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COVID-19 has sparked a worldwide pandemic, with the number of infected cases and deaths rising on a regular basis. Along with
recent advances in soft computing technology, researchers are now actively developing and enhancing different mathematical and
machine-learning algorithms to forecast the future trend of this pandemic. )us, if we can accurately forecast the trend of cases
globally, the spread of the pandemic can be controlled. In this study, a hybrid CNN-LSTM model was developed on a time-series
dataset to forecast the number of confirmed cases of COVID-19. )e proposed model was evaluated and compared with 17
baseline models on test and forecast data. )e primary finding of this research is that the proposed CNN-LSTM model out-
performed them all, with the lowest average MAPE, RMSE, and RRMSE values on both test and forecast data. Conclusively, our
experimental results show that, while standalone CNN and LSTM models provide acceptable and efficient forecasting per-
formance for the confirmed COVID-19 cases time series, combining both models in the proposed CNN-LSTM encoder-decoder
structure provides a significant boost in forecasting performance. Furthermore, we demonstrated that the suggested model
produced satisfactory predicting results even with a small amount of data.

1. Introduction

)e year 2020 witnessed the global spread of the coronavirus
disease (COVID-19) pandemic [1]. As of September 29,
2020, the virus had infected over 33.2 million people and had
killed over 1 million in more than 216 countries [2]. COVID-
19 was first discovered by Chinese authorities in Wuhan
City, China, on January 7, 2020, as the cause of a new type of
pneumonia [1]. It was then identified as a member of the
zoonotic coronavirus family [3]. COVID-19, which is highly
infectious, quickly transmitted through close human-to-
human contact. )erefore, to minimize the number of in-
fected cases, many countries followed procedures that in-
cluded quarantine, online schools and businesses, and bans
on travel [4, 5].

Given the severity of the disease, identifying the COVID-
19 spread rate is vital for governments. Hence, by knowing
the spread rate at a given time, governments can act

accordingly by planning public health and forming policies
and strategies to minimize COVID-19 consequences [6, 7].
)is can be achieved by performing COVID-19 tests on a
large scale. However, as of April 23, 2020, no country was
able to test more than 13.4% of their population [8]. Another
method that identifies the COVID-19 spread rate is accu-
rately predicting the figure of active cases at a specified time.
However, COVID-19 cases are exponentially increasing and
the data are nonlinear and nonstationary. )erefore, pre-
dicting the epidemic’s future is challenging. As a result, the
situational demand is to introduce an efficient model with
the highest accuracy [9].

Several attempts have been made by various studies that
applied mathematical and machine-learning predictive
techniques to approximate the disease’s spread and effects
globally [10] or for specific countries, such as the United
States of America (USA) [11–15], Italy [12–17], Spain
[12–16], France [12, 13, 15, 16], Canada [13, 18], India
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[11, 14, 19], Greece [20], Brazil [11, 13, 14, 21, 22], Mexico
[13, 23], Hungary [24], Russia [12–14, 25], Saudi Arabia [26],
United Kingdom (UK) [11–15], Germany [13, 14], Iran
[13, 25], China [13, 14, 17], Peru [16], and Israel [14]. )ese
studies applied various traditional time series predictive
techniques, including statistical, linear, and machine-
learning methods. For example, the application of AutoR-
egressive Integrated Moving Average (ARIMA)
[12, 16, 19, 26], Holt-Winters Additive Model (HWAAS)
[12], TBATS [12], Neural Basis Expansion Analysis for
Interpretable Time Series Forecasting (N-Beats) [12], mul-
tilayer perceptron (MLP) neural network (NN) [10], and
evolutionary modeling [13].

Unfortunately, statistical techniques generally make as-
sumptions about the stationarity and linear correlation of
historical data, whilst machine-learning methods seem inca-
pable of detecting and recording the nonlinear and complex
behavior of COVID-19 time series. Hence, none of the pre-
vious studies could ensure the creation of an accurate and
robust COVID-19 forecasting model, as they concluded
moderately deprived outcomes [27] or their predictions did not
align with real data [28, 29]. In addition, according to [18], the
current models have several defects, including being linear,
nontemporal, and based on several assumptions. Moreover, it
seems that they are unable to deal with noisy and chaotic time
series data.

