
Research Article

COVID-19 in Iran: Forecasting Pandemic Using Deep Learning

Rahele Kafieh,1 Roya Arian,1 Narges Saeedizadeh,1 Zahra Amini ,1 Nasim Dadashi Serej,1

Shervin Minaee,2 Sunil Kumar Yadav ,3 Atefeh Vaezi,4 Nima Rezaei,5

and Shaghayegh Haghjooy Javanmard6

1Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of

Medical Sciences, Isfahan, Iran
2Snap Inc., Machine Learning Research Team, Seattle, WA, USA
3Nocturne GmbH, Berlin, Germany
4Department of Community and Family Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
6Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence should be addressed to Zahra Amini; zahraamini64@yahoo.com.au

Received 1 July 2020; Revised 6 January 2021; Accepted 6 February 2021; Published 26 February 2021

Academic Editor: Konstantin Blyuss

Copyright © 2021 Rahele Kafieh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

COVID-19 has led to a pandemic, affecting almost all countries in a few months. In this work, we applied selected deep learning
models including multilayer perceptron, random forest, and different versions of long short-term memory (LSTM), using three
data sources to train the models, including COVID-19 occurrences, basic information like coded country names, and detailed
information like population, and area of different countries. The main goal is to forecast the outbreak in nine countries (Iran,
Germany, Italy, Japan, Korea, Switzerland, Spain, China, and the USA). The performances of the models are measured using
four metrics, including mean average percentage error (MAPE), root mean square error (RMSE), normalized RMSE (NRMSE),
and R

2. The best performance was found for a modified version of LSTM, called M-LSTM (winner model), to forecast the future
trajectory of the pandemic in the mentioned countries. For this purpose, we collected the data from January 22 till July 30, 2020,
for training, and from 1 August 2020 to 31 August 2020, for the testing phase. Through experimental results, the winner model

achieved reasonably accurate predictions (MAPE, RMSE, NRMSE, and R
2 are 0.509, 458.12, 0.001624, and 0.99997,

respectively). Furthermore, we stopped the training of the model on some dates related to main country actions to investigate
the effect of country actions on predictions by the model.

1. Introduction

An outbreak of pneumonia with an unknown origin was
reported in Wuhan, China, last December 2019 [1]. The
World Health Organization named this disease COVID-19
after its genetic sequencing revealed the same origin of the
etiologic agent with corona viruses [2–4]. From the begin-
ning of the epidemic till 22 Oct. 2020, more than

41,000,000 confirmed cases and more than one million
deaths had been reported [5].

One of the most important concerns in dealing with
influenza-like illness (ILI) pandemics such as COVID-19 is
early identification and short-term estimation of its final size
and peak time. This early prediction using mathematical and
statistical models and combining with existing data would
effectively help the governments and public health officials
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put in place appropriate prevention and control strategies [6,
7]. For answering this issue, many mathematical models are
already used for predicting ILI pandemics. Fang et al. [8]
investigated the effect of early recommended or mandatory
measures on reducing the crowd infection percentage, using
a crowd flow model. Roosa et al. [9] used phenomenological
models that have been validated during previous outbreaks to
generate and assess short-term forecasts of COVID-19.
Kucharski et al. [10] combined a mathematical model of
severe SARS-CoV-2 transmission with four datasets. Peng
and colleagues [11] analyzed the COVID-19 epidemic in
China using dynamical modeling to estimate the key epi-
demic. A. Remuzzi and G. Remuzzi [12] analyzed the
COVID-19 situation in Italy and found its similarity to
China. Sajadi et al. [13] tried to predict potential spread
and seasonality for COVID-19 based on temperature,
humidity, and latitude information. Mangoni and Pistilli
[14] suggested a dynamical model, a developed generalized
SEIR model based on [11], to make predictions on the
COVID-19 outbreak using the Italian Dipartimento della
Protezione Civile data. Anastassopoulou et al. [15] estimated
the main epidemiological parameters, particularly the case
fatality and case recovery ratios based on a susceptible-infec-
tious-recovered-dead (SIRD) model with 90% confidence
intervals. They adopted an autoregressive integrated moving
average (ARIMA) model on the data collected from 31st Jan-
uary 2020 to 25th March 2020 and verified it using the data
collected from 26th March 2020 to 04th April 2020. Khan
and Gupta [16] proposed an autoregressive integrated mov-
ing average (ARIMA) model to predict the number of
COVID-19-infected cases in India.

