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Abstract 

Computer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) 

detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learn-

ing techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for 

evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize 

nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps 

of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for 

clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-

19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest 

dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth seg-

mentation masks is performed on CXRs by a novel collaborative human–machine approach. Furthermore, we publicly 

release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed 

set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an 

F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the 

proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity.
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Introduction
Coronavirus disease 2019 (COVID-19) caused by severe 

acute respiratory syndrome Coronavirus-2 (SARS-

CoV-2) was first reported in December 2019 in Wuhan, 

China. �e highly infectious disease rapidly spread 

around the World with millions of positive cases. As 

a result, COVID-19 was declared as a pandemic by the 

World Health Organization in March 2020. �e disease 

may lead to hospitalization, intubation, intensive care, 

and even death, especially for the elderly [1, 2]. Natu-

rally, reliable detection of the disease has the utmost 

importance. However, the diagnosis of COVID-19 is not 

straight-forward since its symptoms, such as cough, fever, 

breathlessness, and diarrhea are generally indistinguish-

able from other viral infections [3, 4].

�e diagnostic tools to detect COVID-19 are currently 

reverse transcription of polymerase chain reaction (RT-

PCR) assays and chest imaging techniques, such as Com-

puted Tomography (CT) and X-ray imaging. Primarily, 

RT-PCR has become the gold standard in the diagnosis 

of COVID-19 [5, 6]. However, RT-PCR arrays have a high 

false alarm rate which may be caused by the virus muta-

tions in the SARS-CoV-2 genome, sample contamination, 

or damage to the sample acquired from the patient [7, 8]. 

In fact, it is shown in hospitalized patients that RT-PCR 

sensitivity is low and the test results are highly unsta-

ble [6, 9–11]. �erefore, it is recommended to perform 

chest CT imaging initially on the suspected COVID-19 

cases [12], since it is a more reliable clinical tool in the 

diagnosis with higher sensitivity compared to RT-PCR. 
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Hence, several studies [12–14] suggest performing CT 

on the negative RT-PCR findings of the suspected cases. 

However, there are several limitations of CT scans. �eir 

sensitivity is limited in the early COVID-19 phase groups 

[15], and they are limited to recognize only specific 

viruses [16], slow in image acquisition, and costly. On 

the other hand, X-ray imaging is faster, cheaper, and less 

harmful to the body in terms of radiation exposure com-

pared to CT [17, 18]. Moreover, unlike CT devices, X-ray 

devices are easily accessible; hence, reducing the risk of 

COVID-19 contamination during the imaging process 

[19]. Currently, chest X-ray (CXR) imaging is widely 

used as an assistive tool in COVID-19 prognosis, and it is 

reported to have a potential diagnosis capability in recent 

studies [20].

In order to automate COVID-19 detection/recogni-

tion from CXR images, several studies [21–23] have 

extracted features from the CXRs to utilize Support Vec-

tor Machines classifier. On the other hand, many studies 

[17, 24–32] have proposed to use deep Convolutional 

Neural Networks (CNNs). However, the main limitation 

of these studies is that the data is scarce for the target 

COVID-19 class. Such a limited amount of data degrades 

the learning performance of the deep networks. Two 

recent studies [33] and [34] have addressed this drawback 

with a compact network structure and achieved the state-

of-the-art detection performance over the benchmark 

QaTa-COV19 and Early-QaTa-COV19 datasets that con-

sist of 462 and 175 COVID-19 CXR images, respectively. 

Although these datasets were the largest available at that 

time, such a limited number of COVID-19 samples raises 

robustness and reliability issues for the proposed meth-

ods in general.

Moreover, all these previous machine learning solu-

tions with X-ray imaging remain limited to only 

COVID-19 detection. However, as stated by Shi [35], 

COVID-19 pneumonia screening is important for 

evaluating the status of the patient and treatment. 

�erefore, along with the detection, COVID-19 related 

infection localization is another crucial problem. 

Hence, several studies [36–38] produced activation 

maps that are generated from different Deep Learning 

(DL) models trained for COVID-19 detection (clas-

sification) task to localize COVID-19 infection in the 

lungs. Infection localization has two vital objectives: 

an accurate assessment of the infection location and 

the severity of the disease. However, the results of pre-

vious studies show that the activation maps generated 

inherently from the underlying DL network may fail 

to accomplish both objectives, that is, irrelevant loca-

tions with biased severity grading appeared in many 

cases. To overcome these problems, two studies [39, 

40] proposed to perform lung segmentation as the first 

step in their approaches. �is way, they have narrowed 

the region of interest down to the regions of lungs to 

increase the reliability of their methods. Overall, until 

this study, screening COVID-19 infection from such 

activation maps produced by classification networks 

was the only option for the localization due to the 

absence of ground-truth of the datasets available in the 

literature. Many studies [35, 39, 41–43] have COVID-

19 infection ground-truths for CT images; however, 

ground-truth segmentation masks for CXR images are 

non-existent.

In this study, in order to overcome the aforementioned 

limitations and drawbacks, first, the benchmark data-

set QaTa-COV19 proposed by the researchers of Qatar 

University and Tampere University in [33] and [34] is 

extended to include 2951 COVID-19 samples. �is new 

dataset is 3–20 times larger than those used in earlier 

studies. �e extended benchmark dataset, QaTa-COV19 

with around 120K CXR images, is not only the largest 

ever composed dataset, but it is the first dataset that has 

the ground-truth segmentation masks for COVID-19 

infection regions, as some samples are shown in Fig.  1. 

A crucial property of QaTa-COV19 dataset is that it con-

tains CXRs with other (non-COVID-19) infections and 

anomalies such as pneumonia and pulmonary edema, 

Fig. 1 The COVID-19 sample CXR images, their corresponding 

ground-truth segmentation masks which are annotated by the col-

laborative human–machine approach, and the generated infection 

maps from the state-of-the-art segmentation models
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both of which exhibit high visual similarity to COVID-

19 infection in the lungs. �erefore, this is significantly 

more challenging task than distinguishing COVID-19 

from the normal (healthy) cases as almost all studies in 

the literature did.

