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Abstract
Clinical importance  Novel coronavirus disease is spread worldwide with considerable morbidity and mortality and presents 
an enormous burden on worldwide public health. Due to the non-stationarity and complicated nature of novel coronavirus 
waves, it is challenging to model such a phenomenon. Few mathematical models can be used because novel coronavirus 
data are generally not normally distributed. This paper describes a novel bio-system reliability approach, particularly suit-
able for multi-regional environmental and health systems, observed over a sufficient period of time, resulting in a reliable 
long-term forecast of novel coronavirus infection rate. Traditional statistical methods dealing with temporal observations of 
multi-regional processes do not have the advantage of dealing efficiently with extensive regional dimensionality and cross-
correlation between infection rate and mortality.
Objective  To determine extreme novel coronavirus death rate probability at any time in any region of interest. Traditional 
statistical methods dealing with temporal observations of multi-regional processes do not have the advantage of dealing 
efficiently with extensive regional dimensionality and cross-correlation between different regional observations.
Design  Apply modern novel statistical methods directly to raw clinical data.
Setting  Multicenter, population-based, medical survey data based bio statistical approach.
Main outcome and measure  Due to the non-stationarity and complicated nature of novel coronavirus, it is challenging to 
model such a phenomenon. Few mathematical models can be used because novel coronavirus data are generally not normally 
distributed. This paper describes a novel bio-system reliability approach, particularly suitable for multi-country environ-
mental and health systems, observed over a sufficient period of time, resulting in a reliable long-term forecast of extreme 
novel coronavirus death rate probability.
Conclusions and relevance  The suggested methodology can be used in various public health applications, based on their 
clinical survey data.
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Introduction

Statistical aspects of COVID-19 and other similar recent 
epidemics were receiving much attention in the modern 
research community, (https: prsindia.org, covid-19, cases; 
Acharya and Porwal 2020; Chen et al. 2015a; Thomas and 
Rootzen 2019; Lee and Wackernagel 2007a; Sudre et al. 
2021; Chen et al. 2015b). Generally, it is quite challenging 
to calculate realistic biological system reliability factors and 

outbreak probabilities under actual epidemic conditions by 
using conventional theoretical statistical methods, (World 
Health Organization 2014; Goldstein et al. 2011; Soebiyanto 
et al. 2010; Mugglin et al. 2002; Kim et al. 2013; Lee and 
Wackernagel 2007b; Falzarano et al. 2012; Su 2012; Xing 
et al. 2022; Madsen et al. 1986). This paper shares the same 
methodology as previously was introduced by authors in 
Gaidai et al. (2022c); Gaidai et al. (2022d).

The latter is usually due to many degrees of system free-
dom and random variables governing dynamic biological 
systems, spread over extensive terrain. In principle, the reli-
ability of a complex biological system may be accurately 
estimated straightforwardly by having enough measurements 
or by direct Monte Carlo simulations. For COVID-19, how-
ever, the only available observation numbers are limited 
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by the beginning of the year 2020. Motivated by the latter 
argument, the authors have introduced a novel reliability 
method for biological and health systems to predict and 
manage epidemic outbreaks more accurately. His study was 
focused on COVID-19 epidemics in India (Singanayagam, 
et al. 2020; Maishman et al. 2021; Gareth, et al. 2021; Tom 
et al. 2021; Mahase 2022; Rutter et al. 2021), with focus 
on cross-correlations between different states within same 
climatic zone. For other studies related to statistical varia-
tions per country see e.g. (Gondauri et al. 2020). India was 
chosen of course because of its extensive COVID-19 health 
observations and related research available online (Gondauri 
et al. 2020; Zhu et al. 2020a; Wu et al. 2020; He et al. 2019; 
Wu and McGoogan 2020; Lu et al. 2020; Zhou et al. 2020; 
Zhu et al. 2020b; Organization 2020; Wood 1978; Bailey 
1953; Becker and Britton 1999; Kermack and McKendrick 
1927; Bailey 1954).

