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Abstract: Several outbreak prediction models for COVID-19 are being used by officials around the
world to make informed decisions and enforce relevant control measures. Among the standard
models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have
received more attention by authorities, and these models are popular in the media. Due to a high level
of uncertainty and lack of essential data, standard models have shown low accuracy for long-term
prediction. Although the literature includes several attempts to address this issue, the essential
generalization and robustness abilities of existing models need to be improved. This paper presents a
comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak
as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed
(SEIR) models. Among a wide range of machine learning models investigated, two models showed
promising results (i.e., multi-layered perceptron, MLP; and adaptive network-based fuzzy inference
system, ANFIS). Based on the results reported here, and due to the highly complex nature of the
COVID-19 outbreak and variation in its behavior across nations, this study suggests machine learning
as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate
the potential of machine learning for future research. This paper further suggests that a genuine
novelty in outbreak prediction can be realized by integrating machine learning and SEIR models.

Keywords: COVID-19; coronavirus disease; coronavirus; SARS-CoV-2; prediction; machine learning;
coronavirus disease (COVID-19); deep learning; health informatics; severe acute respiratory
syndrome coronavirus 2; supervised learning; outbreak prediction; pandemic; epidemic; forecasting;
artificial intelligence; artificial neural networks
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1. Introduction

Access to accurate outbreak prediction models is essential to obtain insights into the likely spread
and consequences of infectious diseases. Governments and other legislative bodies rely on insights from
prediction models to suggest new policies and to assess the effectiveness of the enforced policies [1].
The novel coronavirus disease (COVID-19) has been reported to have infected more than 2 million
people, with more than 132,000 confirmed deaths worldwide. The recent global COVID-19 pandemic
has exhibited a nonlinear and complex nature [2]. In addition, the outbreak has differences with other
recent outbreaks, which brings into question the ability of standard models to deliver accurate results [3].
In addition to the numerous known and unknown variables involved in the spread, the complexity
of population-wide behavior in various geopolitical areas and differences in containment strategies
dramatically increased model uncertainty [4]. Consequently, standard epidemiological models face
new challenges to deliver more reliable results. To overcome this challenge, many novel models have
emerged which introduce several assumptions to modeling (e.g., adding social distancing in the form
of curfews, quarantines, etc.) [5–7].

To elaborate on the effectiveness of enforcing such assumptions, understanding standard dynamic
epidemiological (e.g., susceptible-infected-recovered, SIR) models is essential [8]. The modeling strategy
is formed around the assumption of transmitting the infectious disease through contacts, considering
three different classes of well-mixed populations; susceptible to infection (class S), infected (class I),
and the removed population (class R is devoted to those who have recovered, developed immunity,
been isolated, or passed away). It is further assumed that the class I transmits the infection to class S

where the number of probable transmissions is proportional to the total number of contacts [9–11].
The number of individuals in the class S progresses as a time series, often computed using a basic
differential equation as follows (Equation (1)):

dS

dt
= − αSI (1)

where I is the infected population, and S is the susceptible population, both as fractions. α represents
the daily reproduction rate of the differential equation, regulating the number of susceptible infectious
contacts. The value of S in the time series produced by the differential equation gradually declines.
Initially, it is assumed that at the early stage of the outbreak S ≈ 1 while the number of individuals in
class I is negligible. Thus, the increment dI

dt becomes linear and the class I eventually can be computed
as follows (Equation (2)):

dI

dt
= αSI − βI (2)

where β regulates the daily rate of new infections by quantifying the number of infected individuals
competent in the transmission. Furthermore, the class R, representing individuals excluded from the
spread of infection, is computed as follows:

dR

dt
= βI (3)

Under the unconstrained conditions of the excluded group, Equation (3), the outbreak exponential
growth can be computed as follows (Equation (4)):

I (t) ≈ I0 exp
{

(α− β)
}

(4)

The outbreaks of a wide range of infectious diseases have been modeled using Equation (4).
However, for the COVID-19 outbreak prediction, due to the strict measures enforced by authorities,
the susceptibility to infection has been manipulated dramatically. For example, in China, Italy,
France, Hungary, and Spain the SIR model cannot present promising results, as individuals committed
voluntarily to quarantine and limited their social interaction. However, for countries where containment
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measures were delayed (e.g., United States) the model has shown relative accuracy [12]. Figure 1
shows the inaccuracy of conventional models applied to the outbreak in Italy by comparing the
actual number of confirmed infections and epidemiological model predictions (this trend obviously
depends on the approach chosen to model the outbreak; for example, the SEIR model performs usually
better than SIR model). SEIR models, by considering the significant incubation period during which
individuals are infected, showed increased model accuracy for the Varicella and Zika outbreaks [13,14].
SEIR models assume that the incubation period is a random variable and, similarly to the SIR model,
there is a disease-free equilibrium [15,16]. It should be noted, however, that standard SIR and SEIR
models will not fit well where the parameters related to social mixing and, thus, the contact network,
are non-stationary through time [17]. A key cause of non-stationarity is where the social mixing (which
determines the contact network) changes through time. Social mixing determines the reproductive
number R0, which is the number of susceptible individuals that an infected person will infect. When R0

is less than 1 the epidemic will die out; when it is greater than 1 it will spread. R0 for COVID-19 prior
to lockdown was estimated as a massive 4 [1], representing a pandemic. It is expected that lockdown
measures should bring R0 down to less than 1. The key reason why SEIR models are difficult to fit
for COVID-19 is non-stationarity of mixing, caused by nudging (step-by-step) intervention measures.
A further drawback of conventional epidemiological models is the short lead time. To evaluate the
performance of the models, the median success of the outbreak prediction presents useful information.
The median prediction factor can be calculated as follows (Equation (5)):

f =
Prediction

True value
(5)

 

𝑅𝑅  𝑅   𝑅  

𝑓 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
𝑓 = 1𝑓 = 0.86

 

Figure 1. Italy’s COVID-19 outbreak: the actual number of confirmed infections vs. epidemiological model.

As the lead-time increases, the accuracy of the model declines. For instance, for the COVID-19
outbreak in Italy, the accuracy of the model for more than 5 days hence reduces from f = 1 for
the first five days to f = 0.86 for day 6 [12]. Overall, the standard epidemiological models can be
effective and reliable only if (a) the social interactions are stationary through time (i.e., no changes
in interventions or control measures), and (b) there exists a great deal of knowledge of class R with
which to compute Equation (3). To acquire information on class R, several novel models included
data from social media or call data records (CDR), which showed promising results [18–25]. However,
observation of the behavior of COVID-19 in several countries demonstrates a high degree of uncertainty
and complexity [26]. Thus, for epidemiological models to be able to deliver reliable results, they must
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be adapted to the local situation based on insights into susceptibility to infection due to changes in
public health interventions, and the various states in the SIR/SEIR model [27]. This imposes a huge
limit on the generalization ability and robustness of conventional models. Advancing accurate models
with a great generalization ability to be scalable to model both the regional and global pandemic is,
thus, essential [28].

Due to the complexity and the large-scale nature of the problem in developing epidemiological
models, machine learning (ML) has recently gained attention for building outbreak prediction models.
ML approaches aim at developing models with higher generalization ability and greater prediction
reliability for longer lead times [29–33].