To obtain the ground-truth segmentation masks for the 

COVID-19 infected regions, a human–machine collabo-

rative approach is introduced. �e objective is to signifi-

cantly reduce the human labor and thus to speed up and 

also to improve the segmentation masks because when 

they are drawn solely by medical doctors (MDs), human 

error due to limited perception, hand-crafting, and sub-

jectivity will deteriorate the overall quality. �is is an 

iterative process, where MDs initiate the segmentation 

by “manually-drawn” segmentation masks for a subset of 

CXR images. �en, the trained segmentation networks 

over this subset generate their own “competing” masks 

and the MDs are asked to compare them pair-wise (ini-

tial manual segmentation vs. machine-segmented masks) 

for each patient. Such a verification improves the quality 

of the generated masks as well as the (following) train-

ing runs. Over the best masks selected by experts, the 

networks are trained again this time over a larger set (or 

even perhaps over the entire dataset), and among the 

masks generated by the networks, the best masks are 

selected by the MDs. �is human–machine collaboration 

process continues until the MDs are fully satisfied, i.e., a 

satisfactory mask can be found among the masks gener-

ated by the networks for all CXR images in the dataset. In 

this study, we show that even with two stages (iterations), 

highly superior infection maps can be obtained using 

which an elegant COVID-19 detection performance can 

be achieved.

�e rest of the paper is organized as follows. In 

“�e benchmark QaTa-COV19 dataset”, we intro-

duce the benchmark QaTa-COV191 dataset. Our 

novel human–machine collaborative approach for the 

ground-truth annotation is explained in “Collaborative 

human–machine ground-truth annotation”. Next, the 

details of COVID-19 infected region segmentation, and 

the infection map generation and COVID-19 detection 

are presented in “COVID-19 infected region segmen-

tation” and “Infection map generation and COVID-19 

detection”, respectively2. �e experimental setup and 

results with the benchmark dataset are reported in 

“Experimental setup” and “Experimental results”, respec-

tively. Finally, we conclude the paper in “Conclusions”.

Materials and methodology
�e proposed approach in this study is composed of three 

main phases: (1) training the state-of-the-art deep mod-

els for COVID-19 infected region segmentation using 

the ground-truth segmentation masks, (2) infection map 

generation from the trained segmentation networks, and 

(3) COVID-19 detection as it can be depicted in Fig. 2. In 

this section, we first detail the creation of the benchmark 

QaTa-COV19 dataset. �en, the proposed approach for 

collaborative human–machine ground-truth generation 

is introduced.

Fig. 2 The pipeline of the proposed approach has three stages: COVID-19 infected region segmentation, infection map generation, and COVID-19 

detection. The CXR image is the input to the trained E-D CNN and the network’s probabilistic prediction is used to generate infection maps. The 

generated infection maps are used for COVID-19 detection

1 �e benchmark QaTa-COV19 is publicly shared at the repository https:// 

www. kaggle. com/ aysen deger li/ qatac ov19- datas et.
2 �e live demo of the proposed approach is implemented on http:// qatac 
ov. live/.

https://www.kaggle.com/aysendegerli/qatacov19-dataset
https://www.kaggle.com/aysendegerli/qatacov19-dataset
http://qatacov.live/
http://qatacov.live/
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The benchmark QaTa-COV19 dataset

�e researchers of Qatar University and Tampere Uni-

versity have compiled the largest COVID-19 dataset up 

to date with nearly 120K CXR images: QaTa-COV19 

including 2951 COVID-19 CXRs. To create QaTa-

COV19, we have utilized several publicly available, 

scattered, and different format datasets and reposi-

tories. �erefore, the collected images from the data-

sets had some duplicate, over-exposed and low-quality 

images that were identified and removed in the pre-

processing stage. Consequently, the COVID-19 CXRs 

are from different publicly available sources resulting in 

high intra-class dissimilarity as depicted in Fig. 3. �e 

image sources of COVID-19 and control group CXRs 

are detailed as follows:

COVID‑19 CXRs

BIMCV-COVID19+ [44] is the largest publicly availa-

ble dataset with 2473 COVID-19 positive CXR images. 

�e CXR images of BIMCV-COVID19+ dataset were 

recorded with computed radiography (CR) and digital 

X-ray (DX) machines. Hannover Medical School and 

Institute for Diagnostic and Interventional Radiology 

[45] released 183 CXR images of COVID-19 patients. 

A total of 959 CXR images are from public reposi-

tories: Italian Society of Medical and Interventional 

Radiology (SIRM), GitHub, and Kaggle [40, 46–49]. 

As mentioned earlier, any duplication and low-quality 

images are removed since COVID-19 CXR images are 

collected from different public datasets and reposito-

ries. In this study, a total of 2951 COVID-19 CXRs are 

gathered from the aforementioned datasets. �erefore, 

COVID-19 CXRs are of different age, group, gender, 

and ethnicity.

Control group CXRs

In this study, we have considered two control groups in 

the experimental evaluation. Group-I consists of only 

normal (healthy) CXRs with a smaller number of images 

compared to the second group. RSNA pneumonia detec-

tion challenge dataset [50] is comprised of about 29.7K 

CXR images, where 8851 images are normal. All CXRs in 

the dataset are in DICOM format, a popularly used for-

mat for medical imaging. Padchest dataset [51] consists 

of 160,  868 CXR images from 67,  625 patients, where 

37,  871 images are from normal class. �e images are 

evaluated and reported by radiologists at Hospital Sun 

Juan in Spain during 2009–2017. �e dataset includes six 

different position views of CXR and additional informa-

tion regarding image acquisition and patient demogra-

phy. Paul Mooney [52] has released an X-ray dataset of 

5863 CXR images from a total of 5856 patients, where 

1583 images are from normal class. �e data is col-

lected from pediatric patients aging one to five years old 

at Guangzhou Women and Children’s Medical Center, 

Guangzhou. �e dataset in [53] consists of 7470 CXR 

images and the corresponding radiologist reports from 

the Indiana Network for Patient Care, where a total of 

1343 frontal CXR samples are labeled as normal. In [54], 

there are 80 normal CXRs from the tuberculosis con-

trol program of the Department of Health and Human 

Services of Montgomery County and 326 normal CXRs 

from Shenzhen Hospital. In this study, a total of 12, 544 

normal CXRs are included in control Group-I from the 

aforementioned datasets. On the other hand, Group-

II consists of 116,  365 CXRs from 15 different classes. 

