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Abstract  

Objective: The COVID-19 pandemic has catalyzed a widespread effort to identify drug 

candidates and biological targets of relevance to SARS-COV-2 infection, which resulted in 

large numbers of publications on this subject. We have built the COVID-19 Knowledge 

Extractor (COKE), a web application to extract, curate, and annotate essential drug-target 

relationships from the research literature on COVID-19 to assist drug repurposing efforts. 

Materials and Methods: SciBiteAI ontological tagging of the COVID Open Research Dataset 

(CORD-19), a repository of COVID-19 scientific publications, was employed to identify drug-

target relationships. Entity identifiers were resolved through lookup routines using UniProt and 

DrugBank. A custom algorithm was used to identify co-occurrences of protein and drug terms, 

and confidence scores were calculated for each entity pair. 

Results: COKE processing of the current CORD-19 database identified about 3,000 drug-

protein pairs, including 29 unique proteins and 500 investigational, experimental, and 

approved drugs.  Some of these drugs are presently undergoing clinical trials for COVID-19. 

Discussion: The rapidly evolving situation concerning the COVID-19 pandemic has resulted 

in a dramatic growth of publications on this subject in a short period. These circumstances call 

for methods that can condense the literature into the key concepts and relationships necessary 

for insights into SARS-CoV-2 drug repurposing.  

Conclusion: The COKE repository and web application deliver key drug - target protein 

relationships to researchers studying SARS-CoV-2.  COKE portal may provide comprehensive 

and critical information on studies concerning drug repurposing against COVID-19. COKE is 

freely available at https://coke.mml.unc.edu/ and the code is available at 

https://github.com/DnlRKorn/CoKE.  

 

 

https://coke.mml.unc.edu/
https://github.com/DnlRKorn/CoKE
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BACKGROUND AND SIGNIFICANCE 

With over 35 million cases and over 1 million deaths worldwide as of the beginning of 

October, 2020, and no Food and Drug Administration (FDA) approved drug treatments or 

vaccines against this virus, there are unprecedented global efforts to discover critical 

therapeutic treatments against COVID-19 [1]. These efforts already resulted in the 

identification and characterization of many SARS-CoV-2 proteins essential for virus replication 

[2] and the pathogenesis of COVID-19 [3] and nomination of many drugs for clinical trials. 

Within a few months of the outbreak, thousands of papers on COVID-19 and SARS-CoV-2 

have appeared in the scientific literature [4]. There are many databases collecting data related 

to SARS-CoV-2 [5]; however, the scientific literature concerning SARS-CoV-2 remains the 

largest repository of untapped biomedical data [6,7].  

Recently, the Allen Institute for AI, the NIH, the White House, Georgetown University, 

and several other organizations collaborated to produce the COVID-19 Open Research 

Dataset (CORD-19). This dataset consists of, at the time of this study, 129,000 full-text 

scholarly articles about COVID-19, SARS-CoV-2, and related coronaviruses [4]. SciBiteAI, a 

semantics research group based in the UK [8], curated an ontologically annotated version of 

the dataset to identify biomedical terms within sentences of full papers or abstracts [4]. 

Arguably, the information about biological targets implicated in COVID-19 and drugs 

acting at these targets is of greatest value to scientists interested in drug repurposing. 

However, current tools do not provide a user-friendly way to retrieve such information from the 

research literature. To address this gap, we have developed the COVID-19 Knowledge 

Extractor (COKE), a web application tool that provides the scientific community with (i) up-to-

date data on human and viral proteins associated with SARS-CoV-2 and other coronaviruses 

that are indexed in UniProt and (ii) chemicals reported to target these proteins. We have 

created a database summarizing all drug-target-coronavirus triangle relationships annotated 

in the research literature by (i) creating an approach to detect drug and protein literature co-

occurrences within all manuscripts annotated in the CORD-19 corpus [9]; (ii) establishing a 
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scoring system to rate the confidence of a co-occurrence pair; and (iii) implementing an 

algorithm that allows users of COKE to highlight specific sections of the manuscript where 

respective terms co-occur. 