Based on some prominent studies in this field [17, 18],
software computing methods, especially deep learning
methods, conquered other classical models in the short-
term estimation of pandemics. Given the novelty of the
COVID-19 research, most studies have already focused on
short-term prediction, and a limited number of works are
already published on prediction and diagnosis of COVID-
19 using deep learning models [19]. Ayyoubzadeh et al.
[20] used a linear regression model and LSTM to predict
the incidence of COVID-19 using Google trends on daily
incidence data achieved from the Worldometer website from
15 February to 18 March 2020 in Iran. Zeroual et al. [21] pre-
sented a comparison of five deep learning methods, simple
recurrent neural network (RNN), long short-term memory
(LSTM), bidirectional LSTM (BiLSTM), gated recurrent
units (GRUs), and variational autoencoder (VAE) algo-
rithms, to predict the number of new cases and recovered

cases. Chimmula and Zhang [22] aimed to forecast the future
COVID-19 cases and the possible end of the outbreak in
Canada using a long short-term memory (LSTM) network.
Chatterjee et al. [23] applied different univariate “long
short-term memory (LSTM)” models to forecast COVID-
19 new cases and deaths. They concluded that vanilla,
stacked, and bidirectional LSTM models outperformed mul-
tilayer LSTM models. Wieczorek et al. [24] suggested a neu-
ral network model for predicting the COVID-19 outbreak
and reported accuracy above 99% in some. Melin et al. [25]
used a multiple ensemble neural network model with fuzzy
response aggregation to predict time series of the COVID-
19 in Mexico. Liu et al. [26] investigated three different
models, a modified susceptible-exposed-infected-recovered-
dead (SEIRD), a long short-term memory (LSTM), and a
geographically weighted regression (GWR), for prediction
of the spread of COVID-19 cases in China. They reported
all three models performed well, comparing their accuracy.
Gao et al. [27] developed an ensemble model using four
machine learning methods, logistic regression, support vec-
tor machine, gradient boosted decision tree, and neural net-
work, to predict mortality risk of COVID-19 using clinical
data of patients.

This study provides a deep learning-based prediction
method that can assist medical and governmental institu-
tions in preparing and adjusting as pandemics unfold. To this
end, we utilized multiple models describing the epidemic and
compare their performances and effective features in fore-
casting. To make sure our methodology is generalizable, in
addition to data of Iran (which is our main focus in this
paper), we also apply this framework to several other coun-
tries and show consistent findings for all of them. Finally,

Table 1: The best-selected architecture for each model and
characteristics of each one.

Model Layers Filters

RF n estimators = 300 Random state = 10

MLP 6 128, 128, 256, 256, 256, 1

LSTM-R 2 LSTM+2 dense 64, 32, 32, 1

LSTM-E 2 LSTM+2 dense 64, 32, 32, 1

M-LSTM 2 LSTM+2 dense 64, 32, 32, 1

Table 2: Comparison of performance in test stage on nine selected
countries.

Model BI DI Lag MAPE R
2 score RMSE NRMSE

RF

∗ 2.34 0.99119 19497 0.069109

∗ ∗ 2.6 0.98764 23103 0.081891

∗ ∗ ∗ 2.7 0.98741 23308 0.082617

MLP

∗ 1.32 0.99422 499 0.001769

∗ ∗ 1.7 0.99348 530 0.001879

∗ ∗ ∗ 1.54 0.99380 517 0.001833

LSTM-R

∗ 2.260 0.98088 3242.91 0.011495

∗ ∗ 2.032 0.98185 1065.41 0.003776

∗ ∗ ∗ 2.025 0.99023 1032.34 0.003659

LSTM-E

∗∗ 1.213 0.99521 750.60 0.002661

∗ ∗∗ 1.251 0.99671 610.86 0.002165

∗ ∗ ∗∗ 0.911 0.99832 580.41 0.002057

M-LSTM

∗∗ 0.726 0.99884 530.74 0.001881

∗ ∗∗ 0.550 0.99981 490.17 0.001737

∗ ∗ ∗∗ 0.509 0.99997 458.12 0.001624

∗ represents only confirmed cases as input and ∗∗ shows the confirmed cases
along with death and recovered cases. BI: basic information; DI: detailed
information. The performance is evaluated on confirmed cases as output.
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we select the winner model and compare its predictions with
the real data. We show that country actions may change the
predicted trend and cause a deviation between prediction
and real data.