Statistical modelling of lifetime data or extreme value 
theory (EVT) is widespread in medicine or engineering. For 
example, Gumbel used EVT to estimate the demographic of 
various populations in https: prsindia.org, covid-19, cases. In 
(Chen et al. 2015a) authors used EVT to estimate the probabil-
ity of an influenza outbreak in India. The author demonstrated 
a forecasting prediction potential amid the epidemic in this 
paper. While in Thomas and Rootzen (2019) similarly used 
EVT to predict and detect anomalies of influenza epidemics. 
As there is not much statistical research done to predict the 
probability of influenza or contagious diseases outbreak or its 
spread, the newly proposed novel method will be able better 
insight and an indication of the possible spread of diseases.

In this paper epidemic outbreak is viewed as unexpected 
incident that may occur at any state of a given country at any 
time, therefore spatial spread is accounted for. Moreover, 
specific non-dimensional factor � is introduced to predict 
the latter epidemic risk at any time and any place. Biological 
systems are subjected to ergodic environmental influences. 
The other alternative is to view the process as being depend-
ent on specific environmental parameters whose variation 
in time may be modelled as an ergodic process on its own.

The incidence data of COVID-19 in twenty-five India 
states from February 2020 until today were retrieved from 
the public website (https:prsindia.org, covid-19, cases.). 
As this valuable data set is per India state, the biological 
system under consideration can be regarded as a multi-
degree of freedom (MDOF) dynamic system with highly 
inter-correlated regional components/dimensions. Some 
recent studies have already used statistical tools to predict 
COVID-19 development. Note that while this study aims 
at reducing risk of future epidemic outbreaks by predict-
ing them, it is solely focused on daily registered patient 
numbers and not on symptoms themselves. For long-last-
ing COVID-19 symptoms, the so-called “long COVID”, 

and its risk factors and whether it is possible to predict 
a protracted course early in the disease, see e.g. (Sudre 
et al. 2021), for mortality research see e.g. (J et al. 2020). 
Figure 1 presents map of India states.

Method

The MDOF heal th  response  vec tor  process 
R(t) = (X(t), Y(t), Z(t),…) that has been measured over a 
sufficiently long time interval (0, T) . Unidimensional global 
maxima over the entire time span (0, T) denoted as 
Xmax
T

= max
0≤t≤T

X(t) , Ymax
T

= max
0≤t≤T

Y(t) , Zmax
T

= max
0≤t≤T

Z(t).

By sufficiently long time T  one primarily means a large 
value of T  with respect to the dynamic system auto-corre-
lation time. Let X1,… ,XNX

 be consequent in time local 
maxima of the process X(t) at discrete monotonously 
increasing time instants tX

1
< ⋯ < tX

NX
 in (0, T) . The analo-

gous definition follows for other MDOF response compo-
nents Y(t), Z(t),… with Y1,… , YNY

; Z1,… , ZNZ
 and so on. 

For simplicity, all R(t) components, and therefore its max-
ima are assumed to be non-negative. The target is to esti-
mate system failure probability, namely probability of 
exceedance, accurately.

where  P =
(�X ,�Y ,�Z ,…)

∭
(0,0,0,,…)

pXmax
T ,Ymax

T ,Zmax
T ,…

(

Xmax
T , Ymax

T , Zmax
T ,…

)

dXmax
T dYmax

NY
dZmax

Nz
…  is 

the probability of non-exceedance for critical values of 
response components�X,�Y,�Z,…; ∪ denotes logical unity 
operation «or»; and pXmax

T
,Ymax

T
,Zmax

T
,… being joint probability 

density of the global maxima over the entire period(0, T) . 
However, it is not feasible to estimate the latter joint prob-
ability distribution directly due to its high dimensionality 
and available data set limitations.