 

OBJECTIVES 

COKE has been developed to provide the scientific community with data that could 

potentially contribute to current COVID-19 drug repurposing efforts. COKE portal provides 

data on human and viral proteins associated with SARS-CoV-2 and other coronaviruses as 

described in the CORD-19 corpus and that are indexed in UniProt as well as chemicals 

targeting those proteins that are indexed in the DrugBank [10,11]. 

 

MATERIALS AND METHODS 

Dataset Collection 

The SciBiteAI group has published an ontologically annotated version of the CORD-

19 database available publicly on their GitHub account.[4] These ontology citations and 

custom vocabularies were released under open licenses, which allow for unrestricted use and 

further development. The entire content of each paper within the CORD-19 dataset is divided 

into paragraphs of plain text. Within each of these paragraphs, ontological terms divided into 

nine groups are assigned and matched to the sentences they occur in. Table 1 shows the nine 

groups from which the assigned keys are: SPECIES, GOONTOL, INDICATION, COUNTRY, 

HPO, GENE, DRUG; and two custom vocabularies created for this dataset: SARSCOV and 

CVPROT. 

The UniProt database provides information on over half of a million proteins, the 

majority of which has been reviewed and curated by experts in the field of proteomics.[10] We 

extracted information on manually reviewed proteins that were either human proteins 
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associated with coronavirus disease (host protein targets) or coronavirus proteins (viral protein 

targets). Additionally, we extracted information on synonyms of these proteins, the organisms 

from which they were derived, and their genome sequence length.  

The DrugBank dataset provides listings of chemical identifiers tagged as small 

molecule drugs. Standardized naming of these compounds and their SMILES strings are also 

provided in a clean, relational format.[11] DrugBank provides the number of other targets a 

given small molecule is associated with. COKE makes these data available and organized in 

such a way that users of COKE can easily examine relevant drug-target-disease relationships 

related to SARS-CoV-2. 

Data Curation and Integration 

The original CORD-19 dataset contained more than 129,000 papers. We found that 

many papers in this original dataset were related to other viruses, such as Ebola and Zika, as 

well as epidemiological studies not relevant to drug repurposing for COVID-19. For this 

reason, a major curation step in our protocol was to incorporate only papers where COVID-19 

related terms were explicitly mentioned. For this task, we employed MeSH (Medical Subject 

Headings) IDs related to SARS-CoV-2, COVID-19, and coronaviruses. This filtering was 

performed by leveraging SciBiteAI’s ontological tagging. Any paper in the dataset, which was 

not annotated by one of the NCBITaxon tags for a coronavirus, was not considered. The 

curation protocol was performed on every new version of CORD-19. At the time of this 

analysis, 94,000 papers remained in our dataset. 

Next, a custom algorithm to detect the co-occurrence of two terms within a specified 

paper was employed. Our inputs were the sentence-level annotations provided by SciBiteAI. 

For every biomedical term observed, the number of publications that a term individually 

appears in was determined via a simple count. Then, each publication in CORD-19 received 

a vote if the terms co-occurred. This vote was “yes” if either of the following two conditions 

were met: (i) both terms appear in the abstract or (ii) both terms appear in a single sentence 
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of the publication. The reason for this distinction is that abstracts are considered as 

significantly more information-dense [12] and, therefore, every term mentioned in the abstract 

is considered to be of greater significance in the context of the whole study. In contrast, many 

authors were quite verbose in the body of a publication and may mention terms within a section 

that were unrelated to each other. 