Although ML methods were used in modeling former pandemics (e.g., Ebola, cholera, swine fever,
H1N1 influenza, dengue fever, Zika, oyster norovirus [8,34–43]), there is a gap in the literature for
peer-reviewed papers dedicated to COVID-19. Table 1 represents notable ML methods used for outbreak
prediction. These ML methods are limited to the basic methods of random forest, neural networks,
Bayesian networks, naïve Bayes, genetic programming, and classification and regression tree (CART).
Although ML has long been established as a standard tool for modeling natural disasters and weather
forecasting [44,45], its application in modeling outbreak is still in the early stages. More sophisticated
ML methods (e.g., hybrids, ensembles) are yet to be explored. Consequently, the contribution of this
paper is to explore the application of ML for modeling the COVID-19 pandemic. This paper aims to
investigate the generalization ability of the proposed ML models and the accuracy of the proposed
models for different lead times.

Table 1. Notable machine learning (ML) methods for outbreak prediction.

Authors Journal Outbreak Infection Machine Learning

[39] Transboundary and
Emerging Diseases Swine fever Random Forest

[35] Geospatial Health Dengue fever Neural Network

[42] BMC Research Notes Influenza Random Forest

[41] Journal of Public
Health Medicine Dengue/Aedes Bayesian Network

[38] Informatica Dengue LogitBoost

[8] Global Ecology
and Biogeography H1N1 flu Neural Network

[34] Current Science Dengue Adopted multi-regression
and Naïve Bayes

[36] Environment International Oyster norovirus Neural Network

[37] Water Research Oyster norovirus Genetic programming

[43] Infectious Disease Modelling Dengue Classification and regression
tree (CART)

The state-of-the-art machine learning methods for outbreak prediction modeling demonstrate two
major research gaps for machine learning to address. Firstly, advancement in time-series prediction of
outbreak and, secondly, improvement of SIR and SEIR models. Considering the drawbacks to the existing
SIR and SEIR, machine learning can certainly contribute. This paper contributes to the advancement of
time-series prediction of COVID-19. Consequently, an initial benchmarking is given to demonstrate the
potential of machine learning for future research. The paper further suggests that a genuine novelty in
outbreak prediction can be realized by integrating machine learning and SEIR models.

The remainder of this paper is organized as follows. Section 2 describes the methods and
materials. The results are given in Section 3. Sections 4 and 5 present the discussion and the conclusions,
respectively.
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2. Materials and Methods

Data were collected from worldometers website [46] for five countries, namely Italy, Germany, Iran,
USA, and China, for total cases over 30 days. Figure 2 presents the total case number (cumulative statistic)
for the considered countries. Currently, to contain the outbreak, the governments have implemented
various measures to reduce transmission by inhibiting people’s movements and social activities.
Although information on changes in social distancing is essential for advancing the epidemiological
models, for modeling with machine learning no assumption is required. As can be seen in Figure 2, the
growth rate in China was greater than that for Italy, Iran, Germany, and the USA in the early weeks of
the disease [46].

 

−

 

Figure 2. Cumulative number of cases for five countries during a thirty-day period.

The next step is to find the best model for the estimation of the time-series data. Logistic (Equation (6)),
linear (Equation (7)), logarithmic (Equation (8)), quadratic (Equation (9)), cubic (Equation (10)), compound
(Equation (11)), power (Equation (12)), and exponential (Equation (13)) equations were employed to
develop the desired model. These models are generally not good fits for outbreak prediction beyond the
available data. In this study, through parameter tuning we aim at finding the optimal performance of
these models. The model with the best performance is later used for comparative analysis.

R = A/(1 + exp(((4*µ)*(L − x)/A) + 2)) (6)

R = Ax − B (7)

R = A + Blog(x) (8)

R = A + Bx + Cx2 (9)

R = A + Bx + Cx2 + Dx3 (10)

R = ABx (11)

R = AxB (12)

R = AEXP(Bx) (13)

A, B, C, µ, and L are parameters (constants) that characterize the above-mentioned functions.
These constants need to be estimated to develop an accurate estimation model. One of the goals
of this study was to model time-series data based on the logistic microbial growth model. For this
purpose, the modified equation of logistic regression was used to estimate and predict the prevalence
(i.e., I/Population at a given time point) of disease as a function of time. Estimation of the parameters
was performed using evolutionary algorithms such as the genetic algorithm (GA), particle swarm
optimizer, and grey wolf optimizer. These algorithms are discussed in the following.
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2.1. Evolutionary Algorithms

Evolutionary algorithms (EA) are powerful tools for solving optimization problems through
intelligent methods. These algorithms are often inspired by natural processes to search for all possible
answers as an optimization problem [47–49]. In the present study, the frequently used algorithms,
(i.e., genetic algorithm (GA), particle swarm optimizer (PSO) and grey wolf optimizer (GWO)) were
employed to estimate the parameters by solving a cost function.

2.1.1. Genetic Algorithm (GA)

GAs are considered a subset of “computational models” inspired by the concept of evolution [50].
These algorithms use “Potential Solutions”, “Candidate Solutions”, or “Possible Hypotheses” for a
specific problem in a “chromosome-like” data structure. GA maintains vital information stored in
these chromosome data structures by applying “Recombination Operators” to chromosome-like data
structures [51–54]. In many cases, GAs are employed as “Function Optimizer” algorithms, which are
algorithms used to optimize “Objective Functions”. Of course, the range of applications that use the
GA to solve problems is very wide [53,55]. The implementation of the GA usually begins with the
production of a population of chromosomes generated randomly, and bound up and down by the
variables of the problem. In the next step, the generated data structures (chromosomes) are evaluated,
and chromosomes that can better display the optimal solution of the problem are more likely to be
used to produce new chromosomes. The degree of “goodness” of an answer is usually measured by
the population of the current candidate’s answers [56–60]. The main algorithm of a GA process is
demonstrated in Figure 3.

 

Problem

Modeling of the 
problem

Formation of the 
initial population

Evaluation of 
the Population

Choosing the 
parents

Offspring

New population

Initial 
population

Response

Crossover

Mutation

Replacing the new population size

Selection

 

𝑀𝑆𝐸 = (𝐸𝑠 − 𝑇)𝑁

Figure 3. Genetic algorithm (GA).

In the present study, GA [60] was employed for estimation of the parameters of Equations (6)
to (13). The population number was selected to be 300 and the maximum generation (as iteration
number) was determined to be 500 according to different trial and error processes to reduce the
cost function value. The cost function was defined as the mean square error between the target and
estimated values according to Equation (14):

MSE =

√

(Es− T)2

N
(14)
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where Es refers to estimated values, T refers to the target values, and N refers to the number of data.