ChestX-ray14 [55] consists of 112, 120 CXRs with normal 

and 14 different thoracic disease images, which are ate-

lectasis, cardiomegaly, effusion, infiltration, mass, nod-

ule, pneumonia, pneumothorax, consolidation, edema, 

emphysema, fibrosis, PT, hernia, and normal (no find-

ings). Additionally, from the pediatric patients [52], 2760 

bacterial and 1485 viral pneumonia CXRs are included in 

Group-II.

Collaborative human–machine ground-truth annotation

Recent developments in the machine and deep learn-

ing techniques led to state-of-the-art performance in 

many computer vision (CV) tasks, such as image clas-

sification, object detection, and image segmentation. 

However, supervised DL methods require a huge amount 

of annotated data. Otherwise, the limited amount of 

data degrades the performance of the deep network 

Fig. 3 The COVID-19 CXR samples from the benchmark QaTa-COV19 

dataset
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structures since their generalization capability depends 

on the availability of large datasets. Nevertheless, to pro-

duce ground-truth segmentation masks, pixel-accurate 

image segmentation by human experts can be a cumber-

some and highly subjective task even for moderate size 

datasets.

In order to overcome this challenge, in this study, 

we propose a novel collaborative human–machine 

approach to accurately produce the ground-truth seg-

mentation masks for infected regions directly from the 

CXR images. �e proposed approach is performed in 

two main stages. First, a group of expert MDs manu-

ally segment the infected regions of a subset of (500 in 

our case) CXR images. �en, several segmentation net-

works that are inspired by the U-Net [56] structure with 

a 5-fold cross-validation scheme, are trained over the ini-

tial ground-truth masks. For each fold, the segmentation 

masks of the test samples are predicted by the networks. 

�e network predicted masks along with the initial (MD 

drawn) ground-truth masks, and original CXR image are 

assessed by the MDs, and the best segmentation mask 

among them is selected. Steps of Stage-I are illustrated in 

Fig. 4 (top). At the end of the first stage, collaboratively 

annotated ground-truth masks for the subset of CXR 

images are formed, and they are obviously superior to 

the initial manually drawn masks since they are selected 

by the MDs. An interesting observation in this stage was 

that MDs preferred the machine-generated masks over 

the manually drawn masks in the first stage in three out 

of five cases.

In the second stage five deep networks, inspired by 

U-Net [56], UNet++ [57], and DLA [58] architectures 

are trained over the collaborative masks, which were 

formed in Stage-I. �e trained segmentation networks 

are used to predict the segmentation masks of the rest 

of the data, which is around 2400 unannotated COVID-

19 images. Among the five predictions, the expert MDs 

select the best one as the ground-truth or deny all if none 

was found successful. For the latter case, MDs were asked 

to draw the ground-truth masks manually. However, we 

notice that this was indeed a minority case that included 

less than 5% of unannotated data. �e steps of Stage-II 

are shown in Fig.  4 (bottom). As a result, the ground-

truth masks for 2951 COVID-19 CXR images are gath-

ered to construct the benchmark QaTa-COV19 dataset. 

�e proposed approach does not only save valuable 

human labor time, but it also improves the quality and 

reliability of the masks by reducing the subjectivity with 

Stage-II verification step.

Fig. 4 The two stages of the human–machine collaborative approach. Stage I: A subset of CXR images with manually drawn segmentation masks 

are used to train three different deep networks in a 5-fold cross-validation scheme. The manually drawn ground-truth (a), and the three predictions 

(b, c, d) are blindly shown to MDs, and they select the best ground-truth mask. Stage II: Five deep networks are trained over the best segmentation 

masks selected. Then, they are used to produce the segmentation masks for the rest of the CXR dataset (a, b, c, d, e), which are shown to MDs
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COVID-19 infected region segmentation

Segmentation of COVID-19 infection is the first step of 

our proposed approach as depicted in Fig.  2. Once the 

ground-truth annotation for QaTa-COV19 benchmark 

dataset is formed as explained in the previous section, we 

perform infected region segmentation extensively with 

24 different network configurations. We have used three 

different segmentation models: U-Net, UNet++ and 

DLA, with four different encoder structures: CheXNet, 

DenseNet-121, Inception-v3 and ResNet-50, and frozen 

& not frozen encoder weight configurations.

Segmentation models

We have tried distinct segmentation model structures 

starting from shallow to deep structures with varied con-

figurations as follows:

– U-Net [56] is an outperforming network for medi-

cal image segmentation applications with a u-shaped 

architecture as the encoder part is symmetric with 

respect to its decoder part. �erefore, this unique 

decoder structure with many feature channels allows 

the network to carry the information through its latest 

layers.

– UNet++ [57] has further developed the decoder 

structure of U-Net by connecting the encoder to the 

decoder with the nested dense convolutional blocks. 

�is way, the bridge between the encoder and decoder 

parts are more firmly knit; thus, the information can 

be transferred to its final layers more intensively com-

pared to the classic U-Net.

– DLA [58] investigates the connecting bridges between 

the encoder and decoder, and proposes a way to fuse 

the semantic and spatial information with dense layers, 

which are progressively aggregated by iterative merg-

ing to deeper and larger scales.

Encoder selections for segmentation models

In this study, we use several deep CNNs to form the 

encoder part of the above-mentioned segmentation mod-

els as follows:

– DenseNet-121 [59] is a deep network with 121 layers, 

each with additional input nodes connecting all the 

layers directly with each other. �erefore, the maxi-

mum information flow through the network is satis-

fied.

– CheXNet [60] is based on the architecture of 

DenseNet-121, which is trained over the ChestX-

ray14 dataset [55] to detect pneumonia cases from 

CXR images. In [60], DenseNet-121 is initialized with 

the ImageNet weights and fine-tuned over 100K CXR 

images resulting from the state-of-the-art results on 

the ChestX-ray14 dataset with a better performance 

compared to the conclusions of radiologists.

– Inception-v3 [61] achieves state-of-the-art results with 

much less computational complexity compared to its 

deep competitors by factorizing the convolutions and 

pruning the dimensions inside the network. Despite 

the less complexity, it preserves a higher performance.

– ResNet-50 [62] introduces a deep residual learning 

framework that forces the desired mapping of the input 

to a residual mapping. It is possible to achieve this goal 

by the shortcut connections on the stacked layers. 

�ese connections enable to merge the input and out-

put of the stacked layers by addition operations; there-

fore, the problem of gradient vanishing is prevented.

We perform transfer learning on the encoder side of the 

segmentation models by initializing the layers with the 

ImageNet weights, except for CheXNet which is pre-

trained on the ChestX-ray14 dataset. We tried two con-

figurations, in the first we freeze the encoder layers while 

in the second, they are allowed to vary.