More specifically, the moment when either X(t) 
exceeds�X , or Y(t) exceeds�Y , or Z(t) exceeds�Z , and so on, 
the system is regarded as immediately failed. Fixed failure 
levels�X,�Y ,�Z,…are, of course, individual for each unidi-
mensional response component ofR(t).Xmax

NX
= max{Xj;

j = 1,… ,NX} = Xmax
T

, Ymax
NY

= max{Yj ;j = 1,… ,NY} = Ymax
T

,Zmax
Nz

= max{Zj ;j = 1,… ,NZ} = Zmax
T

 , and so on, (Xing 
et al. 2022; Gaidai et al. 2022a; Sun et al. 2022; Xu et al. 
2022a; Gaidai et al. 2022b; Gaidai et al. 2022c; Gaidai 
et al. 2022d; Xu et al. 2022b; Gaidai et al. 2022e; Cheng 
et al. 2022; Gaidai et al. 2022f; Gaidai et al. 2020; Gaidai 
et al. 2022g; Gaidai et al. 2022h; Gaidai et al. 2022i; 
Balakrishna et al. 2022).

N ow,  t h e  l o c a l  m a x i m a  t i m e  i n s t a n t s [
tX
1
< ⋯ < tX

NX
;tY
1
< ⋯ < tY

NY
;tZ
1
< ⋯ < tZ

NZ

]
 are sorted in 

monotonously non-decreasing order into one single merged 
time vectort1 ≤ ⋯ ≤ tN.Note thattN = max{tX

NX
, tY
NY
, tZ
NZ
,…}

(1)
1 − P = Prob(Xmax

T
> 𝜂X ∪ Ymax

T
> 𝜂Y ∪ Zmax

T
> 𝜂Z ∪…)
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,N = NX + NY + NZ +… . In this case tj represents local 
maxima of one of MDOF structural response components 
either X(t) or Y(t) , or Z(t) and so on. That means that having 
R(t) time record, one just needs continuously and simultane-
ously screen for unidimensional response component local 
maxima and record its exceedance of MDOF limit vector (
�X , �Y , �Z , ...

)
 in any of its components X, Y , Z,… Local uni-

dimensional response component maxima are merged into 
one temporal non-decreasing vector �⃗R =

(
R1,R2,… ,RN

)
 

following the merged time vector t1 ≤ ⋯ ≤ tN . That is to say, 
each local maxima Rj is, in fact, actual encountered local 
maxima corresponding to either X(t) or Y(t) , or Z(t) and so 
on. Finally, the unified limit vector 

(
�1,… , �N

)
 is introduced 

with each component �j is either �X , �Y or �Z and so on, 
depending on which of X(t) or Y(t) , or Z(t) etc., corresponds 
to the current local maxima with the running index j.

Now, scaling parameter 0 < 𝜆 ≤ 1 is introduced to artifi-
cially simultaneously decrease limit values for all response 
components, namely the new MDOF limit vector (
��
X
, ��

Y
, ��

z
, ...

)
 with��

X
≡ �∙�X,≡ �∙�Y,��

z
≡ �∙�Z , … is intro-

duced, see (Naess and Moan 2013). The unified limit vector (
��
1
,… , ��

N

)
 is introduced with each component ��

j
 is either��

X
 , 

��
Y
 or ��

z
 and so on. The latter automatically defines probabil-

ity P(�) as a function of � , note that P ≡ P(1) from Eq. (1). 
Non-exceedance probability P(�) can be estimated as 
follows

In practice, the dependence between the neighboring Rj is 
not negligible; thus, the following one-step (will be called con-
ditioning level k = 1 ) memory approximation is introduced.

 for 2 ≤ j ≤ N (conditioning level k = 2 ). The approximation 
introduced by Eq. (3) can be further expressed as.