2.1.2. Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart [60] introduced the PSO as an uncertain search method for
optimization purposes. The algorithm was inspired by the mass movement of birds looking for food.
A group of birds accidentally look for food in a space. There is only one piece of food in the search
space. Each solution in PSO is called a particle, which is equivalent to a bird in the bird’s mass
movement algorithm. Each particle has a value that is calculated by a competency function which
increases as the particle in the search space approaches the target (food in the bird’s movement model).
Each particle also has a velocity that guides the motion of the particle. Each particle continues to move
in the problem space by tracking the optimal particles in the current state [61–63]. The PSO method is
rooted in Reynolds’ work, which is an early simulation of the social behavior of birds. The mass of
particles in nature represents collective intelligence. Consider the collective movement of fish in water
or birds during migration. All members move in perfect harmony with each other, hunt together if
they are to be hunted, and escape from the clutches of a predator by moving toward other prey if they
are preyed upon [64–66]. Particle properties in this algorithm include [66–68]:

• Each particle independently looks for the optimal point.
• Each particle moves at the same speed at each step.
• Each particle remembers its best position in the space.
• The particles work together to inform each other of the places they are looking for.
• Each particle is in contact with its neighboring particles.
• Every particle is aware of the particles that are in the neighborhood.
• Every particle is known as one of the best particles in its neighborhood.

The PSO implementation steps can be summarized as: the first step establishes and evaluates the
primary population. The second step determines the best personal memories and the best collective
memories. The third step updates the speed and position. If the conditions for stopping are not met,
the cycle will return to the second step.

The PSO algorithm is a population-based algorithm [69,70]. This property makes it less likely to
be trapped in a local minimum. This algorithm operates according to possible rules, not definite rules.
Therefore, PSO is a random optimization algorithm that can search for unspecified and complex areas.
This makes PSO more flexible and durable than conventional methods. PSO deals with non-differential
target functions because the PSO uses the information result (performance index or target function to
guide the search in the problem area). The quality of the proposed route response does not depend on
the initial population. Starting from anywhere in the search space, the algorithm ultimately converges
on the optimal answer. PSO has great flexibility to control the balance between the local and overall
search space. This unique PSO property overcomes the problem of improper convergence and increases
the search capacity. All of these features make PSO different from the GA and other innovative
algorithms [62,66,68].

In the present study, PSO was employed for estimation of the parameters of Equations (6) to (13).
The population number was selected to be 1000 and the iteration number was determined to be 500
according to different trial and error processes to reduce the cost function value. The cost function was
defined as the mean square error between the target and estimated values according to Equation (14).

2.1.3. Grey Wolf Optimizer (GWO)

One recently developed smart optimization algorithm that has attracted the attention of many
researchers is the grey wolf algorithm. Like most other intelligent algorithms, GWO is inspired by
nature. The main idea of the grey wolf algorithm is based on the leadership hierarchy in wolf groups and
how they hunt [71]. In general, there are four categories of wolves among the herd of grey wolves, alpha,
beta, delta and omega. Alpha wolves are at the top of the herd’s leadership pyramid; the remainder of
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the wolves take orders from the alpha group and follow them (usually there is only one alpha wolf
in each herd). Beta wolves are in the lower tier, but their superiority over delta and omega wolves
allows them to provide advice and help to alpha wolves. Beta wolves are responsible for regulating
and orienting the herd based on alpha movement. Delta wolves, which are next in line in the power
pyramid of the wolf herd, are usually made up of guards, elderly population, caregivers of damaged
wolves, and so on. Omega wolves are the weakest in the power hierarchy [71]. Equations (15) to (18)
are used to model the hunting tool:

→

D = |
→

C,
→

Xp(t) −
→

X (t)| (15)

→

X(t + 1) =
→

Xp(t) −
→

A,
→

D (16)

→

X(t + 1) =
→

Xp(t) −
→

A,
→

D (17)

→

C = 2
→
r2 (18)

where t represents repetition of the algorithm.
→

A and
→

C are vectors of the prey site and the
→

X vectors
represent the locations of the grey wolves.

→
a is linearly reduced from 2 to 0 during the repetition.

→
r1 and

→
r2 are random vectors in which each element can take on realizations in the range [0,1]. The GWO
algorithm flowchart is shown in Figure 4.

 

�⃗� = 𝐶, 𝑋⃗(𝑡) − 𝑋 ⃗(𝑡)�⃗�(𝑡 + 1) = 𝑋⃗(𝑡) − 𝐴, �⃗��⃗�(𝑡 + 1) = 𝑋⃗(𝑡) − 𝐴, �⃗�𝐶 = 2𝑟⃗𝐴 𝐶 �⃗��⃗� 𝑟⃗𝑟⃗
Start

Initialization, Determination of the number 
of wolves

Calculation of the fitness value of the 
wolves

Identification of alpha, beta and delta wolves

Updating the position of wolves

Verified?
No

Exporting results

End

Yes

 

Figure 4. Grey wolf optimizer (GWO) algorithm.
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In the present study, GWO [71] was employed for estimation of the parameters of Equations (1) to
(8). The population number was selected to be 500 and the iteration number was determined to be 1000
according to different trial and error processes to reduce the cost function value. The cost function was
defined as the mean square error between the target and estimated values according to Equation (14).

2.2. Machine Learning (ML)

ML is regarded as a subset of Artificial Intelligence (AI). Using ML techniques, the computer learns
to use patterns or “training samples” in data (processed information) to predict or make intelligent
decisions without overt planning [72,73]. In other words, ML is the scientific study of algorithms and
statistical models used by computer systems that use patterns and inference to perform tasks instead
of using explicit instructions [74,75].

Time series are data sequences collected over a period of time [76], which can be used as inputs to
ML algorithms. This type of data reflects the changes that a phenomenon has undergone over time. Let
Xt be a time-series vector, in which xt is the outbreak at time point t and T is the set of all equidistant
time points. To train ML methods effectively, we defined two scenarios, listed in Table 2.

Table 2. Input and output variables for training ML methods by time-series data.

Inputs Input Number Output

Scenario 1 xt−1, xt−7, xt−14, and xt−21 Four inputs xt (outbreak)
Scenario 2 xt−1, xt−2, xt−3, xt−4, and xt−5 Five inputs xt (outbreak)

As can be seen in Table 2, scenario 1 employs data for three weeks to predict the outbreak on day t

and scenario 2 employs outbreak data for five days to predict the outbreak for day t. Both of these
scenarios were employed for fitting the ML methods. In the present research, two frequently used ML
methods, the multi-layered perceptron (MLP) and adaptive network-based fuzzy inference system
(ANFIS), were employed for the prediction of the outbreak in the five countries.

2.2.1. Multi-Layered Perceptron (MLP)

The Artificial Neural Network (ANN) is an idea inspired by the biological nervous system,
which processes information in the same way as the brain. The key element of this idea is the new
structure of the information processing system [77–79]. The system is made up of several highly
interconnected processing elements called neurons that work together to solve a problem [79,80].
ANNs, like humans, learn by example. The neural network is set up during a learning process to
perform specific tasks, such as identifying patterns and categorizing information. In biological systems,
learning is regulated by the synaptic connections between nerves. This method is also used in neural
networks [81]. By processing experimental data, ANNs transfer knowledge or a law behind the data to
the network structure, which is called learning. Basically, learning ability is the most important feature
of such a smart system. A learning system is more flexible and easier to plan, so it can better respond
to new issues and changes in processes [82].