On the other hand, deep learning techniques have lately
been effectively utilized to a range of difficult prediction
issues encountered in the real world, including time-series
forecasting [30–32]. Deep learning is often regarded as the
most effective technique for dealing with the noisy and
chaotic character of time series predicting issues, since it
produces more accurate forecasts. One of the most efficient
and extensively utilized deep learning approaches is long
short-term memory (LSTM). LSTM has been applied by
several studies to forecast COVID-19 cases
[14, 17, 18, 21, 25]. LSTM models can easily capture sequence
pattern information, but they are tailored to deal with
temporal correlations and only use the features specified in
the training set. Another popular deep learning method is
convolutional neural networks (CNNs). CNN models are
capable of filtering out noise in the input data and extracting
more valuable knowledge for the final forecasting model.
While vanilla CNNs are compatible for handling spatial
autocorrelation data, they are seldom modified to handle
complicated and lengthy temporal dependencies [33]. As a
result, a time-series model that takes advantage of both deep
learning techniques, i.e., LSTM and CNN could enhance
forecast accuracy.

)e primary goal of this study was to aid in the accurate
forecasting of COVID-19 confirmed cases. We therefore
proposed a hybrid CNN-LSTM forecasting model. Seven-
teen baseline predictive machine-learning models were also
built in this study for comparison with our proposed model.
)e key contributions of this study are

(i) A hybrid CNN-LSTM model was proposed to
combine the advantages of the CNN model, which is
effective at filtering out noise in the input data,

obtaining valuable information, and learning the
time series internal representation, with the benefits
of the LSTM model, which is effective at identifying
and modeling short- and long-term temporal de-
pendencies embedded in the data sequence.

(ii) On test and prediction data, the proposed model was
assessed and compared to 17 baseline models. )e
findings indicate that our proposed CNN-LSTM
model beats the other 17 models in predicting new
confirmed cases with the lowest error value. In terms
of RRMSE, the proposed hybrid model outperforms
the standalone CNN-1D and LSTM models by 1.15
percent and 3 percent, respectively. Even with a
small amount of data, this result demonstrates the
efficacy of merging CNN-1D and LSTM models.

)e remaining sections of this manuscript are as follows:
Section 2 studies the related literature, Section 3 explains the
materials and methods used in this research, Section 4 re-
ports the main results and compares the forecasted trend to
the actual trend, Section 5 reports the threats to validity, and
Section 6 summarizes the study and suggests future works.

2. Related Works

Time-series prediction is a forecasting method that analyses
historical data to capture the relationship and trends of a
random variable. It will then be applied to forecast the value
of that random variable in the future [34]. )is method is
particularly useful if the underlying distribution/process
data generation is unknown or if there is no explanatory
model capable of precisely linking the prediction variable
with other explanatory variables. A great deal of effort and
production of research has gone into the construction and
advancement of time series forecasting techniques over the
last several decades. )e next paragraph summarizes many
fruitful researches that demonstrate several models for
forecasting COVID-19 cases.

Many researchers have employed the standard fore-
casting method with statistical modeling to predict COVID-
19 outbreak [9]. For example, Ceylan [16] used ARIMA
techniques to forecast the pattern of COVID-19 prevalence
in France, Spain, and Italy from 21/2/2020 to 15/4/2020,
using data from the World Health Organization (WHO)
website. Several ARIMA regressors were built using various
ARIMA parameters. )ey chose three different ARIMA
regressors to predict the spread of COVID-19 for the three
selected countries based on the lowest MAPE values. )e
ARIMA (0, 2, 1) was found to be the best model for Italy with
MAPE� 4.7520, ARIMA (1, 2, 0) for Spain with
MAPE� 5.8486, and ARIMA (0, 2, 1) for France with
MAPE� 5.6335. Another study performed by Roy et al. [19]
also used ARIMA to forecast the epidemiologic trend in the
prevalence and incidence of COVID-19 using an Indian
dataset from 30/1/2020 to 26/4/2020. ARIMA (2, 2, 2) was
discovered to be the most reliable model for predicting
COVID-19 events, with RMSE� 95.322 and MAE� 50.109.
However, because COVID-19 data are nonlinear and
nonstationary, the ARIMA model is not optimal with such
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cases [35]. )is applies to other statistical approaches.
Statistical analysis can be used to perform modeling on
known data. However, it struggles to grasp the complexities
of the analyzed data when dealing with extremely complex
models [10]. As a result, statistical tools are deemed inad-
equate for analyzing pandemic unpredictability, and gen-
erated models are difficult to generalize [9].

Alternatively, algorithms based on artificial intelligence
(AI) learn from historical data to forecast future results.
Machine-learning and deep-learning algorithms are two
types of AI algorithms. It is a field that is focused on
computer algorithms learning and developing on their own.
Machine-learning-based forecasting regressors change their
parameters to match their forecasts to the actual data. Some
related studies that used machine-learning algorithms in
forecasting the dispersion of COVID-19 disease are dis-
cussed in the following paragraphs.