(2)

P(�) =Prob
{

RN ≤ ��N ,… ,R1 ≤ ��1
}

= Prob{RN ≤ ��N |RN−1 ≤ ��N−1,… ,R1 ≤ ��1}

⋅ Prob
{

RN−1 ≤ ��N−1,… ,R1 ≤ ��1
}

=
N
∏

j=2
Prob{Rj ≤ ��j |Rj−1 ≤ ��1j−,… ,R1 ≤ ��1}

⋅ Prob
(

R1 ≤ ��1
)

(3)
Prob{Rj ≤ ��j |Rj−1 ≤ ��j−1,… ,R1 ≤ ��1}

≈ Prob{Rj ≤ ��j |Rj−1 ≤ ��j−1}

Fig. 1   Map of India with 
COVID-19 cases in affected 
states, (https: prsindia.org, 
covid-19, cases)
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where 3 ≤ j ≤ N (will be called conditioning level k = 3 ), 
and so on. The idea is to monitor each independent failure 
that happened locally first in time, thus avoiding cascading 
local inter-correlated exceedances. Equation (4) presents 
subsequent refinements of the statistical independence 
assumption. The latter approximations capture the statistical 
dependence effect between the neighboring maxima with 
increased accuracy. Since the original MDOF process R(t) 
was assumed ergodic and therefore stationary, probability 
pk(𝜆) ∶= Pr ob{Rj > 𝜂𝜆

j
|Rj−1 ≤ 𝜂𝜆

j−1
,Rj−k+1 ≤ 𝜂𝜆

j−k+1
} fo r 

j ≥ k will be independent of j but only dependent on condi-
tioning level k . Thus non-exceedance probability can be 
approximated as in the average conditional exceedance rate 
method, see (Naess and Moan 2013)

Note that Eq. (5) follows from Eq. (1) by neglecting 
Prob(R1 ≤ ��

1
) ≈ 1 , as design failure probability must be 

minuscule, also assumed Nεk . Equation (5) is similar to 
the well-known mean up-crossing rate equation for the 
probability of exceedance (Xing et al. 2022; Naess and 
Moan 2013). There is evident convergence with respect 
to the conditioning parameter k

Note that Eq. (5) for k = 1 turns into a well-known non-
exceedance probability relationship with the mean up-cross-
ing rate function.

where �+(�) denotes the mean up-crossing rate of the 
response level � for the above assembled non-dimensional 
vector R(t) assembled from scaled MDOF system response (
X

�X
,
Y

�Y
,
Z

�Z
,…

)
 . The mean up-crossing rate is given by the 

Rice's formula given in Eq. (7) with pRṘ being joint probabil-
ity density for 

(
R, Ṙ

)
 with Ṙ being time derivative R�(t) , see 

(Rice 1944). Equation (7) relies on the Poisson assumption 
that is up-crossing events of high � levels (in this paper, it is 
� ≥ 1 ) can be assumed to be independent. The latter may not 
be the case for narrowband responses and higher-level 
dynamical systems that exhibit cascading failures in different 
dimensions, subsequent in time, caused by intrinsic inter-
dependency between extreme events, manifesting itself in 
the appearance of highly correlated local maxima clusters 
within the assembled vector �⃗R =

(
R1,R2,… ,RN

)
.

In the above, the stationarity assumption has been used. 
However, the proposed methodology can also treat the 

(4)
Prob{Rj ≤ ��j |Rj−1 ≤ ��j−1,… ,R1 ≤ ��1}

≈ Prob{Rj ≤ ��j |Rj−1 ≤ ��j−1,Rj−2 ≤ ��j−2},

(5)Pk(�) ≈ exp(−N ⋅ pk(�)) , k ≥ 1.