Hybrid loss function

In this study, we have performed training the segmenta-

tion networks with a hybrid loss function by combining 

focal loss [63] with dice loss [64] to achieve a better seg-

mentation performance. We use focal loss since COVID-

19 infected region segmentation is an imbalanced 

problem: the number of background pixels is superior 

to the foreground’s. Let the ground-truth segmentation 

mask be Y , where each pixel class label is defined as y, 

and the network prediction as ŷ . We define the pixel class 

probabilities as for the positive class P(y = 1) = p , and 

for the negative class P(y = 0) = 1 − p . On the other 

hand, the network prediction probabilities are modeled 

by the logistic function using the sigmoid curve as,

where z is some function of the input CXR image X . 

�en, we define the cross-entropy (CE) loss as follows:

A common solution to address the class imbalance prob-

lem is to add a weighting factor α ∈ [0, 1] for the positive 

class, and 1 − α for the negative class, which defines the 

balanced cross-entropy (BCE) loss as,

(1)P(ŷ = 1) =
1

1 + e−z
= q

(2)P(ŷ = 0) = 1 −
1

1 + e−z
= 1 − q

(3)CE(p, q) = −p log q − (1 − p) log(1 − q).
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In this way, the importance of positive and negative sam-

ples are balanced. However, adding the α factor does not 

solve the issue for the large class imbalance scenario. �is 

is because the network cannot distinguish outliers (hard 

samples) and inliers (easy samples) with the BCE loss. To 

overcome this drawback, focal loss [63] proposes to set 

focusing parameter γ ≥ 0 in order to down-weight the 

loss of easy samples that occur with small errors; so that 

the model can be forced to learn hard negative samples. 

�e focal (F) loss is defined as,

where F loss is equivalent to BCE loss when γ = 0 . In 

our experimental setup, we use the default setting as 

α = 0.25 , and γ = 2 for all the networks. To achieve a 

good segmentation performance, we combined focal loss 

with dice loss, which is based on the dice coefficient (DC) 

defined as follows:

where Ŷ is the predicted segmentation mask of the net-

work. Hence, the DC can be interpreted as a dice (D) loss 

as follows:

where h and w are the height and width of the ground-

truth and prediction masks Y and Ŷ , respectively. Finally, 

we combined D and F losses by summation to achieve 

the so-called hybrid loss function for the segmentation 

networks.

Infection map generation and COVID-19 detection

Having the training set of COVID-19 CXR images via 

the collaborative human–machine approach explained 

in “�e benchmark QaTa-COV19 dataset”, we train the 

aforementioned segmentation networks to produce infec-

tion maps. After training the segmentation networks, we 

feed each test CXR sample X into the trained network. 

�en, we obtain the network prediction mask Ŷ , which 

is used to generate an infection map that is a measure of 

infected region probabilities on the input X . Each pixel 

in Ŷ is defined as Ŷh,w ∈ [0, 1] , where h and w represent 

the size of the image. We then apply an RGB-based color 

transform, i.e., the jet color scale to obtain the RGB ver-

sion of the prediction mask, ŶR,G,B as shown in Fig. 5 for 

a pseudo-colored probability measure visualization. �e 

(4)
BCE(p, q) = −αp log q − (1 − α)(1 − p) log(1 − q).

(5)
F(p, q) = −α(1 − q)γ p log q − (1 − α)qγ (1 − p) log(1 − q).

(6)DC =
2|Y ∩ Ŷ|

|Y| ∪ |Ŷ|

(7)D(p, q) = 1 −
2

∑
ph,wqh,w∑

ph,w +
∑

qh,w

infection map is generated as a reflection of the network 

prediction ŶR,G,B onto the CXR image X . Hence, for visu-

alization, we form the imposed image by concatenating 

the hue and saturation components of ŶH,S,V , and value 

component of XH,S,V . Finally, the imposed image is con-

verted back to RGB domain. In the infection map, we do 

not show the pixels/regions with zero probabilities for a 

better visualization effect. �is way, the infected regions, 

where Ŷ > 0 are shown translucent as in Fig. 5.

Along with the infection map generation, which already 

provides localization and segmentation of COVID-19 

infection, COVID-19 detection can easily be performed 

using the proposed approach. �e detection of COVID-

19 is performed based on the predictions of the trained 

segmentation networks. Accordingly, a test sample is 

classified as COVID-19 class if Ŷ ≥ 0.5 at any pixel 

location.

Experimental results
In this section, first, the experimental setup is presented. 

�en, both numerical and visual results are reported 

with an extensive set of comparative evaluations over the 

benchmark QaTa-COV19 dataset. Finally, visual com-

parative evaluations are presented between the infection 

maps and the activation maps extracted from state-of-

the-art deep models.

Experimental setup

Quantitative evaluations for the proposed approach are 

performed for both COVID-19 infected region segmen-

tation and COVID-19 detection. COVID-19 infected 

region segmentation is evaluated on a pixel-level, where 

Fig. 5 The three COVID-19 CXR test samples, X with the correspond-

ing ground-truth masks, Y . The color-coded network predictions, 

ŶR,G,B are reflected translucent onto the X to generate an infection 

map on the lungs, where Ŷ > 0
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we consider the foreground (infected region) as the 

positive class, and background as the negative class. For 

COVID-19 detection, the performance is computed per 

CXR sample, and we consider COVID-19 as the positive 

class and the control group as the negative class. Over-

all, elements of the confusion matrix are formed as fol-

lows: true positive (TP): the number of correctly detected 

positive class members, true negative (TN): the number 

of correctly detected negative class samples, false positive 

(FP): the number of misclassified negative class members, 

and false negative (FN): the number of misclassified posi-

tive class samples. �e standard performance evaluation 

metrics are defined as follows:

where sensitivity (or Recall) is the rate of correctly 

detected positive samples in the positive class samples,

where specificity is the ratio of accurately detected nega-

tive class samples to all negative class samples,

where precision is the rate of correctly classified positive 

class samples among all the members classified as posi-

tive samples,

where accuracy is the ratio of correctly classified ele-

ments among all the data,

where F-score is defined by the weighting parameter β . 