Car et al. [10] implemented an MLP-ANN to forecast the
number of COVID-19 deceased, recovered, and infected
cases worldwide using a dataset taken from the Johns
Hopkins University Center for Systems Science and Engi-
neering (JHU CSSE) from 22/1/2020 to 12/3/2020. )eir best
models used the ReLU activation feature and have four
hidden layers, each with four neurons, with coefficient of
determination (R2)� 0.98599 for infected patients, 0.99429
for deceased patients, and 0.97941 for recovered patients.
Salgotra et al. [13] used genetic programming (GP) to model
the possible effects of COVID-19 on confirmed and death
cases in 15 of the world’s most affected countries between
January 2020 and May 2020. )ey discovered that the GP
efficiency was superior, with RMSE and R2 values close to 1.
However, most studies that relied primarily on machine-
learning models experienced underfitting or overfitting is-
sues [36], limiting to retrospective analysis, or only pro-
jecting short-term trends due to noisy time series data or a
lack of training data and appropriate features [37–39].

To address the aforementioned problems, time series
forecasting has lately included deep learning algorithms
[30–32], resulting in more accurate predictions. As one of
the most successful deep learning methods, LSTM has been
utilized to predict COVID-19 cases in many researches
[14, 17, 18, 21, 25]. )ese studies revealed that LSTM models
can easily capture sequence pattern information, but they are
tailored to deal with temporal correlations and only use the
features provided in the training set. Convolutional neural
network (CNN) is another well-known deep learning and
has also been applied in forecasting COVID-19 cases
[40–42]. Results from these studies showed that CNN is
excellent for filtering out noise in input data and extracting
more beneficial features for the final forecasting model.
Although standard CNNs are compatible to dealing with
spatial autocorrelation data, they are seldom modified to
cope with complicated and lengthy temporal dependencies
[33]. Consequently, a time-series forecasting model that
employs both deep learning methods, namely, LSTM and
CNN, may improve prediction accuracy. A research per-
formed by [43] used a hybrid CNN-LSTM model to de-
termine whether individuals had COVID-19 disease based
on lung ultrasound. )e hybrid method provided the highest

levels of accuracy, recall, and AUC. To the best of our
knowledge, however, the CNN-LSTM technique has not
been tested on COVID-19 time series data. As a result, in this
study, we proposed using the hybrid CNN-LSTM model to
predict the number of COVID-19 infected patients across
the globe.

3. Materials and Methods

)is section provides information on the study’s materials
and procedures.

3.1. Materials. )e data for this analysis came from the
WHO COVID-19 dashboard [2]. It contains information on
coronavirus cases in each specific country, such as the
number of confirmed, dead, cumulative confirmed, and
cumulative deaths (defined by the name of the country,
country code, and WHO region) every day from the be-
ginning of the COVID-19 infections (4/1/2020) to 24/9/
2020. )e dataset contained 62,510 records for 216 different
countries and 265 days, totaling 31,798,308 new cases and
973,653 death cases at the time this analysis was conducted.
Figures 1 and 2 show the spatial distribution of cases that
have accumulated at three different time stamps. )e global
scope of COVID-19 confirmed and death cases is depicted in
Figure 3.

3.2. Methods. )e proposed research method consists of
three phases: Preparing time series data, building the pre-
dictive models, and applying the predictive model. We used
the time series “New COVID-19 cases.” )e first phase
“Preparing time series data” consists of three steps: Convert
dataset into time series, normalize time series data, and split
time series data. )e second phase “Building the predictive
model” consists of three steps: Optimize the models, train
the models, and evaluate the models. )e models were
optimized to get the best hyperparameter. )e models were
then trained using the best hyperparameter on a train set, the
time series of which starts on January 4, 2020, when the first
case of COVID-19 started and ends on July 17, 2020. )e
trained models were then evaluated on a test set, the time
series of which starts on July 18, 2020 and ends on August 14,
2020. )e forecasting between July 18, 2020 and August 14,
2020 was estimated and compared with the real values. )e
third stage “Applying the predictive model” entails the in-
formation of COVID-19 starting on August 15, 2020 and
ends on September 18, 2020. )en, the forecasting between
September 12, 2020 and September 18, 2020 was estimated
and compared with the real values. )e second and third
phases were applied 18 times, one time per predictive model
(1 proposed model and 17 baseline models). Figure 4 depicts
a high-level description of the entire procedure.