The structure of the rest of this paper is as follows. Sec-
tion 2.1 presents the details of the data sources used in this
study. Section 2.2 gives a quick introduction to the machine
learning algorithms used for training a predictive model. Sec-
tion 3 provides a detailed quantitative and qualitative analy-
sis of forecasting accuracy in Iran and other countries.
Furthermore, the method investigates the effect of govern-
ment policy on the number of infected cases. Finally, the
paper is concluded in Section 4 by discussing the current sit-
uation and the future of COVID-19 in Iran based on the cur-
rent data.

2. Materials and Methods

2.1. Research Data. This study uses three data sources to pre-
dict COVID-19 disease, including COVID-19 data, basic
information, and detailed information for each country.
The COVID-19 data (by John Hopkins University) contains
the daily number of confirmed/death/recovered people [28]
.The basic information contains information about the date/-
country/province of the cases. The detailed information for
each country (according to information in [29]) includes
information such as region/population/area (sq. mi.)/pop.

density (per sq. mi.)/coastline (coast/area ratio)/net migratio-
n/infant mortality (per 1000 births)/GDP/literacy (%)/clima-
te/birthrate/death rate/agriculture/industry/service/arable
(%)/crops (%). Data of all countries provided by John Hop-
kins University from January 22 till July 30, 2020, were used
as the training set. The training data is further divided into
train and validation subsets using a ratio of 7 : 3 based on
the dates. The performance in the test stage was evaluated
based on the data between 1 August 2020 and 31 August
2020 from nine countries (Iran, Germany, Italy, Japan,
Korea, Switzerland, Spain, China, and the USA). We predict
the upcoming days from 31 August 2020 to provide forecast-
ing on the number of confirmed, deaths, and recovered in all
nine countries.

2.2. Analysis Method. In the proposed method, first, the rel-
evant information is extracted and processed from data
sources. Those models are then trained on COVID-19
data. Finally, the performances of the models are mea-
sured using the mean average percentage error (MAPE),
root mean square error (RMSE), NRMSE, and R

2 metrics.
We experimented with different machine learning models
and reported the result of five promising ones, which
includes random forest (RF) [30], multilayer perceptron
(MLP) [31], long short-term memory (LSTM) [32] with
regular features (LSTM-R), LSTM with extended features
(LSTM-E), and multivariate LSTM (M-LSTM). Different
structures (hyperparameters and parameters) are examined
for each of these models, and the best performing archi-
tectures are summarized in Table 1. As shown in
Table 2, features of each country (such as basic and
detailed features and lag (previous occurrences) explained
in Section 3.1) are utilized as input parameters. For com-
parison of the models, MAPE, R

2, RMSE, and NRMSE
parameters are calculated as the performance metric. Each
model is applied to the data separately. We used imple-
mentation in the Keras package in the Python version
3.7.3 [33].

For comparing different models, MAPE in percentage
terms, RMSE, NRMSE, and R

2 metrics are used to measure

Data set
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Figure 1: The overall diagram of a RF.
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Figure 2: The overall structure of the MLP network.
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Figure 3: The overall structure of the LSTM model.
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Figure 4: The MAPE values for predicting occurrences of confirmed, death, and recovered cases from COVID-19, when 1-20 days of lag are
used in the preparatory model.

Table 3: Comparison of performance in the test stage on nine selected countries.