The COKE portal provides the user with a scoring function that rates the confidence of 

co-occurrence pairs. This scoring function was created by implementing a hypergeometric 

distribution with the following parameters: (i) a population size equal to the number of 

publications which meet our curation standard (~94,000 at the time of writing), (ii) the number 

of successes in the population equal to the number of Term 1 occurrences, (iii) the number of 

samples drawn equal to the number of Term 2 occurrences, and (iv) the number of observed 

successes equal to the co-occurrence votes as described above. The cumulative distribution 

function (CDF) of hypergeometric distribution with the parameters was calculated; then, this 

score can be used to easily compare different pairings. The SciPy implementation of these 

functions was used for these calculations [13]. Many of the scores can be quite small and 

tightly clustered, so the logarithm of the CDF was calculated. Since logarithms are monotonic 

values, the ordering of the tuples was maintained. To make the score more interpretable, the 

sign was flipped, so that the score ranged between 0 and infinity. This score helps the user 

judge how strongly two terms are connected, i.e., the closer the score is to zero, the higher 

the degree of connectivity between any two terms (see Figure 1). 

We then filtered the large set of co-occurrence tuples only for CVPROT to DRUG 

relationships. To provide users with a more reliable curated set of relationships, we leveraged 

the identifiers provided by the SciBiteAI tagging. As a result of this filtering, we were left with 

9,500 tuples. For additional filtering, we cross-referenced UniProt identifiers from both 

SciBiteAI’s tagging and our UniProt data. Any proteins that had not been marked as reviewed 

were purged from the dataset. This filtered out under a dozen tuples for minor proteins. We 

sought to only use proteins that have been hand-reviewed by UniProt. 
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We also sought to clean the chemicals in our dataset. We cross-referenced all 

ChEMBL tags against DrugBank. Compounds that were not present in DrugBank were 

removed resulting in 4,700 drug/protein tuples. Additionally, we excluded amino acids, 

peptides, and proteins, so that only small molecules remained. Because we did not require 

the user to load DrugBank’s large central XML file into memory, we used the BeautifulSoup 

web scraping library to isolate the file and parse out both of the DrugBank datasets (original 

and curated) we needed to perform this processing. Our final dataset had 2,000 drug-protein 

tuples. Details of this filtering process can be found on the GitHub and in Figure 2. 

 

Development of the COKE Web Portal 

The COKE web portal provides the user with the ability to view (i) the co-occurrence 

tuples on protein and drug on tables separated by targets or all tuples in a large table; (ii) the 

aggregated information on targets in our dataset; and (iii) the highlighted sections of papers 

from CORD-19 (Figure 3). COKE contains 18 tables with hundreds of rows each consisting of 

various forms of information related to the tuple. The data are stored as a JSON object in the 

same domain as the web portal.  

Additionally, COKE provides the user with the ability to view selected publications from 

the CORD-19 dataset in which information relevant to the queried (drug-protein) tuple is 

presented to them. Using Python3.7 and the Flask web development framework, we 

developed a dynamic web API for highlighting respective sections in the CORD-19 papers 

hosted at https://coke.mml.unc.edu. This API takes in three parameters: the CORD-19 

identifiers of a publication, the drug, and the protein as formatted by SciBiteAI. Then, the 

publication is checked for the co-occurrence of drug and protein names in the abstract and 

any sentences in the body of the text. The part of the text in which a co-occurrence is found is 

highlighted by displaying the entire section in bold and with increased font size. This is then 

https://coke.mml.unc.edu/
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rendered as HTML and the user’s web view is automatically taken to highlighted text. Links to 

these highlighted papers are included in each COKE table. 

To allow faster rendering of the web portal, we utilized the Data Tables jQuery library 

[14], which aids in rendering dynamic complex HTML tables in the browser. We converted all 

the co-occurrence tuples into JSON files in Data Table’s specified format. These JSON files 

are stored within COKE’s web domain as static files. Then, when the user loads the table, 

each Data Table makes an AJAX request for their specified information. By separating the 

data from the website, we provide the user with an interactive display that works significantly 

faster than a monolithic website, due to the parallel loading of the data for each table. 