�e F1-Score is calculated with β = 1 , which is the har-

monic average of precision and sensitivity. �e F2-score is 

calculated with β = 2 , which emphasizes FN minimiza-

tion over FPs. �e main objective of both COVID-19 seg-

mentation and detection is to maximize sensitivity with 

a reasonable specificity in order to minimize FP COVID-

19 cases or pixels. Equivalently, maximized F2-score is 

targeted with an acceptable F1-Score value. �e perfor-

mance with 95% confidence interval (CI) for COVID-19 

detection is given in Table 3. �e range of values can be 

calculated for each performance as follows:

(8)Sensitivity =
TP

TP + FN

(9)Specificity =
TN

TN + FP

(10)Precision =
TP

TP + FP

(11)Accuracy =
TP + TN

TP + TN + FP + FN

(12)F(β) = (1 + β2)
(Precision × Sensitivity)

β2 × Precision + Sensitivity

(13)r = ±z
√

metric(1 − metric)/N ,

where z is the level of significance, metric is any perfor-

mance evaluation metric, and N is the number of sam-

ples. Accordingly, z is set to 1.96 for 95% CI.

We have implemented the deep networks with Tensor-

flow library [65] using Python on NVidia ®GeForce RTX 

2080 Ti GPU card. For training, Adam optimizer [66] is 

used with the default momentum parameters, β1 = 0.9 

and β2 = 0.999 using the aforementioned hybrid loss 

function. �e segmentation networks are trained with 

50-epochs with a learning rate of α = 10
−4 and a batch 

size of 32.

For comparing the computed infection maps, the 

activation maps are computed as follows: the encoder 

structures of the segmentation networks are trained for 

the classification task with a modification at the output 

layer by adding 2-neurons for the number of total classes. 

�e activation maps extracted from the classification 

models are then compared with the infection maps of 

the segmentation models. �e classification networks, 

CheXNet, DenseNet-121, Inception-v3 and ResNet-50 

are fine-tuned using categorical cross-entropy as loss 

function with 10 epochs and a learning rate of α = 10
−5 , 

which is a sufficient setting to prevent over-fitting, based 

on our previous study [34]. Other settings of the classifi-

ers are kept the same with the segmentation models.

Experimental results

�e experiments are carried out for both COVID-19 

infected region segmentation and COVID-19 detec-

tion. We extensively tested the benchmark QaTa-COV19 

dataset using three different state-of-the-art segmenta-

tion networks with four different encoder options for 

the initial dataset consisting of control Group-I. We 

also investigated the effect of frozen encoder weights 

on the performance. On the other hand, the leading 

model is selected and evaluated on the extended dataset, 

which includes more negative samples with the control 

Group-II.

Group‑I experiments

We have evaluated the networks in a stratified 5-fold 

cross-validation scheme with a ratio of 80% training 

Table 1 Number of CXR samples in control Group-I per 

fold before and after data augmentation

The numbers of training and test samples are denoted in bold

Data Number 
of sam-
ples

Training 
samples

Augmented 
training 
samples

Test samples

COVID-19 2951 2361 10035 590

Group-I 12544 10035 10035 2509

Total 15495 12396 20070 3099
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to 20% test (unseen folds) over the benchmark QaTa-

COV19 dataset. �e input CXR images are resized to 

224 × 224 pixels. Table  1 shows the number of CXRs 

per fold in the dataset. Since the two classes are imbal-

anced, we have applied data augmentation in order to 

balance the classes. �erefore, COVID-19 samples are 

augmented up to the same number of samples as the con-

trol Group-I in the training set for each fold. �e data 

augmentation is performed using Image Data Generator 

in Keras: the CXR samples are augmented by randomly 

shifting them both vertically and horizontally by 10% and 

randomly rotating them in a range of 10 degrees. After 

shifting and rotating the images, blank sections are filled 

using the nearest mode.

�e performance of the segmentation models for 

COVID-19 infected region segmentation are presented 

in Table  2. Each model structure is evaluated with two 

configurations: frozen and not frozen encoder layers. 

We have used transfer learning on the encoder layers 

with ImageNet weights, except for the CheXNet model, 

which is pre-trained on the ChestX-ray14 dataset. �e 

evaluation of the models with frozen encoder layers is 

also important since this process can lead to a better 

convergence and improved performance. However, as 

the results show, better performance is obtained when 

the network continues to learn on the encoder layers as 

well. For each model, we have observed that two encod-

ers: DenseNet-121 and Inception-v3 are the top-per-

forming ones for the infected region segmentation task. 

�e U-Net model with DenseNet-121 encoder holds the 

leading performance by 84% sensitivity, 85.81% F1-Score, 

and 84.71% F2-Score. DenseNet-121 produces better 

results compared to other encoder types since it can pre-

serve the information coming from earlier layers through 

the output by concatenating the feature maps from each 

dense layer. However, in the other segmentation models, 

Inception-v3 outperforms the other encoder types. �e 

presented segmentation performances are obtained by 

Table 2 Average performance metrics (%) for COVID-19 infected region segmentation computed on the Group-I test 

(unseen) set from 5-folds with three state-of-the-art segmentation models, four encoder architectures, and weight ini-

tializations

The initialized encoder layers are set to frozen (✓) and not frozen (×) states during the investigation

The leading performances of each metric are denoted in bold

Model Encoder Encoder layers (fro-
zen or not frozen)