Model BI DI Lag MAPE R
2 RMSE NRMSE

RF

∗ 2.241 0.999988 111 0.00055

∗ ∗ 3.996 0.999712 199 0.000986

∗ ∗ ∗ 11.852 0.998976 283 0.001402

MLP

∗ 0.482 0.999991 20 0.000099

∗ ∗ 1.320 0.999722 109 0.00054

∗ ∗ ∗ 0.990 0.999801 65 0.000322

LSTM-R

∗ 1.549 0.999709 110.5 0.000547

∗ ∗ 1.210 0.999799 107.4 0.000532

∗ ∗ ∗ 1.325 0.999714 109.2 0.000541

LSTM-E

∗∗ 1.302 0.999790 108.1 0.000535

∗ ∗∗ 1.112 0.999800 105.9 0.000524

∗ ∗ ∗∗ 0.960 0.999853 59.2 0.000293

M-LSTM

∗∗ 0.641 0.999901 42.5 0.000210

∗ ∗∗ 0.524 0.999956 31.9 0.000158

∗ ∗ ∗∗ 0.481 0.999994 20.0 0.000099

∗ represents only death cases as input and ∗∗ shows the confirmed cases along with death and recovered cases. BI: basic information; DI: detailed information.
The performance is evaluated on death cases as output.
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the size of the error regarding the actual values. These metrics
are calculated using Equations (1)–(6):
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Table 4: Comparison of performance in test stage on nine selected countries.

Model BI DI Lag MAPE R
2 RMSE NRMSE

RF

∗ 2.069 0.980306 2823 0.001057

∗ ∗ 2.557 0.979987 3012 0.001128

∗ ∗ ∗ 2.580 0.979985 4620 0.00173

MLP

∗ 0.337 0.999989 1059 0.000397

∗ ∗ 1.686 0.980184 4634 0.001735

∗ ∗ ∗ 0.786 0.989893 3046 0.001141

LSTM-R

∗ 2.030 0.980005 4963 0.0018658

∗ ∗ 1.941 0.980102 4702 0.001761

∗ ∗ ∗ 1.536 0.986131 4369 0.001636

LSTM-E

∗∗ 0.547 0.989981 1784 0.000668

∗ ∗∗ 0.853 0.989634 2921 0.001093

∗ ∗ ∗∗ 0.624 0.989972 1991 0.000745

M-LSTM

∗∗ 0.302 0.999991 1000 0.000374

∗ ∗∗ 0.132 0.999997 621 0.000232

∗ ∗ ∗∗ 0.073 0.999999 210 0.0000786

∗ represents only recovered cases as input and ∗∗ shows the confirmed cases along with death and recovered cases. BI: basic information; DI: detailed
information. The performance is evaluated on recovered cases as output.

6000

5000

4000

3000

3000

2000

2000

2500

1000

1000

1500

0 0

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

500

C
o

n
�

rm
ed

 c
as

es

C
o

n
�

rm
ed

 c
as

es

Random forest Multivariate LSTM

Train TrainTest Test

Real

Predict

Figure 5: Comparison of the worst and the best performing models in the correct following of the training set and accurate prediction of the
test values.

5Computational and Mathematical Methods in Medicine



In an ideal condition, the observed values and predicted
values are identical (R2 = 1). On the other hand, if R2 = 0:5,
almost half of the observed variation can be explained by
inputs of the model. The normalized root mean square error
(NRMSE) is also used to compare models with different scales.
This factor is the fraction RMSE on the observed range of data:

NRMSE =
RMSE

Xmax − Xmin

, ð6Þ

where X
t
is the actual value, Y

t
is the corresponding esti-

mated value for the t
th sample, Xmax is the maximum, Xmin

is the minimum value, and �X is the average of actual values
from all n available samples.

2.2.1. Random Forest. One of the models used in our work is
random forest (RF) [27]. RF is essentially an ensemble of
decision trees; it predicts the target value by training several
decision trees and combining their results. One nice feature
of RF is that it can be used for both regression and classifica-
tion problems. Once the model is trained, the average pre-
dicted score of different trees can be used to predict the
value of test samples. The two most popular ensemble
methods are bagging and boosting. In bagging, individual
models are trained in parallel by a random subset of the data

7000

6000
Train Test Forecast

5000

4000

3000

N
u

m
b

er
 o

f 
ca

se
s

2000

1000

0

Date

02
-1

4-
20

20

01
-1

5-
20

20

03
-1

5-
20

20

04
-1

4-
20

20

05
-1

4-
20

20

06
-1

3-
20

20

07
-1

3-
20

20

08
-1

2-
20

20

09
-1

1-
20

20

10
-1

1-
20

20

11
-1

0-
20

20

12
-1

0-
20

20

01
-0

9-
20

21

02
-0

8-
20

21

03
-1

0-
20

21

04
-0

9-
20

21

Con�rmed_predicted

Con�rmed_real

(a)