Curation of chemical bioactivity data from experimental screening assays for COVID-

19 

To assess the value of drug-target linkage identified in the COKE database, we 

explored quantitative high-throughput screening data for compounds in the Approved Drugs 

Collection from the NCATS OpenData Portal on COVID-19 [15]. This collection was screened 

for the SARS-CoV-2 cytopathic effect (CPE) assay (a phenotypic assay) and an AlphaLISA 

assay that measures the antiviral effect as the ability of a small molecule to disrupt the spike-

ACE2 protein-protein interaction.[16] The CPE assay initially contained 6,988 chemicals with 

AC50 dose-response curves. The same collection was subjected to counter screen to ensure 

compounds identified as active in the primary assay were not cytotoxic, i.e., that they did not 

merely kill the host cell. After curation, 4,625 (165 actives, 4164 inactives, and 296 

inconclusive) small molecules remained in the primary assay. In the Spike-ACE2 dataset, 

3,406 data points were collected. After curation, 3030 (352 actives, 2099 inactives, and 579 

inconclusive) small molecules remained in the primary assay. The counter screen data was 

used to ensure that compounds were not false positive because of interfering with the 

AlphaLISA readout. Both counter screens were used to look up the experimental results for 

compounds identified by COKE. 
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The structures of the compounds tested in the CPE assay were obtained from the 

NCATS OpenData Portal and curated following a protocol previously developed by our group 

[17–19]. Salts and solvents were stripped from all compounds, and large organic mixtures and 

inorganic compounds were removed. Chemotypes were standardized using the ChemAxon 

“Standardizer” software (v. 20.8.0). Compounds with replicate runs were analyzed. Replicates 

that had contradictory classifications were removed completely. For the CPE assay, compounds 

are labeled as “active” if the associated assay report shows a Hill slope equal to 1.1, 1.2, 2.1, 

2.2, or 3 and an associated pAC50 higher than 4.9. Compounds with dose-response curve class 

4.0 are considered inactive, while the remaining ones are inconclusive. Compounds that inhibit 

host cell growth in the counter screen assay are cytotoxic. Therefore, compounds were labeled 

as “non-toxic” if the dose-response curve class was 4.0, and other compounds were considered 

potentially toxic, even if they were labeled as inconclusive. In the Spike-ACE2 dataset, 

compounds labeled as “active” reported a Hill slope equal to -1.1, -1.2, -2.1, -2.2, or -3 and had 

an associated pAC50 higher than 4.9. We decided to keep compounds with curve-class 3 (CPE) 

or -3 (Spike-ACE2) as “active” because compounds with these curves were labeled as “low-

quality actives” by NCATS.[15] 

RESULTS 

Comparison of the drug-target associations in the COKE dataset and bioactivity 

screening data on COVID-19 

Our drug list identified by COKE initially contained 499 drugs. After curation, 471 

unique drugs were kept. From this list, there were 335 compounds in the Approved Drugs 

Collection tested in the SARS-CoV-2 CPE (14 actives, 304 inactives, and 17 inconclusive). 

Table 2 lists all 14 active compounds. From these, five compounds were shown to be inactive 

in the counter screen indicating that they were true positives in the CPA assay: umifenovir, 

imatinib, promethazine, fluoxetine, and reserpine. 
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Umifenovir (arbidol) was also identified as active in the QSAR models for severe acute 

respiratory syndrome coronavirus (SARS-CoV) Mpro our group described recently [20]. 

Umifenovir was found active against SARS-CoV-2 in vitro [21] as a binder to the spike 

glycoprotein of SARS-CoV-2 (UniProt ID P0DTC2).[22] However, a study in humans showed 

that patients in the group receiving umifenovir had a longer hospital stay than patients in the 

control group. No deaths or severe adverse reactions were found in either group.[23] 

Imatinib,[24–26] promethazine,[27] and fluoxetine[28] are being tested in clinical trials.  