Sensitivity Speci�city Precision F1-Score F2-Score Accuracy AUC 

U-Net CheXNet ✓ 81.20 99.55 83.78 82.47 81.70 99.03 99.19

CheXNet × 82.23 99.56 84.54 83.34 82.66 99.08 99.18

DenseNet-121 ✓ 82.29 99.61 86.02 84.11 83.01 99.13 99.35

DenseNet-121 × 84.00 99.66 87.77 85.81 84.71 99.22 99.19

Inception-v3 ✓ 80.42 99.59 84.94 82.62 81.28 99.05 99.20

Inception-v3 × 82.34 99.70 88.87 85.43 83.54 99.21 98.82

ResNet-50 ✓ 81.43 99.62 86.07 83.67 82.31 99.11 99.30

ResNet-50 × 79.90 99.70 88.64 83.89 81.43 99.15 98.98

UNet++ CheXNet ✓ 80.29 99.59 85.19 82.64 81.21 99.05 99.01

CheXNet × 81.45 99.60 85.60 83.47 82.24 99.09 99.01

DenseNet-121 ✓ 82.38 99.61 85.99 84.14 83.08 99.13 99.19

DenseNet-121 × 82.36 99.68 88.07 85.08 83.42 99.19 99.30

Inception-v3 ✓ 82.87 99.57 84.83 83.81 83.24 99.10 99.21

Inception-v3 × 83.49 99.66 87.60 85.45 84.22 99.20 99.18

ResNet-50 ✓ 82.07 99.59 85.41 83.71 82.72 99.10 99.15

ResNet-50 × 82.64 99.62 86.52 84.45 83.33 99.14 99.27

DLA CheXNet ✓ 79.99 99.61 85.57 82.66 81.04 99.06 99.12

CheXNet × 82.84 99.56 84.63 83.71 83.19 99.09 99.17

DenseNet-121 ✓ 82.48 99.62 86.40 84.36 83.21 99.14 99.16

DenseNet-121 × 82.84 99.56 84.63 83.71 83.19 99.09 99.17

Inception-v3 ✓ 80.28 99.63 86.43 83.19 81.41 99.09 99.02

Inception-v3 × 83.44 99.68 88.18 85.73 84.34 99.22 99.29

ResNet-50 ✓ 81.26 99.63 86.48 83.78 82.25 99.12 99.08

ResNet-50 × 82.07 99.65 86.99 84.45 83.00 99.15 99.31
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setting the threshold value to 0.5 to compute the seg-

mentation mask from the network probabilities. Pre-

cision-Recall curves of three leading deep models are 

plotted in Fig. 6a by varying this threshold value. Addi-

tionally, the Receiver Operating Characteristics (ROC) 

curve of these models, and their corresponding area 

under curve (AUC) scores are presented in Fig. 6b. Fur-

ther investigation shows that AUC scores of the leading 

segmentation models are directly proportional to the 

COVID-19 detection performance as it can be depicted 

from the precision scores in Table 3.

�e performances of the segmentation models for 

COVID-19 detection are presented in Table  3. All the 

models are evaluated by stratified a 5-fold cross-valida-

tion scheme, and the table shows the averaged results of 

these folds. �e most crucial metric here is the sensitiv-

ity since missing any patient with COVID-19 is critical. In 

fact, the results indicate the robustness of the model as the 

proposed approach can achieve high sensitivity levels of 

98.37% with a 97.08% F2-Score. Additionally, the proposed 

approach achieves an elegant specificity of 99.16%, indicat-

ing a significantly low false alarm rate. It can be observed 

from Table 3 that DenseNet-121 encoder with the not fro-

zen encoder layer setting gives the most promising results 

among the others. �e confusion matrices, accumulated 

on each fold’s test set, are presented in Table 4. �e high-

est sensitivity in COVID-19 detection is achieved by the 

U-Net DenseNet-121 model (Table  4a). Accordingly, 

the U-Net DenseNet-121 model only misses 48 COVID-

19 patients out of 2951. On the other hand, the highest 

specificity is achieved by UNet++ DenseNet-121 model 

(Table 4b). �e UNet++ model only misses a minor part 

of the control class with 105 samples out of 12544.

Group‑II experiments

We have selected the leading model from the Group-

I experiments as U-Net with not frozen DenseNet-121 

encoder setting. In Group-II experiments, we have gath-

ered around 120K CXRs. �e CXRs from the ChestX-

ray14 dataset [55] are already divided into train and test 

Table 3 Average COVID-19 detection performance results (%) computed from 5-folds over the Group-I test (unseen) set 

with three network models, four encoder architectures, and weight initializations. The initialized encoder layers are set 

to frozen (✓) and not frozen (×) states during the investigation

The leading performances of each metric are denoted in bold

Encoder Encoder 
layers

Sensitivity Speci�city Precision F1-Score F2-Score Accuracy

U-Net CheXNet ✓ 97.56 ± 0.0056 91.10 ± 0.0050 72.07 ± 0.0071 82.90 ± 0.0059 91.11 ± 0.0045 92.33 ± 0.0042

CheXNet × 97.97 ± 0.0051 92.74 ± 0.0045 76.04 ± 0.0067 85.62 ± 0.0055 92.62 ± 0.0041 93.73 ± 0.0038

DenseNet-121 ✓ 98.07 ± 0.0050 94.66 ± 0.0039 81.20 ± 0.0062 88.84 ± 0.0050 94.16 ± 0.0037 95.31 ± 0.0033

DenseNet-121 × 98.37 ± 0.0046 98.05 ± 0.0024 92.25 ± 0.0042 95.21 ± 0.0034 97.08 ± 0.0027 98.12 ± 0.0021

Inception-v3 ✓ 97.93 ± 0.0051 90.00 ± 0.0052 69.74 ± 0.0072 81.47 ± 0.0061 90.61 ± 0.0046 91.51 ± 0.0044

Inception-v3 × 97.22 ± 0.0059 98.37 ± 0.0022 93.33 ± 0.0039 95.24 ± 0.0034 96.42 ± 0.0029 98.15 ± 0.0021

ResNet-50 ✓ 98.24 ± 0.0047 93.88 ± 0.0042 79.06 ± 0.0064 87.61 ± 0.0052 93.69 ± 0.0038 94.71 ± 0.0035

ResNet-50 × 96.37 ± 0.0067 97.82 ± 0.0026 91.21 ± 0.0045 93.72 ± 0.0038 95.30 ± 0.0033 97.54 ± 0.0024

UNet++ CheXNet ✓ 97.80 ± 0.0053 91.70 ± 0.0048 73.49 ± 0.0069 83.92 ± 0.0058 91.73 ± 0.0043 92.86 ± 0.0041

CheXNet × 97.49 ± 0.0056 93.65 ± 0.0043 78.33 ± 0.0065 86.87 ± 0.0053 92.94 ± 0.0040 94.39 ± 0.0036

DenseNet-121 ✓ 97.70 ± 0.0054 94.81 ± 0.0039 81.58 ± 0.0061 88.91 ± 0.0049 93.98 ± 0.0037 95.36 ± 0.0033

DenseNet-121 × 96.51 ± 0.0066 99.16 ± 0.0016 96.44 ± 0.0029 96.48 ± 0.0029 96.50 ± 0.0029 98.66 ± 0.0018

Inception-v3 ✓ 98.31 ± 0.0047 90.54 ± 0.0051 70.96 ± 0.0071 82.43 ± 0.0060 91.27 ± 0.0044 92.02 ± 0.0043