400
Train Test Forecast

300

200

N
u

m
b

er
 o

f 
ca

se
s

100

0

Date

Death_predicted

Death_real

Train Test Forecast

02
-1

4-
20

20

01
-1

5-
20

20

03
-1

5-
20

20

04
-1

4-
20

20

05
-1

4-
20

20

06
-1

3-
20

20

07
-1

3-
20

20

08
-1

2-
20

20

09
-1

1-
20

20

10
-1

1-
20

20

11
-1

0-
20

20

12
-1

0-
20

20

01
-0

9-
20

21

02
-0

8-
20

21

03
-1

0-
20

21

04
-0

9-
20

21

(b)

10000

8000

6000

4000

2000

Train Test Forecast

N
u

m
b

er
 o

f 
ca

se
s

0

02
-1

4-
20

20

01
-1

5-
20

20

03
-1

5-
20

20

04
-1

4-
20

20

05
-1

4-
20

20

06
-1

3-
20

20

07
-1

3-
20

20

08
-1

2-
20

20

09
-1

1-
20

20

10
-1

1-
20

20

11
-1

0-
20

20

12
-1

0-
20

20

01
-0

9-
20

21

02
-0

8-
20

21

03
-1

0-
20

21

Date

04
-0

9-
20

21

Recovered_predicted

Recovered_real

Train Test Forecast

(c)

1.0

1e6

0.8

0.6

0.4

0.2

Train Test Forecast

N
u

m
b

er
 o

f 
ca

se
s

0.0

02
-1

1-
20

20

01
-1

2-
20

20

03
-1

2-
20

20

04
-1

1-
20

20

05
-1

1-
20

20

06
-1

0-
20

20

07
-1

0-
20

20

08
-0

9-
20

20

09
-0

8-
20

20

10
-0

8-
20

20

11
-0

7-
20

20

12
-0

7-
20

20

01
-0

6-
20

21

02
-0

5-
20

21

03
-1

7-
20

21

Date

04
-0

6-
20

21

Con�rmed

Recovered

Death

(d)

Figure 6: Forecasting (a) confirmed, (b) death, and (c) recovered daily values and performance of the forecasting after August 31 compared to
real reported values and (d) cumulative values for Iran using the M-LSTM method.
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[30]. Figure 1 shows the overall diagram of a RF. RF is a bag-
ging method and parallel trees work in random forests with-
out any interaction among them (Tree 1, Tree 2,…, Tree M
in Figure 1). A random sample is selected repeatedly from
the training set, and with the different replacement of the
training set, the trees fit these samples. During the training
time, all parallel trees work, and the mean prediction of the
individual trees (AverageC

i
) is reported as an output of RF.

2.2.2. Multilayer Perceptron (MLP). Multilayer perceptron
(MLP) is a popular neural network, which uses a cascade of
several nonlinear transformations to make a prediction. In
this network, there are at least three layers of nodes, the input
features are sometimes called the input layer, and the inter-
mediate transformations are called the hidden layer. The out-
puts of the first layer (input) are used as the inputs of the next
layer (hidden); this continues until, after a certain number of
layers, the output of the last hidden layer is used as the input
of the output layer. All nodes in hidden layers use a nonlinear
activation function.

The output in the last layer is called the predicted output.
In all supervised learning algorithms, the actual output is
called the expected output. Expected outputs are used to
measure the performance of the neural network system.
Based on the expected output and predicted output values,
the amount of loss of the MLP network is calculated. The cal-
culated loss amount is used to propagate the error in theMLP
and update the weights.

After calculating the amount of loss in the previous step,
this value is propagated from the output layer to the first
layer in the network, and using the concept of a gradient,

the weights of the multilayer perceptron neural network are
updated. In Figure 2, the structure of the MLP network was
shown. In this study, we have used a model with 5 hidden
layers. The detailed information about all layers is explained
in Table 1.

2.2.3. Long Short-Term Memory (LSTM). LSTM is an artifi-
cial recurrent neural network (RNN) architecture in deep
learning. Unlike standard feedforward neural networks,
LSTM contains feedback links [29]. Time series adds the
complexity of a sequence dependency among the input vari-
ables [32] and ideally requires a model with the sequential
processing capability. The vanilla neural networks (such as
MLP) do not have sequential processing power. However,
there is an extension of feedforward neural networks for this
purpose, called recurrent neural networks, where at each
step, the input from the current time and the hidden state
from the previous timestamp is used to make a prediction.
Figure 3 illustrates the overall structure of the LSTM model.
In this study, we have used a model with two LSTM and
two dense layers with 64, 32, 32, and 1 filters (nodes) in each
layer. This information is listed in Table 1.

