The choropleth maps in Figure 4 show the              
contribution to disease incidence of the within- and between-region autoregressive parts of the model              
and intrinsic component. The three components should be interpreted together. The Intrinsic            
component of the model establishes a baseline incidence across the whole of England, exhibiting a               
small linear decrease with respect to time (relative risk 0.978 (0.976, 0.980) per day, see Table S1).                 
The Within- and Between-region maps then outline departures from this overall trend. The             
Within-region map identifies regions that are primarily driven by a local epidemic process, such that               
the outbreak may be considered still increasing in these regions. County Durham, King’s Lynn and               
West Norfolk, and Ashford are particularly affected, together with other regions of the North West.               
The Between-region map indicates regions in which incidence is primarily driven by importation of              
infection from other parts of the country. Rural areas (in particular Eden and Penrith) are highlighted                
as having cases driven by external force of infection, though themselves are less likely to sustain                
ongoing transmission at the local level (being blue in the Within-region map). Time-series plots of               
the three model components are shown in Figure S1 for 4 arbitrarily chosen LTLAs. 

Figure 5 (left) shows a choropleth map of the region-level autoregressive component random effect.              
As with the Within-region component map in Figure 4, this may be interpreted as a region-specific                
propensity to generate more cases given the current number of infected individuals, and is analogous               
(but not equal!) to a region-specific reproduction number. There is evidence for a spatially diverse set                
of regions having a higher daily increase of cases than others, having accounted for current case                
numbers, population size, and human mobility. South and West Cumbria leads these regions, with              
unusually high within-region incidence. Figure 5 (right) shows the standard error associated with             
each estimate of the random effect, providing a quantification of uncertainty about the disease process               
in each LTLA. There are clear regions of the country where uncertainty is markedly higher than                
elsewhere, indicating an equality in our current understanding of the disease process. 

Predictive time series plots are shown in Supplementary Figure S2, indicating a good quality of model                
fit.  
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Figure 4: Contribution of Within- and Between-LTLA and intrinsic infection rate as a proportion of 
overall incidence. 

 

Figure 5: Left: Estimated district specific deviations expressed as a Relative Risk (1       αi − λ0        
represents national average). Higher values represent regions with a greater propensity for            
self-sustained disease transmission. Right: standard error of Within-LTLA random effect providing a            
measure of uncertainty about the disease process within each region. 

4. Discussion 

In this paper, we have applied a spatiotemporal stochastic process model to investigate the dynamics               
of COVID-19 positive tests reported by PHE at the LTLA level across England. Though              
phenomenological in nature, the model demonstrates its ability to capture a high level of stochastic               
variation within and between discrete regions, with our results showing that the incidence of              
COVID-19 infections, and the dynamics of the disease process causing infections, varies widely             
across the UK. By decomposing incidence particularly into Within- and Between-region components            
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(Figure 4), ​we show that the COVID-19 epidemic in England is still highly volatile, with regional                
activity that is not apparent when looking at aggregated national data (cf. Figure 1)​. 
Our results indicate a national decline in the incidence of reported positive COVID-19 cases, which in                
the absence of changes to BSI and population behaviour more widely may be expected to continue.                
However, should adherence to the BSI in place decline further, or governmental relaxations be              
introduced, we would expect this to reverse. Careful and detailed spatial monitoring of the impact of                
reversal on cases should be undertaken, which if coupled to analytic procedures such as ours can                
distinguish between regions affected in a heterogeneous way. ​The analysis demonstrates           
considerable localisation of ongoing transmission across England; the spatial granularity with           
which public health interventions are applied should reflect this.   

COVID-19 testing resources, even for resource-rich countries such as the UK, will always be              
constrained by cost and availability. Nevertheless, analytic methods such as ours may be used to               
direct testing resources to regions of greatest uncertainty. This method has been described by              
Kabaghe ​et al. (2017), for use in resource-poor settings, though is equally applicable here. The               
random effect standard errors in Figure 5 (right) may be used to ​coordinate and target surveillance                
in an adaptive fashion across the country, focusing on areas with higher uncertainty ​(high              
standard error). Surveillance information such as this may then be fed back into analysis to improve                
future estimates: testing resources are therefore directed to areas of poor knowledge, rather than being               
used needlessly in regions where the pattern of disease is already well understood. 