3.2.1. Phase 1: Preparing Time Series Data

Step 1.1: Convert dataset into time series

In this study, we used the “New_cases” (COVID-19
confirmed cases) dataset. To make the dataset a time
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Figure 1: Geographical spread of the number of COVID-19 cumulative cases on January 4, 2020 (a), May 14, 2020 (b), and September 24,
2020 (c).
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Figure 2: Geographical spread for the number of COVID-19 cumulative death cases on January 11, 2020 (a), May 14, 2020 (b), and
September 24, 2020 (c).
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series, we set the date as parse_dates when opening the
csv file. )e loaded dataset was resampled and grouped
by day using resample() function with the argument
“D.” )e total of 265 data was divided into weeks. )is
gives 37 weeks of data.

Step 1.2: Normalize time series data

)e time-series data from COVID-19 confirmed cases
were normalized using min–max normalization within
the range [0, 1]. )is normalization must be reversed
after predicting COVID-19 time series on testing data,
such that the predicted data are similar to the original
testing time-series data.

Step 1.3: Split time series data

Sequentially, to prepare the time series for model de-
velopment, 37 weeks of the normalized time series data
were divided into training, test, and forecast sets using
the NumPy split() function. Table 1 shows the details of
the output from the splitting procedure while Figure 5
visualizes them in graph.

3.2.2. Phase 2: Building the Predictive Models. In this study,
we proposed a CNN-LSTM encoder-decoder model. )e
proposed model together with 17 baseline models were built
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by training and evaluating them on some standard per-
formance metrics.

(1) Proposed Model. A hybrid deep learning architecture
called CNN-LSTM was proposed to maximize the utilization
of the CNN model for obtaining valuable knowledge and
learning the time series internal representation with the
efficacy of the LSTM model for detecting and modeling
short- and long-term temporal dependencies embedded in
the data sequence.

To do this, our suggested model, CNN-LSTM, is com-
posed of two primary components: )e first component, a
one-dimensional CNN, is composed of convolutional and
pooling layers that execute complex mathematical proce-
dures on the input data to create features, while the second
component makes use of the generated features through
LSTM and dense layers.

Convolutional and pooling layers [44] function as
purpose-built data preprocessing layers, filtering incoming
data, and extracting important information to be used as an
input to a fully connected network layer. Convolution is
performed between the raw input data and convolution
kernels by the convolutional layers, resulting in the creation
of new feature values. Because this method was initially
designed to extract features from picture datasets, the input
data must be in organized matrix form [45]. Consider the
convolution kernel to be a narrow window containing the
coefficient values in the matrix form. )is window moves
across the input matrix, executing convolution on each
subregion it intersects. All these processes result in a con-
volved matrix that signifies a feature value defined by the
coefficient values and filter dimension size. By utilizing
various convolution kernels to the input data, numerous

convolved features may be produced, which are often more
valuable than the input data’s original starting features, thus
improving the performance of the model.

Following the convolutional layers, a nonlinear acti-
vation function (e.g., a rectified linear unit) is typically
used, trailed by a pooling layer. )is layer is a technique
for subsampling that removes certain values from the
convolved features and creates a matrix with a smaller
dimension. Similarly, for the operations done on the
convolutional layer, the pooling layer employs a tiny
sliding window that accepts the values of each patch of the
convolved features as input and outputs a single new value
determined by an operation provided for the pooling
layer. For instance, max pooling and average pooling are
used to determine the maximum and average values of
each patch. Consequently, the pooling layer generates new
matrices that may be thought of as summarized versions
of the convolutional layer’s convolved features. )e
pooling process may contribute to the system’s robustness
by ensuring that minor changes in the input do not affect
the pooled output values.

LSTM [46] is a subclass of recurrent neural networks
(RNNs) that may learn long-term dependencies through
feedback connections. Traditional RNNs seek to resolve the
issue associated with feedforward neural networks, referred
to as “loss of memory,” which results in low performance on
sequence and time-series issues. )ese models make use of
cyclic connections in their hidden layer to develop short-
term memory and have the ability to extract knowledge from
time series and sequence data. Nonetheless, RNNs are
constrained by the well-known loss gradient issue, which
prevents the model from learning long-range dependencies.
)us, LSTMs address this issue by keeping valuable

Table 1: Output of the splitting procedure.

Split Data in days Data in weeks Date

Train 196 28 January 4, 2020–July 17, 2020
Test 28 4 July 18, 2020–August 14, 2020

Forecast
Input: 28 Input: 4 Input: August 15, 2020–September 11, 2020
Forecast: 7 Forecast: 1 Forecast: September 12, 2020–September 18, 2020
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information in memory cells and erasing irrelevant data,
resulting in a performance that is generally superior to that
of a conventional RNN.