In ANNs, with the help of programming knowledge, a data structure is designed that can act
like a neuron. This data structure is called a node [83,84]. In this structure, the network between
these nodes is trained by applying an educational algorithm to it. In this memory or neural network,
the nodes have two active states (on or off) and one inactive state (off or 0), and each edge (synapse
or connection between nodes) has a weight. Positive weights stimulate or activate the next inactive
node, and negative weights inactivate or inhibit the next connected node (if active) [79,85]. In the ANN
architecture, for the neural cell c, the input bp enters the cell from the previous cell p (Equation (19)).
wpc is the weight of the input bp with respect to cell c and ac is the sum of the multiplications of the
inputs and their weights [86]:

ac =
∑

wpcbpc (19)
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A non-linear function θc is applied to ac. Accordingly, bc can be calculated as Equation (20) [85]:

bc = θc(ac) (20)

Similarly, wcn is the weight of the bcn which is the output of c to n. W is the collection of all of
the weights of the neural network in a set. For input x and output y, hw(x) is the output of the neural
network. The main goal is to learn these weights to reduce the error values between y and hw(x).
That is, the goal is to minimize the cost function Q(W), Equation (21) [86]:

Q(W) =
1
2

n
∑

i=1

(yi − oi)
2 (21)

In the present research, one of the frequently used types of ANN called the MLP [77] was employed
to predict the outbreak. The MLP was trained using a dataset related to both scenarios. For the training
of the network, 8, 12, and 16 inner neurons were tried to achieve the best response. Results were
evaluated by root mean square error (RMSE) and correlation coefficient to reduce the cost function
value. Figure 5 presents the architecture of the MLP.
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Figure 5. Architecture of the multi-layered perceptron (MLP).

2.2.2. Adaptive Neuro Fuzzy Inference System (ANFIS)

An adaptive neuro fuzzy inference system is a type of ANN based on the Takagi–Sugeno fuzzy
system [87]. This approach was developed in the early 1990s. Because this system integrates the
concepts of neural networks and fuzzy logic, it can take advantage of both capabilities in a unified
framework. This technique is one of the most frequently used and robust hybrid ML techniques. It is
consistent with a set of fuzzy if–then rules that can be learned to approximate nonlinear functions [88,89].
Hence, ANFIS was proposed as a universal estimator. An important element of fuzzy systems is
the fuzzy partition of the input space [90,91]. For input k, the fuzzy rules in the input space make a
k-faced fuzzy cube. Achieving a flexible partition for nonlinear inversion is non-trivial. The idea of
this model is to build a neural network whose outputs are a degree of the input that belongs to each
class [92–94]. The membership functions (MFs) of this model can be nonlinear, multidimensional and,
thus, different to conventional fuzzy systems [95–97]. In ANFIS, neural networks are used to increase
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the efficiency of fuzzy systems. The method used to design neural networks is to employ fuzzy systems
or fuzzy-based structures. This model is a kind of division and conquest method. Instead of using one
neural network for all the input and output data, several networks are created in this model:

• A fuzzy separator to cluster input–output data within multiple classes.
• A neural network for each class.
• Training neural networks with output–input data in the corresponding classes.

Figure 6 presents a simple architecture for ANFIS.

 

 
 

Inputs

Input MFs
Rules Output MF

Output

∑

Input 1

Input 2

Input n

Output

∑ (  ) ∑ (  ) ∑ (  ) [ ∑  (∑  ) ][ ∑  (∑  ) ]  
∑ (𝐴 −  𝑃)

 

Figure 6. Adaptive neuro fuzzy inference system (ANFIS) architecture.

In the present study, ANFIS is developed to tackle two scenarios described in Table 2. Each input
included by two MFs with the Tri shape, Trap shape, and Gauss shape MFs. The output MF type was
selected to be linear with a hybrid optimizer type.

2.2.3. Evaluation Criteria

Evaluation was conducted using the root mean square error (RMSE) (Equation (22)) and correlation
coefficient (Equation (23)). These statistics compare the target and output values, and calculate a
score as an index for the performance and accuracy of the developed methods [88,98]. Presents the
evaluation criteria equations.

Correlation coefficient =
N
∑

(AP) −
∑

(A)
∑

(P)
√

[N
∑

A2 − (
∑

A) 2][N
∑

P2 − (
∑

AP) 2]
(22)

RMSE =

√

1
N

∑

(A− P)2 (23)

where N is the number of data, and P and A are, respectively, the predicted (output) and desired (target)
values.

3. Results

Tables 3–10 present the results of the accuracy statistics for the logistic, linear, logarithmic, quadratic,
cubic, compound, power, and exponential equations, respectively. The coefficients of each equation
were calculated by the three ML optimizers; GA, PSO, and GWO. The table contains country name,
model name, population size, number of iterations, processing time, RMSE, and correlation coefficient.
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Table 3. Accuracy statistics for the logistic model.

Country Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 82 s 1028.98 0.996
PSO 1000 500 36 s 3358.1 0.997

GWO 500 1000 14 s 187.15 0.999

China
GA 300 500 79 s 42,160.4 0.982
PSO 1000 500 35 s 2524.44 0.994

GWO 500 1000 13 s 2270.58 0.995

Iran
GA 300 500 81 s 1267.04 0.992
PSO 1000 500 36 s 628.62 0.997

GWO 500 1000 13 s 392.88 0.996

USA
GA 300 500 82 s 1028.98 0.999
PSO 1000 500 38 s 350.33 0.999

GWO 500 1000 15 s 22.35 0.999

Germany
GA 300 500 86 s 5339.5 0.983
PSO 1000 500 39 s 555.32 0.997

GWO 500 1000 16 s 55.54 0.999

Table 4. Accuracy statistics for the linear model.

Country Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 92 s 3774.06 0.845
PSO 1000 500 42 s 3645.76 0.844

GWO 500 1000 16 s 3642.44 0.844

China
GA 300 500 91 s 7188.95 0.981
PSO 1000 500 39 s 6644.16 0.982

GWO 500 1000 14 s 5039.48 0.982

Iran
GA 300 500 96 s 3330.45 0.943
PSO 1000 500 45 s 2072.71 0.944

GWO 500 1000 18 s 1981.97 0.944

USA
GA 300 500 88 s 850.22 0.745
PSO 1000 500 40 s 596.69 0.746

GWO 500 1000 17 s 592.48 0.746

Germany
GA 300 500 93 s 1118.77 0.758
PSO 1000 500 47 s 964.46 0.759

GWO 500 1000 20 s 951.63 0.759

Table 5. Accuracy statistics for the logarithmic model.

Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 98 s 8325.33 0.634
PSO 1000 500 51 s 8818.2 0.634

GWO 500 1000 20 s 9296.59 0.634

China
GA 300 500 96 s 40,828.2 0.847
PSO 1000 500 42 s 43,835.37 0.847

GWO 500 1000 17 s 42,714.93 0.847

Iran
GA 300 500 102 s 4929.97 0.757
PSO 1000 500 59 s 8775.56 0.757

GWO 500 1000 22 s 8995.52 0.756

USA
GA 300 500 94 s 889.15 0.538
PSO 1000 500 37 s 1130.33 0.538

GWO 500 1000 15 s 1135.12 0.538

Germany
GA 300 500 95 s 1552.22 0.548
PSO 1000 500 45 s 1966.81 0.548

GWO 500 1000 21 s 1878.67 0.548
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Table 6. Accuracy statistics for the quadratic model.

Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 102 s 6710.01 0.976
PSO 1000 500 54 s 5102.4 0.953

GWO 500 1000 26 s 1272.1 0.982

China
GA 300 500 100 s 7921.33 0.992
PSO 1000 500 46 s 4328.71 0.993

GWO 500 1000 20 s 3710.16 0.993

Iran
GA 300 500 105 s 6771.74 0.995
PSO 1000 500 62 s 822.09 0.998

GWO 500 1000 24 s 310.02 0.998

USA
GA 300 500 98 s 754.6 0.931
PSO 1000 500 38 s 791.92 0.853

GWO 500 1000 19 s 307.58 0.938

Germany
GA 300 500 101 s 7577 0.904
PSO 1000 500 49 s 752.95 0.923

GWO 500 1000 26 s 472.62 0.946

Table 7. Accuracy statistics for the cubic model.

Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 112 s 7973.11 0.993
PSO 1000 500 61 s 4827.08 0.996

GWO 500 1000 34 s 324.33 0.998

China
GA 300 500 113 s 15,697.84 0.971
PSO 1000 500 59 s 3611.15 0.995

GWO 500 1000 34 s 2429.45 0.995

Iran
GA 300 500 120 s 5852.66 0.995
PSO 1000 500 88 s 3809.76 0.997

GWO 500 1000 39 s 250.2 0.999

USA
GA 300 500 110 s 37,766.56 0.875
PSO 1000 500 49 s 678.36 0.979

GWO 500 1000 25 s 118.24 0.991

Germany
GA 300 500 116 s 1709.06 0.744
PSO 1000 500 59 s 1812.78 0.967

GWO 500 1000 29 s 196.8 0.99

Table 8. Accuracy statistics for the compound model.

Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 92 s 8347.51 0.912
PSO 1000 500 53 s 195,705.52 0.918

GWO 500 1000 22 s 12,585.79 0.951

China
GA 300 500 90 s 41,544.05 0.986
PSO 1000 500 48 s 40,195.9 0.988

GWO 500 1000 23 s 24,987.34 0.895

Iran
GA 300 500 99 s 1,487,501.93 0.782
PSO 1000 500 81 s 8216.81 0.986

GWO 500 1000 26 s 13,635.01 0.864

USA
GA 300 500 96 s 655.62 0.994
PSO 1000 500 32 s 1026.03 0.827

GWO 500 1000 16 s 364.87 0.988

Germany
GA 300 500 98 s 15,333,537.7 0.93
PSO 1000 500 72 s 1557.23 0.976

GWO 500 1000 20 s 431.97 0.998
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Table 9. Accuracy statistics for the power model.

Model Pop. Size Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 72 s 7063.4 0.983
PSO 1000 500 40 s 6150.52 0.982

GWO 500 1000 13 s 3450.96 0.991

China
GA 300 500 65 s 39,669.92 0.976
PSO 1000 500 39 s 19,365.58 0.987

GWO 500 1000 12 s 4078.99 0.989

Iran
GA 300 500 83 s 2,343,032.5 0.951
PSO 1000 500 65 s 92,755.53 0.975

GWO 500 1000 15 s 1031.6 0.991

USA
GA 300 500 79 s 1030.01 0.779
PSO 1000 500 24 s 1005.27 0.751

GWO 500 1000 11 s 790.16 0.837

Germany
GA 300 500 85 s 1475.39 0.871
PSO 1000 500 69 s 1387.94 0.916

GWO 500 1000 14 s 1341.91 0.875

According to Tables 3–10, GWO provided the highest accuracy (smallest RMSE and largest
correlation coefficient) and smallest processing time compared to PSO and GA for fitting the logistic,
linear, logarithmic, quadratic, cubic, power, compound, and exponential equations for all five countries.
It can be suggested that GWO is a sustainable optimizer due to its acceptable processing time compared
with PSO and GA. Therefore, GWO was selected as the best optimizer by providing the highest
accuracy values compared with PSO and GA. In general, it can be claimed that GWO, by suggesting the
best parameter values for the functions presented in Equations (6)–(13), increases outbreak prediction
accuracy for COVID-19 in comparison with PSO and GA. Therefore, the functions derived by GWO
were selected as the best predictors for this research.

Tables 11–15 present the description and coefficients of the linear, logarithmic, quadratic, cubic,
compound, power, exponential, and logistic equations estimated by GWO. Tables 11–15 also present
the RMSE and r-square values for each equation fitted to data for China, Italy, Iran, Germany, and
USA, respectively.

Table 10. Accuracy statistics for the exponential model.

Model POP. SIZE Iteration Processing Time RMSE Correlation Coefficient

Italy
GA 300 500 79 s 8163.1 0.995
PSO 1000 500 48 s 52,075,925.37 0.839

GWO 500 1000 18 s 12,585.79 0.951

China
GA 300 500 71 s 68,991.73 0.866
PSO 1000 500 45 s 80,104.27 0.865

GWO 500 1000 17 s 24,987.34 0.895

Iran
GA 300 500 89 s 1,436,025.84 0.767
PSO 1000 500 70 s 3,745,673.26 0.744

GWO 500 1000 21 s 13,635.01 0.864

USA
GA 300 500 84 s 457,051.4 0.974
PSO 1000 500 30 s 982.37 0.932

GWO 500 1000 15 s 364.87 0.988

Germany
GA 300 500 87 s 8176.54 0.981
PSO 1000 500 74 s 3278.55 0.998

GWO 500 1000 19 s 431.97 0.998
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Table 11. Model description for China fitted by GWO.

Model Name Description RMSE r-Square

Linear R = 3036.4× x− 13509.84 5039.48 0.964

Logarithmic R = −33948.15 + 27124.70× log(x) 42,714.93 0.718

Quadratic R = −5080.88 + 1455.98× x + 50.98× x2 3710.16 0.98

Cubic R = 3984.73− 1790.2× x + 308.52× x2 − 5.53× x3 2429.45 0.99

Compound R = 1601.03× 1.16x 24,987.34 0.801

Power R = 262.27× x1.69 4078.99 0.98

Exponential R = 1601.03× EXP(0.15× x) 24,987.34 0.801

Logistic R = 85011.297/(1 + EXP(((4× 4483.304) ∗ (9.423− x)/85011.297) + 2)) 2270.58 0.992

Table 12. Model description for Italy fitted by GWO.

Model Name Description RMSE r-Square

Linear R = 663.71× x− 5437.25 3642.44 0.713

Logarithmic R = −7997.93 + 5162.83× log(x) 9296.59 0.402

Quadratic R = 2998.21− 917.93× x + 51.02× x2 1272.1 0.965

Cubic R = −978.55 + 506.05× B2− 61.95× x2 + 2.42× x3 324.33 0.997

Compound R = 2.78× 1.406x 12,585.79 0.904

Power R = 0.096× x3.476 3450.96 0.984

Exponential R = 2.786× EXP(0.341× x) 12,585.79 0.904

Logistic R = 70731.084/(1 + EXP(((4× 3962.88) × (23.88− x)/70731.08) + 2)) 187.15 0.999

Table 13. Model description for Iran fitted by GWO.