It is clear that more needs to be done to improve the spatial granularity of official case data reporting                   
to incorporate fine-scaled demographic and health variation, and the need to report negative tests              
alongside those positive in order to be able to make statements on certainty of prevalence estimates.                
As described below, projects such as the “COVID Symptom Study” clearly show the advantage of               
finely resolved spatial “prevalence” data, though lack the rigour of case definition afforded by clinical               
testing. 

Limitations 

Our model has a number of limitations due to the scope of the underlying case data, measures of                  
commuting, and geographical extent. Currently, we only consider England due to the availability of              
spatially resolved data at a fine scale, though as the other three nations of the UK improve their data                   
resolution our method will naturally extend to them. We do not currently account for cross-border               
migration, hence we expect to see significant “edge effects”, particularly in LTLAs on the border with                
Scotland and Wales.  

As mobility/interaction patterns were based on work-based commuting census information scaled by            
private vehicle usage, the model may overestimate the between-region effect for locations with large              
proportions of non-working individuals, and may not represent highly urban areas where car use is               
lower than the national average. We investigated this by adding a random effect to the               
Between-region model component, though this did not improve the fit of our model to the data                
significantly.  

The biggest limitation of our analysis is the reliability of the under-pinning COVID-19 test positive               
data from PHE. These data were used to demonstrate a pragmatic, fast, and informative analytic               
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technique, addressing our aims of highlighting “hotspots” of epidemic activity and providing a             
method of addressing spatially-varying measures of uncertainty for targeted surveillance. PHE has            
recently released LTLA-level data publicly, providing an opportunity to more fully exploit spatial             
analytic powers. Additionally, several factors that have been shown to contribute to risk from              
COVID-19 have been identified, including age, comorbidities, and possibly social deprivation and            
ethnicity. These factors show marked variation at small spatial scales, for example within a single               
town, and higher resolution case data may allow us to account for these variables to improve our                 
predictions. As an example, ​Figure S3 shows the GB-wide geographical variation, at Lower Super              
Output Area (LSOA)-level spatial resolution, in the rate of positive symptom reporting by users              
of the COVID-19 Symptom Tracker App developed by King’s College London and ZOE             
(https://covid.joinzoe.com/) in the 14 days to 16 April 2020​. Local symptom incidence shows a              
five-fold variation (upper left panel), albeit with relatively wide lower 5% and upper 95% probability               
limits (lower panels). Though data from the App provide only a crude estimate of number of                
COVID-19 cases, their use demonstrates a critical feature missing from current data streams:             
information is available not only on symptom positive individuals, but also on symptom negative              
individuals ​, allowing estimates of spatial prevalence with well characterised uncertainty (Diggle and            
Giorgi, 2019, p85). 
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Supplementary Figures and Tables 

 

Figure S1: Contributions to overall transmission from Intrinsic, Within-, and Between-region 
transmission for 4 LTLAs in England. 
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Figure S2: Predictive plots of case time series for 4 arbitrarily chosen LTLAs, demonstrating the fit of 
the spatiotemporal stochastic time series model. Observed cases are indicated by the black dashed line 
and dots, the median in-sample prediction by the solid blue line (95% confidence interval by the blue 

shaded region), and 7 day forward prediction similarly in orange. 
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Figure S3. Geographical variation in the proportion of active COVID-19 Symptom Tracker App users              
reporting positive symptoms at least once over the 14-day period to 16 April 2020. Point estimate of                 
prevalence (upper left panel), probability that underlying prevalence is greater than the GB-wide             
average (upper right panel), 5% lower and 95% upper probability limits (lower panels).  
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Model component Variable Relative Risk Estimate (95% 
CI) 

Baseline Intercept ε0  7926 (6651, 9447)​1 

 Linear time, δ1  0.978 (0.976, 0.980)​2 

 Weekend, δ2  0.536 (0.502, 0.572)​2 

Within-region Intercept λ0  4.11 (1.96, 8.62)​1 

 log Population β1  1.53 (1.35, 1.74)​2 

 Random effect variance τ 2  0.25​3 

Between-region Intercept  ϕ0  3.00e-4 (6.35e-5, 1.42e-3)​1 

 log Population γ1  0.460 (0.368, 0.575)​2 

 log Commuting γ2  0.387 (0.198, 0.757)​2 

Observation model over-dispersion r  0.158 (0.149, 0.166)​3 

Table S1: Parameter estimates for the spatiotemporal time-series model for COVID-19 in England 
LTLAs.  ​1​Absolute incidence; ​2​Relative Risk; ​3​Natural scale. 
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