Inception-v3 × 96.92 ± 0.0061 98.37 ± 0.0022 93.34 ± 0.0039 95.10 ± 0.0034 96.18 ± 0.0030 98.10 ± 0.0021

ResNet-50 ✓ 97.80 ± 0.0053 93.39 ± 0.0043 77.69 ± 0.0066 86.59 ± 0.0054 92.98 ± 0.0040 94.23 ± 0.0037

ResNet-50 × 96.78 ± 0.0064 97.43 ± 0.0028 89.87 ± 0.0048 93.20 ± 0.0040 95.31 ± 0.0033 97.31 ± 0.0025

DLA CheXNet ✓ 97.46 ± 0.0057 92.47 ± 0.0046 75.27 ± 0.0068 84.94 ± 0.0056 92.03 ± 0.0043 93.42 ± 0.0039

CheXNet × 97.32 ± 0.0058 94.93 ± 0.0038 81.87 ± 0.0061 88.93 ± 0.0049 93.78 ± 0.0038 95.39 ± 0.0033

DenseNet-121 ✓ 97.36 ± 0.0058 95.66 ± 0.0036 84.08 ± 0.0058 90.23 ± 0.0047 94.38 ± 0.0036 95.99 ± 0.0031

DenseNet-121 × 97.09 ± 0.0061 99.07 ± 0.0017 96.08 ± 0.0031 96.58 ± 0.0029 96.88 ± 0.0027 98.69 ± 0.0018

Inception-v3 ✓ 96.92 ± 0.0062 93.24 ± 0.0044 77.13 ± 0.0066 85.90 ± 0.0055 92.19 ± 0.0042 93.94 ± 0.0040

Inception-v3 × 96.71 ± 0.0064 99.13 ± 0.0016 96.32 ± 0.0030 96.52 ± 0.0029 96.63 ± 0.0028 98.67 ± 0.0018

ResNet-50 ✓ 97.49 ± 0.0056 95.30 ± 0.0037 82.98 ± 0.0059 89.65 ± 0.0048 94.20 ± 0.0037 95.71 ± 0.0032

ResNet-50 × 96.17 ± 0.0069 98.15 ± 0.0024 92.44 ± 0.0042 94.27 ± 0.0037 95.40 ± 0.0033 97.77 ± 0.0023
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sets. Accordingly, we have randomly separated the train 

and test sets of COVID-19, viral pneumonia, and bac-

terial pneumonia CXRs by keeping the same train/test 

ratio as in ChestX-ray14 [55]. Table 5 shows the number 

of training and test samples of the Group-II experiments. 

Additonally, we have applied augmentation to data 

except for ChestX-ray14 samples with the same set-up as 

in the Group-I experiments. In these experiments, we do 

not perform any cross-validation since ChestX-ray14 has 

predefined training and test sets.

�e performance of the U-Net model for COVID-19 

infected region segmentation and detection is presented 

in Table  6. �e model achieved a segmentation per-

formance by 81.72% sensitivity and 83.20% F1-Score. 

In comparison to initial experiments with the control 

Group-I data, the model can still achieve an elegant seg-

mentation performance even with numerous samples in 

the test set. On the other hand, the COVID-19 detection 

performance with 27, 438 CXR images is very successful 

by 94.96% sensitivity, 99.88% specificity, and 96.40% pre-

cision. �is indicates a very low false alarm rate of only 

0.12%. Table  7 shows the confusion matrix on the test 

set. Accordingly, the model only misses 44 COVID-19 

samples. In the control Group-II, only 31 CXR samples 

Fig. 6 Precision-Recall and ROC curves of Group-I experiments, where the performances of three leading deep models are presented

Table 4 Cumulative confusion matrices of COVID-19 detection by the best performing U-Net and UNet++ models with 

DenseNet-121 encoder

(a) U-Net DenseNet-121

U-Net Predicted

Group-I COVID-19

Ground Truth Group-I 12,300 244

COVID-19 48 2903

(b) UNet++ DenseNet-121

UNet++ Predicted

Group-I COVID-19

Ground Truth Group-I 12,439 105

COVID-19 103 2848
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are missed, which is a minor section in 26,  565 nega-

tive samples. �e results show that the leading model is 

still robust on the extended data, where it consists of 15 

different classes with 14 thoracic diseases and normal 

samples. Lastly, Precision-Recall and ROC curves of 

Group-II experiments can be depicted from Fig. 7.

Infection vs activation maps

Several studies [36–38] propose to localize COVID-19 

from CXRs by extracting activation maps from the deep 

classification models trained for COVID-19 detection. 

Fig. 7 Precision-Recall and ROC curves of Group-II experiments with U-Net DenseNet-121 deep model

Table 5 Number of CXR samples in control Group-II before and after data augmentation

The numbers of training and test samples are denoted in bold

Data Training samples Augmented Augmented training sam-
ples

Test samples

COVID-19 2078 ✓ 10, 000 873

Bacterial Pneumonia 2130 ✓ 5000 630

ChestX-ray14 86, 524 × 86, 524 25, 596

Viral Pneumonia 1146 ✓ 5000 339

Total 91,878 106,524 27,438

Table 6 COVID-19 infected region segmentation and 

detection results (%) computed on the Group-II test set 

from the U-Net model with DenseNet-121 encoder

Performance 
metrics

Infected region 
segmentation

Detection

U-Net DenseNet-121 Sensitivity 81.72 94.96

Specificity 99.93 99.88

Precision 84.74 96.40

F1-Score 83.20 95.67

F2-Score 82.31 95.24

Accuracy 99.85 99.73

Table 7 Cumulative confusion matrices of COVID-19 

detection by the best performing U-Net model with 

DenseNet-121 encoder

U-Net Predicted

Group-II COVID-19

Ground Truth Group-II 26, 534 31

COVID-19 44 829
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Despite the simplicity of the idea, there are many limita-

tions of this approach. First of all, without any infected 

region segmentation ground-truth masks, the network 

can only produce a rough localization, and the extracted 

activation maps may entirely fail to localize COVID-19 

infection.

In this study, we check the reliability of our pro-

posed COVID-19 detection approach by comparing it 

with DL models trained for the classification task. In 

order to achieve this objective, we compare the infec-

tion map and activation map of CXR images, which 

are generated from the segmentation and classifica-

tion networks, respectively. �erefore, we have trained 

the encoder structures of the segmentation networks, 

which are CheXNet, DenseNet-121, Inception-v3, and 

ResNet-50 to perform COVID-19 classification task. 