Model Name Description RMSE r-Square

Linear R = 656.068× x− 4527.69 1981.97 0.891

Logarithmic R = −7921.009 + 5449.784× log(x) 8995.52 0.574

Quadratic R = 310.48− 251.09× x + 29.26× x2 310.027 0.997

Cubic R = 902.33− 463.02× x + 46.07× x2 − 0.36× x3 250.204 0.998

Compound R = 13.26× 1.33x 13,635.014 0.748

Power R = 0.51× x3.09 1031.607 0.982

Exponential R = 13.26× EXP(0.28× x) 13,635.014 0.748

Logistic R = 21936.052/(1 + EXP(((4 ∗ 1255.36) × (14.66− x)/21936.052) + 2)) 392.88 0.996

Table 14. Model description for Germany fitted by GWO.

Model Name Description RMSE r-Square

Linear R = 128.421× x− 1130.294 951.635 0.577

Logarithmic R = −1528.684 + 959.941× log(x) 1878.672 0.3

Quadratic R = 911.113− 254.342× x + 12.347× x2 472.624 0.895

Cubic R = −478.087 + 243.097× x− 27.118× x2 + 0.848× x3 196.809 0.981

Compound R = 3.821× 1.263x 431.975 0.996

Power R = 0.937x2.021 1341.911 0.766

Exponential R = 3.821× EXP(0.233× x) 431.975 0.996

Logistic R = 55179.669/(1 + EXP(((4× 3740.457) × (30.49− x)/55179.669) + 2)) 55.546 0.998
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Table 15. Model description for USA fitted by GWO.

Model Name Description RMSE r-Square

Linear R = 76.833× x− 666.79 592.486 0.557

Logarithmic R = −902.637 + 573.32× log(x) 1135.124 0.289

Quadratic R = 584.76− 157.831× x + 7.569× x2 307.585 0.88

Cubic R = −333.235 + 170.881× x− 18.509× x2 + 0.56× x3 118.247 0.982

Compound R = 6.296× 1.214x 364.875 0.977

Power R = 1.707× x1.735 790.163 0.702

Exponential R = 6.296× EXP(0.194× x) 364.875 0.977

Logistic R = 32604.552/(1 + EXP(((4× 2288.932) × (30.303− x)/32604.552) + 2)) 22.354 0.999

As is clear from Tables 11–15, in general, the logistic equation followed by the quadratic and cubic
equations provided the smallest RMSE and the largest r-square values for the prediction of COVID-19
outbreak. The claim can also be considered from Figures 7–11, which present the capability and trend
of each model derived by GWO in the prediction of COVID-19 cases for China, Italy, Iran, Germany,
and the USA, respectively.

Figures 7–11 illustrate the fit of the models investigated in this paper. The best fit for the prediction
of COVID-19 cases was achieved for the logistic model followed by cubic and quadratic models for
China (Figure 7), logistic followed by cubic models for Italy (Figure 8), cubic followed by logistic and
quadratic models for Iran (Figure 9), the logistic model for Germany (Figure 10), and logistic model for
the USA (Figure 11).

 

R =  128,421 × x − 1130,294R =  −1528,684 +  959,941 × log(x)R =  911,113 − 254,342 × x + 12,347 × xR =  −478,087 + 243,097 × x − 27,118 × x + 0,848 × xR =  3,821 × 1,263R =  0,937x ,R = 3,821 × EXP(0,233 × x)R = 55179,669/(1 + EXP(((4 × 3740,457) × (30,49− x)/55179,669) + 2))
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Figure 7. Fitness graph for China fitted by GWO.
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Figure 8. Set of models for Italy fitted by GWO.

 

 
Figure 9. Set of models for Iran fitted by GWO.
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Figure 10. Set of models for Germany fitted by GWO.

 

 

 
Figure 11. Set of models for USA fitted by GWO.

Machine Learning Results

This section presents the results for the training stage of ML methods. MLP and ANFIS were
employed as single and hybrid ML methods, respectively. ML methods were trained using two datasets
related to scenario 1 and scenario 2. Table 16 presents the results of the training phase.
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Table 16. Results for the training phase of the ML methods.

Scenario 1 Scenario 2

MLP ANFIS MLP ANFIS

No. of Neurons r RMSE MF Type r RMSE No. of Neurons r RMSE MF Type r RMSE

Italy
8 0.999 190.81 Tri. 0.999 189.76 8 0.999 199.52 Tri. 0.999 188.55

12 0.999 194.84 Trap. 0.841 3743.63 12 0.999 195.79 Trap. 0.876 3276
16 0.999 188.18 Gauss 0.998 320.93 16 0.999 195.2 Gauss 0.999 206.66

Average 0.999 191.27 0.946 1418.1 Average 0.999 196.83 0.958 1223.73

China
8 0.995 2287.55 Tri. 0.996 2293.09 8 0.996 2265.95 Tri. 0.996 2272.13
12 0.996 2259.95 Trap. 0.987 4231.05 12 0.996 2285.73 Trap. 0.989 3835.34
16 0.995 2407.16 Gauss 0.996 2358.3 16 0.996 2260.05 Gauss 0.996 2272.58

Average 0.995 2318.22 0.993 2960.81 Average 0.996 2270.57 0.993 2793.35

Iran
8 0.998 392.17 Tri. 0.998 395.33 8 0.998 404.21 Tri. 0.998 394.04
12 0.998 391.04 Trap. 0.977 1282.33 12 0.998 392.77 Trap. 0.986 994
16 0.998 392.19 Gauss 0.998 396.51 16 0.998 395.43 Gauss 0.998 391.96

Average 0.998 391.8 0.991 391.39 Average 0.998 397.47 0.994 593.33

Germany
8 0.999 55.6 Tri. 0.999 56.25 8 0.999 55.58 Tri. 0.999 55.63
12 0.999 55.38 Trap. 0.12 1658.7 12 0.999 55.56 Trap. 0.13 1537.26
16 0.999 55.58 Gauss 0.998 154.99 16 0.999 55.56 Gauss 0.999 62.91

Average 0.999 55.52 0.705 623.31 Average 0.999 55.56 0.709 551.93

USA
8 0.999 21.65 Tri. 0.999 21.75 8 0.999 22.31 Tri. 0.999 22.52
12 0.999 22.36 Trap. 0.22 861.08 12 0.999 22.3 Trap. 0.2 935.41
16 0.999 22.31 Gauss 0.998 86.32 16 0.999 22.4 Gauss 0.999 25.03

Average 0.999 22.1 0.739 323.05 Average 0.999 22.33 0.739 327.65
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According to Table 16, the datasets related to scenarios 1 and 2 have different performance
values. Accordingly, for Italy, the MLP with 16 neurons provided the highest accuracy for scenario 1
and ANFIS with Tri. MF provided the highest accuracy for scenario 2. By considering the average
values of the RMSE and correlation coefficient, it can be concluded that scenario 1 is more suitable
for modeling outbreak cases in Italy because it provides higher accuracy (the smallest RMSE and the
largest correlation coefficient) than scenario 2.