(6)P = lim
k→∞

Pk(1);p(�) = lim
k→∞

pk(�)

(7)P(𝜆) ≈ exp(−𝜈+(𝜆) T); 𝜈+(𝜆) =
∞

∫
0

𝜁pRṘ(𝜆, 𝜁 )d𝜁 ,

nonstationary case. For nonstationary case, the scattered 
diagram of m = 1, ..,M seasonal epidemic conditions, each 
short-term seasonal state has the probability qm , so that ∑M

m=1
qm = 1 . Next, let one introduce the long-term equation

with pk(�,m) being the same function as in Eq. (6) but cor-
responding to a specific short-term seasonal epidemic state 
with the number m . The above introduced pk(�) as func-
tions are often regular in the tail, specifically for values of 
� approaching and exceeding 1 . More precisely, for � ≥ �0 , 
the distribution tail behaves similar to exp {−(a� + b)c + d} 
with a, b, c, d being suitably fitted constants for suitable tail 
cut-on �0 value. One can then write

Next, by plotting ln
{
ln
(
pk(�)

)
− dk

}
 versus ln

(
ak� + bk

)
 , 

often nearly perfectly linear tail behaviour is typically 
observed. Optimal values of the parameters ak, bk, ck, pk, qk 
may also be determined using a sequential quadratic pro-
gramming (SQP) method incorporated in the NAG Numeri-
cal Library (Numerical Algorithms Group 2010).

Results

Prediction of influenza-like epidemics has long been the 
focus of attention in epidemiology and mathematical biol-
ogy. It is well known that public health dynamics is a highly 
non-linear multidimensional and spatially cross-correlated 
dynamic system that is always challenging to analyse. Pre-
vious studies have used a variety of approaches to model 
influenza-like cases. This section illustrates the efficiency 
of the above-described methodology using the new method 
applied to the real-life COVID-19 data sets, presented as a 
new daily recorded infected patient time series, spread over 
large terrains.

Influenza and COVID-19 are contagious diseases having 
high transmissibility with certain mortality. They typically 
occur seasonally in late autumn, winter, early spring, reach-
ing its peak in winter. Seasonal influenza epidemics are typi-
cally caused by influenza A, B viruses typically occur annu-
ally during winter time presenting certain burden on national 
public health, resulting in about 3–5 million cases of severe 
illness, along with 250,000–500,000 deaths worldwide annu-
ally, according to World Health Organization (WHO) (World 
Health Organization 2014).

This section presents a real-life application of the above-
described method. The statistical data in the present section 
are taken from the official India website (https: prsindia.

(8)pk(�) ≡
M∑

m=1

pk(�,m)qm,

(9)pk(�) ≈ exp
{
−
(
ak� + bk

)ck + dk
}
, � ≥ �0
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org, covid-19, cases). The website provides the number of 
newly diagnosed cases every day in India from 22 January 
2020 to 6 April 2022. Patient numbers from twenty-five dif-
ferent India states were chosen as components X, Y , Z,… . 
thus constituting an example of a twenty-five dimensional 
(25D) dynamic biological system, see Fig. 2. In order to 
unify all 25 measured time series X, Y , Z,… . the following 
scaling was performed

 making all three responses non-dimensional and having 
the same failure limit. Failure limits, or in other words, 
epidemic thresholds, were chosen differently for different 
states in this paper �X , �Y , �Z ,… were set equal to observed 
two years maxima, twice increased. Next, all local maxima 

(10)X →

X

�X
, Y →

Y

�Y
, Z →

Z

�Z
,…

from three measured time series were merged into one single 
time series by keeping them in time non-decreasing order: 
�⃗R =

(
max

{
X1, Y1, Z1,…

}
,… ,max

{
XN , YN , ZN ,…

})
 with 

the whole vector being �⃗R sorted according to non-decreasing 
times of occurrence.

Figure 3 presents the number of new daily recorded 
patients as a 25D vector �⃗R , consisting of assembled regional 
new daily patient numbers. Note that vector �⃗R does not have 
physical meaning on its own, as it is assembled of different 
regional components with different epidemic backgrounds. 
Index j is just a running index of local maxima encountered 
in a non-decreasing time sequence.