Every LSTM unit has a memory cell and 3 primary gates:
input, output, and forget. )is structure enables the LSTM to
maintain a regulated information flow by determining which
information must be “forgotten” and which must be “re-
membered,” thereby learning long-term dependencies.
More precisely, the input gate it, in conjunction with a
second gate c∗i , regulates the volume of new knowledge saved
in the memory state ct at time t. )e forget gate ft determines
whether knowledge from the past must be deleted or
retained on the memory cell at time t− 1, while the output
gate ot determines which knowledge may be used for the
memory cell’s output. Equations (2)–(5) summarize the
activities of an LSTM unit.

it � σ Uixt +Wiht−1 + bi( ), (1)

ft � σ Ugxt +Wght−1 + bg( ), (2)

c∗t � tanh Ucxt +Wcht−1 + bc( ), (3)

ct � gt ⊙ ct−1 + it ⊙ c∗t , (4)

ot � σ Uoxt +Woht−1 + bo( ), (5)

where xt represents the input, W∗ and U∗ signify the weight
matrices, b∗ signifies the bias term vectors, σ signifies the
sigmoid function, and the operator n represents component-
wise multiplication. Conclusively, the hidden state ht which
corresponds to the memory cell’s output is computed by

ht � ot ⊙ tanh ct( ). (6)

In general, the CNN-LSTM method uses the CNN as an
encoder to learn features from subsequence of input data
that are fed into an LSTM as time steps. )e LSTM will
function as a decoder, identifying and modeling both short-
and long-term temporal relationships inherent in the data
stream. Figure 6 illustrates the structure of our proposed
CNN-LSTM architecture, which combines CNN and LSTM
to create a deep hybrid architecture.

A brief description for each layer is presented in the
following:

Input layer: Receive input of 7 days’ COVID-19 con-
firmed cases.

First Conv1D layer: )e first convolutional layer scans
through the input sequence, acquires new information,
and deals with noise in the input data, before projecting
the findings onto feature maps.

Second Conv1D layer: )e second layer repeats the
process on the feature maps generated by the first,
trying to enhance any noteworthy features. We utilized
64 feature maps per convolutional layer and a kernel
size of 3 time steps to read the input sequences.

Max pooling layer: By removing specific values from the
convolved features, the max pooling layer simplifies the

feature maps and produces a matrix with a smaller
dimension.

Dropout layer: )is layer was added to the network to
prevent the model from being overfit. Due to the
random subsampling of the outputs of a layer under
dropout, this has the effect of decreasing the capacity or
thinning the network during training.

Flatten layer: Following the dropout layer, the distilled
feature maps are flattened into a single long vector that
may be utilized as input to the decoding process.

Repeat Vector layer: Several times, once for each time
step in the output sequence, the internal representation
of the input sequence is repeated. )e LSTM decoder
will be shown this vector sequence.

LSTM layer: )e decoder is then defined as a 200-unit
hidden layer. Notably, the decoder will output the
whole sequence, with each of the 200 units supplying a
value for each of the seven days, serving as the foun-
dation for predicting what would happen on each day
in the output sequence.

Fully connected layer: Before the final output layer,
a fully connected layer is utilized to understand each
time step in the output sequence. Notably, the
output layer makes a single prediction about the
output sequence. )is indicates that every step in
the output sequence will have the similar layers
applied. )is implies that the decoder will operate
every time step using a similar fully connected layer
and output layer. )is was done by wrapping the
interpretation and output layers in a Time-
Distributed wrapper, which was utilized for each
time step from the decoder. )is allows the LSTM
decoder to define the context needed for every step
in the output sequence, while the wrapped dense
layers interpret every time step individually, while
still reusing the similar weights.

Output layer: )e number of new COVID-19 cases for
the 8th day was predicted.