For the dataset related to China, for both scenarios, MLP with 12 and 16 neurons, respectively for
scenarios 1 and 2, provided the highest accuracy compared with the ANFIS model. By considering the
average values of RMSE and correlation coefficient, it can be concluded that scenario 2 with a larger
average correlation coefficient and smaller average RMSE than scenario 1 is more suitable for modeling
the outbreak in China.

For the dataset of Iran, MLP with 12 neurons in the hidden layer for scenario 1 and ANFIS with
Gaussian MF type for scenario 2 provided the best performance for the prediction of the outbreak.
By considering the average values of the RMSE and correlation coefficient, it can be concluded that
scenario 1 provided better performance than scenario 2. In addition, in general, the MLP has higher
prediction accuracy compared with the ANFIS method.

In Germany, MLP with 12 neurons in its hidden layer provided the highest accuracy (smallest
RMSE and largest correlation coefficient). By considering the average values of the RMSE and
correlation coefficient, it can be concluded that scenario 1 is more suitable for the prediction of the
outbreak in Germany than scenario 2.

In the USA, the MLP with 8 and 12 neurons, respectively, for scenarios 1 and 2, provided higher
accuracy (the smallest RMSE and the largest correlation coefficient values) than the ANFIS model.
By considering the average values of the RMSE and correlation coefficient values, it can be concluded that
scenario 1 is more suitable than scenario 2, and MLP is more suitable than ANFIS for outbreak prediction.

Figures 12–16 present the model fits for Italy, China, Iran, Germany, and the USA, respectively.
By comparing Figures 12–16 with Figures 7–11, it can be concluded that the MLP and the logistic model
fitted by GWO provided a better fit than the other models. In addition, the ML methods provided
better performance compared with other models.

 

 
Figure 12. Set of models for Italy fitted by ML methods.
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Figure 13. Set of models for China fitted by ML methods.

 

 

 

 

Figure 14. Set of models for Iran fitted by ML methods.
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Figure 15. Set of models for Germany fitted by ML methods.

 

 

Figure 16. Set of models for USA fitted by ML methods.

Comparing the Fitted Models

This section presents a comparison of the accuracy and performance of the selected models for
the prediction of 30 days’ outbreak. Figures 17–21 show the deviation from the target values for the
selected models.
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Figure 17. Deviation from target value for models related to Italy.

 

 
Figure 18. Deviation from target value for models related to China.

 

 

Figure 19. Deviation from target value for models related to Iran.
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Figure 20. Deviation from target value for models related to Germany.

 

 Figure 21. Deviation from target value for models related to USA.

As is clear from Figures 17–21, the smallest deviation from the target values is related to the MLP
for scenario 1 followed by MLP for scenario 2. This indicates the highest performance of the MLP
method for the prediction of the outbreak. Figures 22–26 present the outbreak prediction for 75 days
and Tables 17–21 present the outbreak prediction for 150 days. Figure 27 represents the dispersion of
the outbreak for the countries studied in this paper.
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Figure 22. The outbreak prediction for Italy through 75 days.

 

Figure 23. The outbreak prediction for China through 75 days.
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Figure 24. The outbreak prediction for Iran through 75 days.

 

Figure 25. The outbreak prediction for Germany through 75 days.
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Figure 26. The outbreak prediction for the USA through 75 days.

 

 

 
Figure 27. An overview of the current state of the COVID-19 outbreak including daily cases for the
four countries of the study (source: World Health Organization).
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Table 17. The outbreak prediction for Italy through 150 days.

Logistic
by GWO

Linear by
GWO

Logarithmic
by GWO

Quadratic
by GWO

Power by
GWO

MLP ANFIS

Day 20th 3794.045 7837.054 −1280.93 5047.906 3225.523 3792.734 3796.738

Day 40th 58,966.55 21,111.37 273.235 47,914.4 35,898.08 58,966.74 58,964.96

Day 60th 70,571.86 34,385.68 1182.365 13,1597.7 14,6966.2 70,571.66 70,572.12

Day 80th 70,729.28 47,659.99 1827.402 256,097.8 399,523.4 70,729.27 70,729.15

Day 100th 70,731.06 60,934.31 2327.733 421,414.7 867,822 70,731.09 70,730.93

Day 120th 70,731.08 74,208.62 2736.532 627,548.4 1,635,643 70,731.14 70,730.87

Day 140th 70,731.08 87,482.94 3082.167 874,498.9 2,795,218 70,731.19 70,730.79

Day 150th 70,731.08 94,120.09 3236.862 1,013,280 3,552,851 70,731.21 70,730.75

Table 18. The outbreak prediction for China through 150 days.

Logistic
by GWO

Linear by
GWO

Logarithmic
by GWO

Quadratic
by GWO

Power by
GWO

MLP ANFIS

Day 20th 47,397.6 47,218.47 1341.899 44,431.48 41,916.55 47,397.6 47,360.98

Day 40th 84,030.16 107,946.8 9507.249 134,729.1 135,599.1 84,030.17 84,030.39

Day 60th 84,996.7 168,675.1 14,283.67 265,812 269,471.3 84,996.7 84,996.67

Day 80th 85,011.08 229,403.4 17,672.6 437,680.2 438,660.2 85,011.08 85,011.05

Day 100th 85,011.29 290,131.7 20,301.26 650,333.6 640,132.8 85,011.3 85,011.22

Day 120th 85,011.3 350,860 22,449.02 903,772.3 871,733.6 85,011.34 85,011.13

Day 140th 85,011.3 411,588.3 24,264.94 1,197,996 1,131,815 85,011.38 85,011.05

Day 150th 85,011.3 441,952.5 25,077.68 1,360,403 1,272,113 85,011.41 85,011.01

Table 19. The outbreak prediction for Iran through 150 days.

Logistic
by GWO

Linear by
GWO

Logarithmic
by GWO

Quadratic
by GWO

Power by
GWO

MLP ANFIS

Day 20th 6898.344 8593.676 −830.677 6993.955 5494.377 6902.315 6875.585

Day 40th 21,455.58 21,715.05 809.8719 37,087.98 47,060.48 21,457.4 21,456.65

Day 60th 21,931.01 34,836.43 1769.531 90,592.56 165,300.1 21,932.24 21,930.68

Day 80th 21,936 47,957.8 2450.42 167,507.7 403,082.8 21,935.1 21,935.54

Day 100th 21,936.05 61,079.18 2978.559 267,833.4 804,764.4 21,935.11 21,935.6

Day 120th 21,936.05 74,200.55 3410.08 391,569.6 1,415,829 21,935.12 21,935.63

Day 140th 21,936.05 87,321.93 3774.925 538,716.4 2,282,679 21,935.13 21,935.65

Day 150th 21,936.05 93,882.61 3938.219 621,068.7 2,826,737 21,935.13 21,935.67
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Table 20. The outbreak prediction for Germany through 150 days.