Previous studies have shown that imatinib inhibits both SARS-CoV and Middle East 

respiratory syndrome coronavirus (MERS-CoV) in vitro.[29] In addition, imatinib is currently 

being studied in COVID-19 clinical trials,[25] and has been shown to successfully treat COVID-

19 in a case report.[30]  Another study has shown that promethazine also has inhibitory activity 

against MERS-CoV in vitro.[31] Reserpine also demonstrated anti-SARS-CoV activity in 

vitro.[32,33] Though currently there is no literature on the antiviral activity of fluoxetine against 

SARS-CoV-2 in vitro, this compound has been suggested as a possible antiviral drug 

candidate against the virus based on scientific reasoning,[34] non-peer-reviewed empirical 

evidence,[35] and computational studies.[36] 

Among the compounds identified as active but cytotoxic, hexachlorophene is a topical 

antibacterial agent [37]. Nitazoxanide showed activity in the phenotypic screen [38], and it has 

been included in prophylactic post-exposure clinical trials [39]. In non-peer-reviewed evidence, 

tioguanine was shown to inhibit SARS-CoV-2 papain-like protease by viral protein cleavage 

catalysis and to prevent replication of SARS-CoV-2 in vitro [40]. Chlorprothixene was shown 

to inhibit SARS-CoV replication in vitro [41]. Nelfinavir mesylate, an HIV protease inhibitor, 

was shown to inhibit Mpro in the computational analysis [42] and to have activity against the 

SARS-CoV-2 spike glycoprotein in vitro [43,44]. Tetrandrine is currently being explored in 

COVID-19 clinical trials [45]. In previous studies, chlorpromazine showed activity against 

MERS-CoV and SARS-CoV [46,47], and it is being studied in clinical trials in hospitalized 

patients with COVID-19 [48]. Past studies showed that amiodarone has in vitro antiviral activity 
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against SARS-CoV by interfering with endocytosis and viral replication [49,50]. It is currently 

being studied in clinical trials against COVID-19 [51] and it was recently documented in a case 

report to successfully treat COVID-19 [52].  In summary, COKE successfully highlighted 

compounds shown to be active against SARS-CoV-2 in the phenotypic assay. This 

observation demonstrates the potential of COKE to rapidly identify unique compounds 

reported to have antiviral activity against SARS-CoV-2.  Most importantly, the linkage between 

drug-target pairs identified by COKE and the results of drug bioactivity screening reported in 

NCATS OpenData Portal explored in this study illustrates the importance of validation, by the 

experimental data, of the functional significance of drug-target co-occurrences identified in the 

research literature. 

The literature score of compounds (described in the Materials and Methods section) 

shows how strongly two terms are connected, i.e., the closer the score is to zero, the higher 

is the degree of connectivity between any two terms of interest. The results are shown in Table 

2. We observe that active and inconclusive compounds that did not appear to be cytotoxic in 

the counter screen assays have substantially stronger associations (lower scores) than 

compounds labeled as inactive in the CPE assay (fluoxetine, umifenovir, imatinib, 

promethazine), except for reserpine. In COKE, lower scores are associated with compounds 

that have appeared more frequently in the literature co-occurring with COVID-19 related 

targets. The complete list is available at https://github.com/DnlRKorn/CoKE. 

Comparison of COKE dataset and Clinical Trials for COVID-19 

We also sought to know how many drugs in CORD-19 are already under investigation 

in clinical trials. We performed a simple cross-reference check of all drugs in the CORD-19 

dataset. To obtain a list of drugs already in clinical trials for COVID-19, we leveraged 

DrugBank’s dataset, which matched active clinical trials to DrugBank IDs [53]. Of the 435 

entries found in DrugBank, 271 were small molecules and not amino acids. We were only able 

to identify 155 of these compounds in the curated COKE dataset. This observation is 

https://github.com/DnlRKorn/CoKE
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surprising if not shocking as it means that apparently nearly half of all drugs that went into 

clinical trials were not examined in the open research literature in the context of COVID-19.  

This leaves one doubt as to why compound nomination for clinical trial escaped peer-review, 

a process commonly accepted by the global research community for validating research 

observations and hypotheses before exposing them to broad research community. 