(2) Baseline Models. Seventeen baseline predictive models
were also built in this study for comparison with our pro-
posed model: 2 deep learning models (CNN and LSTM), 2
statistical models (ARIMA and Fbprophet), 3 linear models
(LR, Ridge, and Lasso), 5 ensemble models (AdaBoost Re-
gressor, Random Forest Regressor, Gradient Boosting Re-
gressor, Extra Trees Regressor, and Bagging Regressor), 5
other machine-learning models (XGBoost Regressor,
Gaussian Process Regressor, Support Vector Regressor,
Decision Trees Regressor, and K-Nearest Neighbor Re-
gressor) using Python (Jupyter Notebook) on the Anaconda
platform. A brief description of each model is presented in
the following subsections:

(i) Deep Learning Models. CNN: LeCun et al. [47]
pioneered the use of convolutional networks in their
current form for zip code recognition. CNNs are
typically composed of convolutional, pooling, and
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fully linked layers. A collection of feature maps, also
known as activation maps, is generated in the
convolutional layers. Each neuron in the feature
map is linked to a subset of neurons in the input
layer that corresponds to it. )e feature map’s
neurons all have the same weights, substantially
decreasing the number of parameters compared to a
fully connected neural network. Pooling layers al-
ternate with convolutional layers in the most
popular CNN designs. )e pooling layer lowers the
spatial dimension of the feature maps in preparation
for the subsequent computational stages, thus re-
ducing computational burden and avoiding over-
fitting. After an arbitrary number of preceding
layers, fully connected layers aggregate the resultant
feature maps and provide a classification measure at
the network’s conclusion.

LSTM: Hochreiter and Schmidhuber [46] suggested
the LSTM model, which Graves and Schmidhuber
[48] improved and promoted. )e memory-based
RNN cell is at the heart of the LSTM’s basic
structure. It is useful for storing and retrieving
information from the past. It also facilitates the
transmission of previous information to the next
level. LSTM chooses previous data based on its
training requirements. Remembering beneficial
information over time is an ordinary practice, but it
is also an essential behavior of the LSTM network
[49]. When the data pass in the model, the cells in
the LSTM determine what they are, and the in-
formation that follows the rules is retained, while
the information that does not is lost. )is notion will
resolve the long sequence dependence problem in
neural networks by enhancing the hidden layer
structure.

(ii) Statistical Models. ARIMA: Presented by Box et al.
in 1970 [50], ARIMA can be modified to ap-
proximate reality and is flexible in describing the
behavior of many actual nonstationary and sea-
sonal time series. It is assumed that a time series’
future values have a consistent functional rela-
tionship with its present, past, and white noise

values. ARIMA’s main advantage is its ability to
forecast accurately in a short amount of time.
ARIMA is capable of handling wide-ranging data
types, including patterns, seasonality, and cy-
clicity. It can also be utilized to model the tem-
poral dependency structure of a time series. It
does, however, require a significant amount of
historical data, ideally 100 or more. )e ARIMA
model is also known as an ARIMA (p, d, q), where
p stands for autoregression order (AR), d for
degree of variance (I), and q for moving average
order (MA) [51]. )ese three aspects are relevant
to classify time series, where p is in charge of
storing and retrieving the process’s past infor-
mation, d is in charge of converting nonstationary
time series to stationary time series, and q is in
charge of regulating the process’s noise-related
past information.

Fbprophet: Fbprophet is a Facebook-developed
time series forecasting model that was created to
solve business time series problems. While there are
numerous approaches to forecasting market out-
comes, many of them share common characteris-
tics, such as seasonal effects [51]. It employs a
decomposable time-series model [52] with 3 main
elements: pattern, seasonality, and holidays. It is a
regression model with interpretable parameters that
fit with the default values, as well as allows the user
to automatically choose the elements that are per-
tinent to their forecasting predicament and use the
appropriate modifications with ease [51]. )e
Fbprophet predicts trends using two methods: a
saturation model of growth and a linear model. In
the case of growth forecasting, a model such as the
population growth model in natural ecosystems is
utilized, in which nonlinear growth reaches a sat-
uration point at a carrying capacity [53]. If the
saturating point is never attained, a piecewise model
of a constant growth rate can be an alternative
solution. Fbprophet employs Fourier series to give
periodic effects to a flexible model of [52], whereas
holidays must be accounted for using a
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predetermined list of past and future events. It is
simple to incorporate holiday effects into the model
because they are considered independent [51].

(iii) Linear Models. Linear Regression: LR is a technique for
modeling the correlation between a dependent variable
and an independent variable using a linear approach.

Ridge: Ridge regression (RR) is a kind of linear
regression that uses a sum-of-squares error function
and a regularization method to manage the bias-
variance trade-off, with the goal of revealing the
linear patterns hidden in the data. [54].

Lasso: Lasso [55] is a technique for shrinking and
selecting variables in linear regression. It considers
the total of l1-norms of the regression coefficients as
a penalty in addition to the total of squares error
reduction. )is bias–variance trade-off almost al-
ways results in improved forecasts.