(1) LSTM with Regular Features (LSTM-R). In this applica-
tion of LSTM, we originally deal with three different occur-
rences: the number of confirmed/death/recovered people.
Using regular features, we feed lagged samples of each occur-
rence to predict the next values (a single-input and single-
output (SISO) format).

(2) LSTM with Extended Features (LSTM-E). By adding
extended occurrences from the other two types to predict
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Figure 8: Continued.
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the next value for each class (confirmed/death/recovered), we
accept a multi-input and single-output (MISO) format.

(3) Multivariate LSTM (M-LSTM). An alternate time series
problem is the case where there are multiple parallel time
series and a value must be predicted for each. Now, we may
consider the number of occurrences in all classes (confir-
med/death/recovered) as input data and predict the value
for each of the three time series for the next time step (a
multi-input and multioutput (MIMO) format).

3. Results

The machine learning models are trained and tested based on
84,372 occurrences of the daily number of confirmed, death,
and recovered COVID-19 cases. A lag of six days was applied
to the data. The dataset is divided into training and test data
sets. Each model is tested with very different architectures,
and the best performance is achieved with the architectures
described in Table 1.

The performance of each model is evaluated on the test
set with evaluation based on the MAPE, RMSE, NRMSE,
and R

2 values. The best lag is found by comparing MAPE
values as discussed in Section 3.1. The results also changed
by feeding different input features to each candidate model
(elaborated in Table 1) in Section 3.2. The best model/input
combinations are then found to forecast the next days in Sec-
tion 3.3. The effect of country actions on predictions is also
investigated in Section 3.4.

3.1. Optimal Lag Parameter. Assuming that we want to pre-
dict the occurrences after a time point, it is not enough to
only consider the information from one single day; one needs
to use information from some passing days (lag parameter).
Different time intervals for “lag” can be considered before
the examined day to feed the data into the M-LSTM model
to predict confirmed, death, and recovered cases. To find
the optimum lag, data of all countries from 22 January
2020 till 30 July 2020 was used as the training set and the data
from 1 August 2020 till 31 August2020 of a set of nine
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Figure 8: Forecasting (a, e, i, m) confirmed, (b, f, j, n) death, and (c, g, k, o) recovered daily values and performance of the forecasting after
August 31 compared to real reported values, and (d, h, l, p) cumulative values for Germany (first row), Italy (second row), Japan (third row),
and Korea (fourth row) using the M-LSTM method.
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Figure 9: Continued.
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countries (Iran, China, Italy, Spain, Germany, Switzerland,
Korea, Japan, and the USA) was used as test data. Figure 4
is designed to show the MAPE values for predicting occur-
rences of confirmed, death, and recovered cases from
COVID-19 when lags of 1-20 days are used on validation
data in a preparatory model to find the optimum lag in the
considered range. The lowest MAPE is found for lags of 6,
8, and 10 days; 5, 6, and 7 days; and 5, 6, and 18 days for con-
firmed, death, and recovered cases, correspondingly. There-
fore, a lag of six days in all three cases is selected as the
“optimal lag parameter.”

3.2. Optimal Model Selection. Five different models (Section
2.2) and three input settings (selected lag (previous occur-
rences) alone and adding basic and detailed features in the
next two settings) are evaluated. A set of nine countries are
selected for evaluation; China is undoubtedly the main candi-
date. Iran, Italy, Spain, and the USA are selected due to the
report of a high number of confirmed and death cases. Ger-
many and Switzerland are also coming from different trends

with a high number of confirmed cases and a controlled
number of deaths. Finally, Korea and Japan are also included
in demonstrating the countries with a high degree of control
on the epidemic. Tables 2, 3, and 4 show the performance of
the model in the nine selected countries for the confirmed,
death, and recovered groups. Concerning the results of
Table 2, we found the best set of parameters, including basic
and detailed features plus lag (previous occurrences). Fur-
thermore, the results suggest that M-LSTM is the best per-
forming network (winner model) for identifying the true
magnitude of the pandemic with the best performance met-
rics: MAPE, RMSE, NRMSE, and R

2 of 0.509%, 458.12,
0.001624, and 0.99997, respectively. Figure 5 compares the
ability of best- and worst-performing (RF) models in the cor-
rect prediction of the test values.