 

DISCUSSION 

Application of the COKE Web Portal 

Quantitative structure-activity relationship (QSAR) modeling has been used in the past 

to discover potential drugs to treat viral diseases such as COVID-19 [54–58]. Similarly, 

molecular docking studies of targets associated with the disease have been used to the same 

effect. Virtual screening hits generated by QSAR models or resulting from docking studies 

could be run against drugs annotated in COKE (and/or reported in the NCATS OpenData 

Portal) to help select the promising candidates for drug repurposing. Furthermore, the 

highlighted paper sections where drug-target co-occurrences are reported, allow for the quick 

discovery of possible mechanistic reasons for strong virtual screening hits. For example, 

nitazoxanide (found in COKE) was predicted to be an inhibitor of the main protease of SARS-

CoV-2 in a recent QSAR study by our group, which is reasonable since past literature shows 

that this drug has anti-coronaviral activities [59]. 

An example of using the COKE web portal can be seen in Figure 3. Here, we show the 

drugs with linkages to the spike glycoprotein of SARS-CoV-2 (UniProt ID: P0DTC2), ranked 

by their score (as described in the Materials and Methods section). The current COKE version 

identified 153 unique drugs (143 after curation). COKE output overlapped with 90 drugs tested 

in Spike-ACE2 protein-protein interaction (AlphaLISA) by NCATS with nine compounds 

(umifenovir, hexachlorophene, chlorprothixene, nicardipine, mifepristone, rifampicin, 

flunarizine, niclosamide, and trypan blue free acid) labeled as active. Umifenovir and 



13 

 

hexachlorophene were also active in the phenotypic screen, but only umifenovir was not also 

cytotoxic (vide supra). Niclosamide, an anthelmintic drug, has shown broad-spectrum antiviral 

activity against a wide array of viruses, including SARS-CoV-1 and MERS-CoV,[60] and it is 

currently being tested in clinical trials against SARS-CoV-2.[61,62] In past studies, the 

synthetic steroid mifepristone demonstrated antiviral activity against human adenovirus [63], 

Venezuelan equine encephalitis virus [64], and HIV-1 [65]. Flunarizine, an antimigraine drug, 

is known to arrest virus-membrane fusion for various hepatitis C virus genotypes [65]. A 1971 

study by Follett and Pennington demonstrated that the antibiotic rifampicin could inhibit 

poxvirus replication[66]; more recent evidence for the drug’s possible activity against other 

viruses is lacking. 

Neither nicardipine nor trypan blue free acid had antiviral activities reported in the 

literature; in fact, trypan blue, a commonly used dye, is a known carcinogen and teratogen 

[51]. Unfortunately, all these drugs were found to interact with the AlphaLISA in the counter 

screen assay, meaning that these compounds could be false-positive inhibitors of viral entry. 

As discussed above, umifenovir was active in CPE, but not shown to be effective in humans 

[23]. Nevertheless, this exercise shows how the COKE web application allows for quick 

gathering and sorting of protein/drug connections that can be further explored by targeted 

analysis of the data reported in the NCATS OpenData Portal.  

Data reported in COKE can be viewed as connections between biomedical entities, 

which could easily be incorporated into biomedical knowledge graphs such as ROBOKOP 

[67,68] to enable exploration of the linkages between COVID-19 and other biomedical entities. 

Additional integration of other biomedical information would allow for a more detailed 

exploration of these connections, leveraging other information about the drugs or proteins to 

enable more dynamic research. 

In summary, valuable information about drugs and targets that could be implicated in 

COVID-19 can be gained from the utilization of natural language processing. We have listed 

the publications in which we find co-occurrence between drugs and targets at the 
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straightforward sentence level. A more targeted processing of these specified papers may 

yield (subject, object, predicate) triples from those papers, providing more insight and possibly, 

higher confidence in the functional significance of the identified drug-protein associations.  