We have extracted activation maps from these trained 

models by the Gradient-weighted Class Activation 

Mapping (Grad-CAM) approach proposed in [67]. �e 

localization Grad-CAM Lc
Grad-CAM

∈ R
h×w of height 

h and width w for class c is calculated by the gradient 

of mc before the softmax with respect to the convolu-

tional layer’s feature maps Ak as ∂m
c

∂Ak
 . �e gradients are 

passed through from the global average pooling during 

back-propagation;

where α is the weight that shows the important feature 

map k from A for a target class c. �en, the linear com-

bination is performed following by ReLU to obtain the 

Grad-CAM;

Despite their elegant performance, activation maps 

extracted from deep classification networks are not suit-

able for localizing COVID-19 infection as depicted in 

Fig. 8. In fact, infections found by the activation maps are 

highly irrelevant indicating false locations outside of the 

lung areas. On the other hand, infection maps can gen-

erate a highly accurate location with an elegant severity 

grading of COVID-19 infection. �e proposed infection 

maps can conveniently be used by medical experts for 

an enhanced assessment of the disease. Real-time 

(14)α
c
k =

1

Z

∑

i

∑

j

∂mc

∂Ak
,

(15)
L
c

Grad-CAM
= ReLU(

∑

k

αc

k
A
k).

Fig. 8 Several CXR images with their corresponding ground-truth masks. The activation maps extracted from the classification models are pre-

sented in the middle block. The last block is the generated infection maps from the segmentation models. It is evident that the infection maps yield 

a superior localization of COVID-19 infection compared to activation maps
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implementation of the infection maps will obviously 

speed up the detection process, can also monitor the pro-

gression of COVID-19 infection in the lungs.

Computational complexity analysis

In this section, we present the computational times of the 

networks and their number of trainable & non-trainable 

parameters. Table  8 shows the elapsed time in millisec-

onds (ms) during the inference step for each network 

used in the experiments. �e results in the table rep-

resent the running time per sample. It can be observed 

from the table that the U-Net model is the fastest among 

the others due to its shallow structure. �e fastest net-

work is U-Net Inception-v3 with frozen encoder lay-

ers taking up 2.53 ms. On the other hand, the slowest 

model is UNet++ structure since it has the largest num-

ber of trainable parameters. �e most computationally 

demanding model is UNet++ ResNet-50 with frozen 

encoder layers, which takes 5.58 ms. We, therefore, con-

clude that all models can be used as real-time clinical 

applications.

Conclusions
�e immediate and accurate detection of highly infec-

tious COVID-19 plays a vital role in preventing the 

spread of the virus. In this study, we used CXR images 

since X-ray imaging is cheaper, easily accessible, and 

faster than the conventional methods commonly used 

such as RT-PCR and CT. As a major contribution, the 

largest CXR dataset, QaTa-COV19, which consists of 

2951 COVID-19, and 116, 365 control group images, has 

been compiled and is shared publicly as a benchmark 

dataset. Moreover, for the first time in the literature, 

we release the ground-truth segmentation masks of the 

infected regions along with the introduced benchmark 

QaTa-COV19. Furthermore, we proposed a human–

machine collaborative approach, which can be used when 

a fast and accurate ground-truth annotation is desired 

but manual segmentation is slow, costly, and subjective. 

Finally, this study reveals the first approach ever pro-

posed for infection map generation in CXR images. Our 

extensive experiments on QaTa-COV19 show that a reli-

able COVID-19 diagnosis can be achieved by generating 

infection maps, which can locate the infection on the 

lungs by 81.72% sensitivity, and 83.20% F1-Score. Moreo-

ver, the proposed joint approach can achieve an elegant 

COVID-19 detection performance with 94.96% sensitiv-

ity and 99.88% specificity. Many COVID-19 detectors 

proposed in the literature reported similar or even bet-

ter detection performances. However, not only they are 

evaluated over small-size datasets, but also they can only 

discriminate between COVID-19 and normal (healthy) 

data, which is a straightforward task. �e proposed joint 

approach is the only COVID-19 detector that can distin-

guish it from other thoracic diseases as being evaluated 

over the largest CXR dataset ever composed. Accord-

ingly, the most important aspect of this study is that the 

generated infection maps can assist MDs for a better and 

objective COVID-19 assessment. For instance, it can 

show the time progress of the disease if the time series 

CXR data are generated by the proposed infection maps. 

It is clear that when compared with the activation maps 

extracted from deep models, the proposed infection 

maps are highly superior and reliable cues for COVID-19 

infection.
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Table 8 The number of trainable and non-trainable 

parameters of the models with their inference time (ms) 

per sample

The initialized encoder layers are set to frozen (✓) or not frozen (×)

The inference time of the fastest model is denoted in bold

Encoder Encoder 
Layers

Train-
able

Non-
Traina-
ble

Time (ms)

U-Net CheXNet ✓ 5.19M 6.96M 2.56

DenseNet-121 ✓ 5.19M 6.96M 2.58

Inception-v3 ✓ 8.15M 21.79M 2.53

ResNet-50 ✓ 9.06M 23.50M 2.54

CheXNet ✓ 12.06M 85.63K 2.62

DenseNet-121 × 12.06M 85.63K 2.58

Inception-v3 × 29.9M 36.42K 2.61

ResNet-50 × 32.51M 47.56K 2.64

UNet++ CheXNet ✓ 7.53M 6.96M 5.17

DenseNet-121 ✓ 7.53M 6.96M 5.10

Inception-v3 ✓ 8.68M 21.79M 5.32

ResNet-50 ✓ 10.88M 23.51M 5.58

CheXNet × 14.40M 88.45K 5.24

DenseNet-121 × 14.40M 88.45K 5.25

Inception-v3 × 30.43M 39.23K 5.32

ResNet-50 × 34.34M 50.37K 5.46

DLA CheXNet ✓ 6.27M 6.96M 4.65

DenseNet-121 ✓ 6.27M 6.96M 4.63

Inception-v3 ✓ 7.20M 21.79M 4.70

ResNet-50 ✓ 8.74M 23.51M 4.90

CheXNet × 13.15M 88.45K 4.63

DenseNet-121 × 13.15M 88.45K 4.65

Inception-v3 × 28.96M 39.23K 4.72

ResNet-50 × 32.2M 50.37K 4.90
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