Figure  4 presents 100  years return level extrapola-
tion according to Eq. (9) towards epidemic outbreak with 
100 year return period, indicated by the horizontal dotted 
line, and somewhat beyond, � = 0.1 cut-on value was used. 
Critical 100 years return level is indicated by star in Fig. 4. 

Note that predictions for shorter (and more realistic) return 
periods (e.g. few years) can also be easily extracted from 
Fig. 4, with the only limitation of underlying assumption of 
bio-system quazi-stationarity.

Dotted lines indicate extrapolated 95% confidence inter-
val according to Eq.  (10). According to Eq.  (5) p(�) is 
directly related to the target failure probability 1 − P from 
Eq. (1). Therefore, in agreement with Eq. (5), system failure 
probability 1 − P ≈ 1 − Pk(1) can be estimated. Note that in 
Eq. (5), N corresponds to the total number of local maxima 
in the unified response vector �⃗R . Conditioning parameter 
k = 5 was found to be sufficient due to occurrence of con-
vergence with respect to k , see Eq. (6). Figure 4 exhibits 
reasonably narrow 95% CI. The latter is an advantage of the 
proposed method.

Fig. 2   Daily recorded patients numbers per country and per day

Fig. 3   Number of new daily recorded patients as 25D vector �⃗R . Left: as it is, right: scaled by Eq. (10)
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Note that while being novel, the above-described method-
ology has a clear advantage of utilizing available measured 
data set quite efficiently due to its ability to treat health sys-
tem multi-dimensionality and perform accurate extrapola-
tion based on quite limited data set. Note that, predicted 
non-dimensional � level, indicated by star in Fig. 4, repre-
sents probability of epidemic outbreak at any India state in 
the years to come.

Conclusions

Traditional health systems reliability methods dealing with 
observed time series do not have the advantage of dealing 
efficiently with systems possessing high dimensionality and 
cross-correlation between different system responses. The 
key advantage of the introduced methodology is its abil-
ity to study the reliability of high dimensional non-linear 
dynamic systems.

Despite the simplicity, the present study successfully 
offers a novel multidimensional modelling strategy and a 
methodological avenue to implement the forecasting of an 
epidemic during its course.

This paper studied recorded COVID-19 patient numbers 
from twenty-five different most COVID affected India states, 
constituting an example of a twenty-five dimensional (25D) 
observed in 2020–2022. The novel reliability method was 
applied to new daily patient numbers as a multidimensional 
system in real-time. The theoretical reasoning behind the 
proposed method is given in detail. Note that the use of 
direct either measurement or Monte Carlo simulation for 
dynamic biological system reliability analysis is attrac-
tive; however, dynamic system complexity and its high 
dimensionality require the development of novel robust and 

accurate techniques that can deal with a limited data set at 
hand, utilizing available data as efficient as possible.

The main conclusion is that if the public health system 
under local environmental and epidemiologic conditions in 
India is well managed. Predicted 100 year return period risk 
level � of epidemic outbreak is very low.

Various authors with different approaches have shown 
the usage of statistics through EVT and other models in 
medicine. One such method used the block maxima (BM) 
approach, while another used the Peak Over Threshold 
(POT) approach to estimate the distribution of extremes. 
Even though both these studies showed their suitability for 
estimating the extreme values, each of them had its limita-
tions, with one of them requiring a large amount of data.

This study aimed to develop a general-purpose, robust, and 
straightforward multidimensional reliability method further. 
The method introduced in this paper has been previously vali-
dated by application to a wide range of simulation models, but 
for only one-dimensional system responses and, in general, 
very accurate predictions were obtained. Both measured and 
numerically simulated time series responses can be analysed. 
It is shown that the proposed method produced a reasonable 
confidence interval. Thus, the suggested methodology may 
become an appropriate tool for various non-linear dynamic 
biological systems reliability studies. Finally, the suggested 
methodology can be used in many public health applications. 
The presented COVID-19 example does not limit areas of new 
method applicability by any means.
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