3.3. Future Trajectory of COVID-19 in Iran. As described
above, data from all countries provided by John Hopkins
University [28] from January 22 till July 30, 2020, was used
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Figure 9: Forecasting (a, e, i, m) confirmed, (b, f, j, n) death, and (c, g, k, o) recovered daily values and performance of the forecasting after
August 31 compared to real reported values, and (d, h, l, p) cumulative values for Switzerland (first row), the USA (second row), Spain (third
row), and China (fourth row) using the M-LSTM method.
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as the training set. The test set is data from the nine men-
tioned countries between 1 August and 31 August 2020.
Based on this test result in Tables 2, 3, and 4, the winner
model (M-LSTM) is selected for forecasting the future trajec-
tory of COVID-19 in Iran.

The forecasting results are illustrated in Figure 6. The
predicted daily numbers of confirmed, death, and recovered
cases in Iran are demonstrated in Figures 5(a)–5(c), respec-
tively. We also show the cumulative numbers of all cases in
Iran in Figure 5(d). To show the performance of the model
in other countries mentioned, we also present the predictions
by the proposed method in Appendix.

3.4. Effect of Country Actions on Predictions. In this paper, we
propose a new scheme for modeling the “country actions” in
Iran. Nationwide actions cannot be ignored during the
modeling; however, the deep learning methods have no par-
ticular input indicating that. Accordingly, the trend of the
time series in each time period is only dependent on actions
made prior to that time point. To address this limitation, we
stopped the training at different time points (each in accor-
dance with distinct country actions). We expect that the pre-
dictions in each case confirm with prior actions, and any new
action would result in a different curve. Therefore, if the
action had a positive effect, the predicted number of infected
people goes up compared to the real curve. On the other
hand, the negative actions would lead to lower values in the
predicted curve, indicating that a good scenario could hap-
pen without such incorrect actions. Three sample actions
and occasions in Iran are considered in this paper:

(i) The nationwide closure of schools/universities, non-
essential services, and public transportation in big
cities before March 11, 2020

(ii) Persian new year on March 19, 2020, and holiday
trips (which was not banned officially and caused a
great amount of transfer in Iran)

(iii) Closure of roads between cities from March 27 to
April 4, 2020

As shown in Figure 6, the training of the model (for pre-
diction of confirmed cases) is stopped on three dates related

to the occasions mentioned above. The blue curve on March
11 indicates that without first action, the curve could rise on
March 11. On the other hand, the red curve shows a consid-
erably lower peak could potentially happen if the second
occasion would not happen. Finally, the green curve shows
that the closure of roads would lead to a vanishing curve,
which never happened due to the stop of this restriction
and the following decisions.

4. Discussion

COVID-19 pneumonia started in late December 2019 and
posed a continuing and dynamic threat globally. The first
case was confirmed by February 19, 2020, in Iran. The main
question of the public and politicians is the behavior of the
epidemic, including the peak day, peak number, endpoint,
and the daily number of new cases and deaths. Being aware
of the real-time behavior of epidemics is vital for efficient
logistics in the outbreak response. Forecast models will help
the policymakers speculate the potential trajectory of the out-
breaks and drive interventions as well as estimate the impact
of interventions.

Five different models (Section 2.2) and three input set-
tings (selected lag (previous occurrences) alone and adding
basic and detailed features in the next two settings) are eval-
uated on a set of nine countries, and based on MAPE, RMSE,
NRMSE, and R

2 metrics, M-LSTM was the most accurate
model found in this study. As mentioned before, it is not
enough to only consider the information from one single
day, so different time lags are considered before the examined
day to feed the data into the model to predict confirmed,
death, and recovered cases. This network uses lag informa-
tion from confirmed, death, and recovered cases to predict
the next occurrences. As an important issue, the number of
days used as input and the output of prediction methods,
the optimal lag of six days, and long-term (extendable to
months) forecast are proposed in this study, unlike other
studies that have a shorter forecast time [21, 22, 24, 26]. As
shown in Table 2, all three groups (confirmed/death/recov-
ered people) are used as the input of the selected model and
to estimate one of the outputs. Therefore, the effect of all cat-
egories on the output is considered. This result shows that
considering the mutual effect of these three occurrences can
provide better modeling, and ignoring such dependence
leads to less performance.