Logistic
by GWO

Linear by
GWO

Logarithmic
by GWO

Quadratic
by GWO

Power by
GWO

MLP ANFIS

Day 20th 431.027 1438.128 −279.772 763.1467 400.0548 432.8991 431.8119

Day 40th 35,356.27 4006.551 9.199328 10,492.96 1624.405 35,355.14 35,355.72

Day 60th 55,043.44 6574.974 178.2366 30,100.56 3687.126 55,036.14 55,044.03

Day 80th 55,179.07 9143.397 298.1705 59,585.93 6595.829 55,179.05 55,178.88

Day 100th 55,179.67 11,711.82 391.1984 98,949.09 10,355.87 55,179.9 55,179.47

Day 120th 55,179.67 14,280.24 467.2078 148,190 14,971.42 55,179.92 55,179.42

Day 140th 55,179.67 16,848.66 531.4728 207,308.7 20,445.86 55,179.94 55,179.37

Day 150th 55,179.67 18,132.88 560.2357 240,572.3 23,506.09 55,179.96 55,179.35

Table 21. The outbreak prediction for the USA for 150 days.

Logistic
by GWO

Linear by
GWO

Logarithmic
by GWO

Quadratic
by GWO

Power by
GWO

MLP ANFIS

Day 20th 242.6091 869.8855 −156.73 456.0663 309.616 244.0038 243.6504

Day 40th 21,951.15 2406.562 15.85698 6383.264 1031.324 21,942.25 21,948.25

Day 60th 32,547.08 3943.238 116.8138 18,366.35 2084.876 32,552.6 32,548.47

Day 80th 32,604.34 5479.914 188.4437 36,405.33 3435.319 32,606.19 32,604.47

Day 100th 32,604.55 7016.591 244.0043 60,500.21 5060.548 32,606.63 32,604.72

Day 120th 32,604.55 8553.267 289.4005 90,650.97 6944.676 32,606.7 32,604.76

Day 140th 32,604.55 10,089.94 327.7825 126,857.6 9075.446 32,606.78 32,604.8

Day 150th 32,604.55 10,858.28 344.9611 147,231.9 10,230.16 32,606.81 32,604.82

4. Discussion

The parameters of several simple mathematical models (i.e., logistic, linear, logarithmic, quadratic,
cubic, compound, power, and exponential) were fitted using GA, PSO, and GWO. The logistic
model outperformed other methods and showed promising results based on training for 30 days.
Extrapolation of the prediction beyond the original observation range of 30 days should not be
expected to be realistic considering the new statistics. The fitted models generally showed low accuracy
and also weak generalization ability for the five countries. Although the prediction for China was
promising, the model was insufficient for extrapolation, as expected. In turn, the logistic GWO
outperformed the PSO and GA, and the computational cost for GWO was reported as satisfactory.
Consequently, for further assessment of the ML models, the logistic model fitted with GWO was used
for comparative analysis.

In the next step, for introducing the machine learning methods for time-series prediction,
two scenarios were proposed. Scenario 1 considered four data samples from the progress of the
infection from previous days, as reported in Table 2. The sampling for data processing was done
weekly for scenario 1. However, scenario 2 was devoted to daily sampling for all previous consecutive
days. Providing these two scenarios expanded the scope of this study. Training and test results for the
two machine learning models (MLP and ANFIS) were considered for the two scenarios. A detailed
investigation was also carried out to explore the most suitable number of neurons. For the MLP,
the performances of using 8, 12, and 16 neurons were analyzed throughout the study. For the ANFIS,
the membership function (MF) types of Tri, Trap, and Gauss were analyzed throughout the study.
The five counties of Italy, China, Iran, Germany, and USA were considered. The performance of both
ML models for these countries varied between the two different scenarios. Given the observed results,
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it is not possible to select the most suitable scenario. Therefore, both daily and weekly sampling can be
used in machine learning modeling. Comparison between analytical and machine learning models
using the deviation from the target value (Figures 17–21) indicated that the MLP in both scenarios
delivered the most accurate results. Extrapolation for long-term prediction of up to 150 days using the
ML models was tested. The actual prediction of MLP and ANFIS for the five countries was reported
and showed the progression of the outbreak.

This paper evaluated the applicability of two machine learning models, MLP and ANFIS,
for predicting the COVID-19 outbreak. The models showed promising results in terms of predicting the
time series without the assumptions that epidemiological models require. Machine learning models,
as an alternative to epidemiological models, showed potential in predicting COVID-19, as they did for
modeling other outbreaks (see Table 1). Considering the availability of only a small amount of training
data, it is expected that machine learning will be developed further as the basis for, or a component of,
future outbreak prediction models.

Here, it is worth mentioning that machine learning can also be found useful in dealing with
the challenges that SEIR models face for COVID-19. For example, the number of cases reported
by worldometer is not the number of infected (E in the SEIR model). For example, the number of
cases reported by worldometer for the UK situation is the number of people tested. In addition,
data for the number of infectious people (I in SEIR) is a challenging matter because many people
who might be infectious may not choose to be for tested if, for example, their symptoms are mild.
Although better data exist on the number of people who are admitted to hospital and the number who
die, these also do not represent R because it is generally accepted that most people with COVID-19
recover without entering hospital. Considering this data problem, it is extremely difficult to fit SEIR
models satisfactorily. Considering such challenges, for future research, the ability of machine learning
for estimation of the missing information on the number of exposed E or infected can be evaluated.
Furthermore, the temporal non-stationarity data in control measures can also be investigated using
machine learning.

5. Conclusions

The global pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
become the primary national security issue of many nations. Advancement of accurate prediction
models for the outbreak is essential to provide insights into the spread and consequences of this
infectious disease. Due to the high level of uncertainty and lack of crucial data, standard epidemiological
models have shown low accuracy for long-term prediction. This paper presents a comparative analysis
of ML and soft computing models to predict the COVID-19 outbreak. The results of two ML models
(MLP and ANFIS) reported a high generalization ability for long-term prediction. With respect to
the results reported in this paper and due to the highly complex nature of the COVID-19 outbreak
and differences among nations, this study suggests ML as an effective tool to model the time series of
the outbreak. We should note that this paper provides an initial benchmarking to demonstrate the
potential of machine learning for future research.

For the advancement of higher performance models for long-term prediction, future research
should be devoted to comparative studies on various ML models for individual countries. Due to the
fundamental differences between the outbreak in various countries, advancement of global models
with generalization ability would not be feasible. As observed and reported in many studies, it is
unlikely that an individual outbreak will be replicated elsewhere [1].

Although the most difficult prediction is to estimate the maximum number of infected patients,
estimation of the individual mortality rate (n(deaths)/n(infected)) is also essential. The mortality rate is
particularly important to accurately estimate the number of patients and the required beds in intensive
care units. For future research, modeling the mortality rate would be of the utmost importance for
nations to plan for new facilities. For future research, integration of machine learning and SIR/SEIR
models is suggested to enhance the existing standard epidemiological models in terms of accuracy and
longer lead time.
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Nomenclature

MLP Multi-layered perceptron
ANFIS Adaptive network-based fuzzy inference system
SIR Susceptible–infected–recovered
CDR Call data record
CART Classification and regression tree
EA Evolutionary algorithms
GA Genetic algorithm
PSO Particle swarm optimization
MF Membership function
GWO Grey wolf optimization
MSE Mean square error
RMSE Root mean square error
AI Artificial intelligence
ANN Artificial neural network
Tri. Triangular
Gauss. Gaussian
Trap. Trapezoidal
ML Machine learning
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