(iv) Ensemble Models. XGBoost Regression: XGBoost is
Tianqi Chen’s gradient boosting equipment from 2016
[56]. )e algorithm’s implementation has been opti-
mized for consistency based on processing time and
memory space. XGBoost is usually very fast when
compared to other gradient boosting applications. For
classification and regression predictive modeling
problems, XGBoost dominates standardized or tab-
ular datasets. As a supervised learning algorithm,
XGBoost predicts a target using train data with several
features. Although XGBoost follows the similar pro-
cesses as gradient boosting, it has its own tree. )e
predictive initial value set distinguishes regular and
extreme gradient boosting in regression. )e initial
prediction value in gradient boosting is the result of
the average real value of one feature that will be
predicted. In XGBoost, the initial prediction value is
chosen at random, but the most used value is 0.5.

AdaBoost Regressor: )e AdaBoost Regressor con-
verted the delicate regression model into a robust
regression learning model, from which the prediction
model was built [57].

Random Forest Regressor (RFR): )e RFR method
is similar to Breiman’s pioneering Regression Tree
Analysis [58]. RFR isolates the predictand (desired
parameter) iteratively using a series of binary splits.
Each of these divides corresponds to a value on an
individual predictor grid that maximizes the dis-
parities between the branches of the “tree.” A split,
together with its associated branches, is regarded to
constitute a single decision tree. Each branch is
constructed using a random selection of nodes
representing individual predictors. Each predictor
node has a large number of potential predictands,
and it is at these nodes that a random choice is taken
to divide the branch further, thus adding two ad-
ditional predictors. )is is repeated repeatedly until
no further splits occur, resulting in terminal nodes,
or “leaves.” Typically, the RFR will do binary splits
until a single predictor on a leaf is discovered.

Gradient Boosting Regressor: Friedman [59] developed
the gradient boosting regressor (GBR) in 2000. )e
GBR combines a huge amount of ineffective learning
methods to create a more effective learning algorithm.
It learns from earlier learning algorithms’ errors.

Extra Trees Regressor: Like the random forest tree,
the extra trees regressor (ETR) is built using many
decision trees [60]. On ETR, all decision trees are
trained in their entirety utilizing all training sets. To
get the bifurcation value, the ETR model randomly
bifurcates the decision tree.

Bagging Regressor: Bagging is a kind of parallel en-
semble model, and the bagging model is constructed
using bootstrap sampling [61]. )at is, given an initial
dataset of m samples, a sample is chosen for the
sampling set using the replacement technique for it to
be chosen again for the subsequent sampling round.
)en, by iterating bootstrap sampling n times, n
sampling sets are produced. During the sampling
process, some of the samples in the original dataset
may be selected many times, while others may never
be chosen. In addition, the DT model is trained on n
weak learners, and the final judgment is reached
through majority vote for the classification problem or
average meaning for the regression problem.

(v) Machine-Learning Models. Gaussian Process Regressor:
Gaussian process regression (GPR) is a very effective
method. Indeed, in addition to their simple structure
and computationally acceptable predictions, GPRs
have the major advantage of being nonparametric and
able to account for projected value uncertainty.

Support Vector Regressor (SVR): SVR is a regression
algorithm that employs a technique similar to support
vector machines (SVMs) for regression analysis [62].
SVR offers the freedom to define the acceptability of an
error in a model and finds an appropriate line to adapt
the data. SVR’s goal is to reduce coefficients, in par-
ticular, the l2-norm of the coefficient vector. )e error
term is managed in the constraints, where the absolute
error is found to be less than or equal to a denoted
margin, known as the epsilon (maximum error).

Decision Trees Regressor (DT): A DT divides the
dataset into two nodes and repeatedly builds a tree-like
structural model using the information gain (IG). )e
gain parameter specifies the anticipated decrease in
entropy associated with the chosen features.

K-Nearest Neighbor Regressor: )e K-nearest
neighbor regressor (KNNR) is a nonparametric
model that seizes a sample of K-nearest neighbors
and predicts the sample value using the nearest
neighbor response value (y).

Step 2.1: Optimize models

Since selecting the best and most accurate fore-
casting model for predicting the COVID-19 pan-
demic is a very complicated process, the 18
forecasting models constructed in this study were
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fine-tuned based on the selected hyperparameters
under various prediction criteria using the Optuna
framework to optimize the hyperparameters for
each model. )e science of tuning or selecting the
best set of hyperparameters for a learning algorithm
is known as hyperparameter optimization. Any
machine-learning algorithm’s output is heavily
influenced by a collection of optimal hyper-
parameters. It is one of the most time-consuming
steps in the machine-learning training pipeline, but
it is also one of the most important. In forecasting
COVID-19 confirmed events, Table 2 presents the
best hyperparameter values for each chosen
hyperparameter and its range for each forecasting
model.