The basic assumption of the models is the stability of the
environment measurements, but as we do not live in con-
trolled conditions, every decision would change the epidemic
track. As illustrated in Figure 6, by considering the stability of
outbreak response, the first peak of the epidemic occurred
around April 1st, with about 3000 new cases. The intersec-
tion of the predicted curve with observed data in
Figures 6(a)–6(c) indicates the ability of correct forecasting
by the proposed method.

Although the impact of actions of different countries on
forecasts has been investigated in the articles, in this study,
a newmethod was applied to investigate this effect on predic-
tions. The training was stopped at different time points (each
in accordance with distinct country actions). If actions of a

Table 5: Comparison of performance in forecast stage on nine
selected countries from September 1 to October 12.

Country
MAPE

Confirmed Recovered Deaths

Iran 0.45 0.19 0.79

Germany 0.778 0.27 1.01

Italy 1.2 0.84 0.81

Japan 1.22 0.41 0.98

Korea 0.71 1.31 1.1

Switzerland 0.64 0.43 0.47

The USA 0.23 0.75 0.35

Spain 0.95 0.7 0.01

China 0.21 1.75 0.96
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country have a positive effect, the predicted number of
infected people will increase compared to the actual curve;
on the other hand, negative actions will lead to a decrease
in the predicted curve values. The effect of governmental
decisions and public occasions is illustrated in Figure 7. Con-
sidering that it takes around 5-6 days (the median of incuba-
tion period) for the results of interventions to show up on
new case numbers, the difference between blue (predicted)
and green (real effect of big closure in the country) curves
between March 11 and 25 is the result of good decisions.
However, the difference between red (predicted) and green
(real effect of travels) between March 23 and April 2 is
because of a bad occasion. By focusing on social distancing,
there could be a steady decline in new cases after April 2 as
shown by the green line, but changes in public health policies
(like reopening of most public places in Iran or change in
case of definition, testing availability, and the number of tests
performed) reformulated the epidemic track, and the num-
ber of daily cases has started to go up as well.

Using this model, we aimed to identify (1) the intensity
and the timing of the epidemic peak, (2) the total number of
cases expected over the duration of the epidemic of COVID-
19 in Iran, and (3) the effect of government policy on the num-
ber of infected cases. Determining these outcomes could
improve resource allocation for risk communication, primary
prevention, secondary prevention, and preparedness plans
(e.g., planning medical staff and preparing triage units)

5. Conclusion

The recent outbreak of COVID-19 is affecting many coun-
tries worldwide including Iran as one of the top 10 most
affected countries. In this study, we proposed the use of pre-
diction models for COVID-19 incidence in Iran; our result
could be useful in preparing for future outbreaks as well as
the current one by considering the results in public health
decision-making. Similar to other modeling techniques, the
approach presented here is subject to limitations, which
include data quality associated with real-time modeling (as
data is often subject to ongoing cleaning, correction, and
reclassification of onset dates as further data become avail-
able), reporting delays, and problems related to missing data.
Predicting confirmed, death, and recovered cases can help
healthcare organizations to identify logistical barriers related
to medical equipment at the outbreak center and to rapidly
build new local medical facilities. Furthermore, such predic-
tions may help other countries that are now battling the out-
break to be more prepared. These measures are also essential
to control the epidemic, protect frontline health workers, and
reduce the severity of patient outcomes.

Appendix

Predictions on More Countries

Here, we present the predictions by the proposed model (M-
LSTM and three input settings including basic and detailed
features and lag) for Germany, Italy, Japan, and Korea in
Figure 8 and for Switzerland, Spain, China, and the USA in

Figure 9. As can be seen from the first to third columns in
Figures 8 and 9, there is always a lag between the actual num-
bers and the predicted ones, but the model seems to work on
a wide range of countries, which is encouraging. Also, a com-
parison of performance in the forecast stage from September
1 to October 12 on nine selected countries is summarized in
Table 5.
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