 

CONCLUSIONS 

We have built COKE, a web application to extract, condense, and prioritize the key drug-target 

relationships in the current literature concerning SARS-CoV-2. COKE is based on the CORD-

19 literature collection, ontological tagging of papers in this collection by SciBiteAI, and entity 

identifiers derived from UniProt and DrugBank. Co-occurrences of protein and drug terms as 

well as the confidence scores for each pair were calculated using a custom algorithm specially 

designed for COKE. Overall, ca. 3,000 drug-protein pairs were identified by COKE, including 

29 unique proteins (22 viral targets and 7 host targets) and 500 unique investigational, 

experimental, and approved drugs, some of which are currently undergoing clinical trials for 

COVID-19. At the same time, surprisingly, nearly half of the drugs nominated for or in clinical 

trials already, were not reported in the COVID-19 research literature as annotated in the 

CORD-19 database. We have demonstrated that COKE could be useful not only for direct 

identification of drug repurposing candidates but also for informing the final selection of drugs 

identified by other methods. In summary, COKE makes drug-protein relationships reported in 

the literature relevant to SARS-CoV-2 readily available to researchers and has the potential 

to provide important insights into drug repurposing efforts against COVID-19. COKE is 

implemented as a web platform that is freely available at https://coke.mml.unc.edu/; the code 

is available at https://github.com/DnlRKorn/COKE. The COKE web portal will be updated 

monthly with the latest data. 

 

 

https://coke.mml.unc.edu/
https://github.com/DnlRKorn/COKE
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FIGURE LEGENDS 

 

Figure 1. Co-occurrence algorithm. 

Figure 2. General overview of the data processing in COKE. 

Figure 3. An example response from the COKE Web Portal. 
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TABLES 

 

Table 1. CORD-19 Ontological Mappings. 

NAME Ontologies Referenced 

SPECIES NCBITaxon (https://www.ncbi.nlm.nih.gov/taxonomy)[69]  

GOONTOL Gene Ontology (http://geneontology.org/)[70] 

INDICATION MeSH (https://www.ncbi.nlm.nih.gov/mesh/)[71] 

COUNTRY Country Codes[72] 

HPO Human Phenotype Ontology (https://hpo.jax.org/app/)[73] 

DRUG ChEMBL (https://www.ebi.ac.uk/chembl/)[74] 

SARSCOV* NCBITaxon[69] or Gene Ontology[70] or Malaria Ontology 

(https://bioportal.bioontology.org/ontologies/IDOMAL)[75] 

CVPROT* COVID-19 UniProtKB (https://covid-19.uniprot.org/)[10] and SWISS-

MODEL (https://swissmodel.expasy.org/repository)[76] 

*these vocabularies were custom-built for the CORD-19 dataset and can be accessed at 

https://github.com/SciBiteLabs/CORD19/tree/master/vocabularies-CORD-19  

 

Table 2. List of compounds identified by COKE as active validated by NCATS in CPE assay. 

Drug name NCATS ID Score Counter screen cytotoxicity  

Fluoxetine NCGC00015428-15 0.010 Safe 

Umifenovir NCGC00246387-06 0.02 Safe 

Imatinib NCGC00159456-06 0.02 Safe 

Promethazine NCGC00015817-14 0.42 Safe 

Reserpine NCGC00015888-06 1.88 Safe 

Tioguanine NCGC00094792-18 0.0006 Cytotoxic 

Nelfinavir NCGC00090782-17 0.0007 Cytotoxic 

Tetrandrine NCGC00017376-12 0.03 Cytotoxic 

Hexachlorophene NCGC00091195-08 0.04 Cytotoxic 

Chlorpromazine NCGC00015273-19 0.31 Cytotoxic 

Chlorprothixene NCGC00013683-06 0.31 Cytotoxic 

Nitazoxanide NCGC00090774-05 2.57 Cytotoxic 

Amiodarone NCGC00015096-17 5.11 Cytotoxic 

 

https://www.ncbi.nlm.nih.gov/taxonomy
http://geneontology.org/
https://www.ncbi.nlm.nih.gov/mesh/
https://hpo.jax.org/app/
https://www.ebi.ac.uk/chembl/
https://bioportal.bioontology.org/ontologies/IDOMAL
https://covid-19.uniprot.org/
https://swissmodel.expasy.org/repository
https://github.com/SciBiteLabs/CORD19/tree/master/vocabularies-CORD-19
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