Step 2.2: Train the models

)e models were trained using the best hyper-
parameter on a train set which is time series that
starts on January 4, 2020 and ends on July 17, 2020.

Step 2.3: Evaluate the models

)e trained models were then evaluated on a test set,
the time series of which starts on July 18, 2020 and
ends on August 14, 2020. From a forecasting per-
spective, the forecasting horizon is critical for an
intelligent model’s prediction accuracy. )e fore-
casting horizon refers to the number of daily
confirmed cases that a forecasting model considers
while projecting the next daily verified case. More
precisely, when the forecasting horizon is equal to 9,

Table 2: Hyperparameter tuning.

Model type Forecasting model Hyperparameter Range Best hyperparameter

Proposed model

CNN-LSTM (2 convolutional layers
with 64 filters, kernel size 3,

1 max pooling layer with size 1,
1 dropout layer,

1 LSTM layer with 200 units,
1 fully connected layer)

Epochs (32, 1000) 472
Batch_size (2, 30) 22

Verbose (0, 1) 1

Deep learning
model

CNN (2 convolutional layers with 64
filters, kernel size 3,

1 max pooling layer with size 1,
1 fully connected layer)

Epochs (32, 1000) 472
batch_size (2, 30) 22

Verbose (0, 1) 1

LSTM (1 LSTM layer with 200 units)
Epochs (32, 1000) 472

Batch_size (2, 30) 22
Verbose (0, 1) 1

Statistical model

ARIMA
p (0, 10) 9
d (0, 3) 2
q (0, 3) 2

FBProphet
Changepoint_prior_scale (0.0001, 0.5) 0.5
Seasonality_prior_scale (0.01, 10) 0.25

Seasonality_mode (0, 1) 1

Linear model
LR

Fit_intercept [True, false] True
n_jobs (−1, 1) −1

Ridge Alpha (1, 5) 5
Lasso Alpha (1, 5) 5

Ensemble model

XGBoostR

n_estimators (0, 1000) 545
Max_depth (0, 25) 6
Reg_alpha (0, 5) 1

Reg_lambda (0, 5) 3
Gamma (0, 5) 1

Learning_rate (0.005, 0.5) 0.1225
AdaBoostR n_estimators (0, 1000) 545

RFR n_estimators (0, 1000) 545
GBR n_estimators (0, 1000) 545
ETR n_estimators (0, 1000) 545

BaggingR n_estimators (0, 1000) 545

Machine-
learning model

GPR
Kernel

DotProduct, Matern, RBF,
WhiteKernel

DotProduct

Alpha (0, 1) 0.16000000000000003

SVR

Kernel rbf, poly poly
C (0, 10) 1.5

Gamma (0, 5) 3
Epsilon (0, 1) 0.1

DTR Max_depth (0, 25) 5
KNNR n_neighbors (0, 10) 3
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the algorithm uses verified instances from the
previous nine days to estimate the price on the tenth
day. In this research, the predicting horizon was set
to seven days.

Taking into consideration the occurrence of ran-
domness, the train and prediction processes were run 10
times. )e average forecasting between July 18, 2020 and
August 14, 2020 was computed and compared with the
real values. )e performance of the models was then
assessed using testing data and statistical error measures
such as MAPE, RMSE, and relative root mean square error
(RRMSE).

MAPE: )is metric is calculated as the average absolute
difference between the estimated and measured values.

MAPE �
1

n
∑
n

t�1

f(t) − f̂(t)

f(t)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ × 100. (7)

RMSE: )is metric is normally employed to evaluate
forecasting errors of different models. In terms of absolute
variance, the lower the RMSE value, the better a model’s
predictive capability. Nevertheless, the existence of a few
major errors will lead to a higher RMSE value.

RMSE �

����������������
1

n
∑
n

t�1

[f(t) − f̂(t)]2

√√
. (8)

RRMSE: )is metric is computed by dividing RMSE by
the average value of the measured data. )e accuracy of
the model is deemed excellent when the RRMSE is less
than 10 percent, good when the RRMSE is between 10
and 20 percent, fair when the RRMSE is between 20 and
30 percent, and poor when the RRMSE is greater than 30
percent [63].

RRMSE �

���������������������
(1/n)∑nt�1 [f(t) − f̂(t)]

2
√

∑nt�1 [f(t)]
× 100. (9)

Since most of the models are in stochastic nature, we
evaluated all 18 predictive models 10 times and reported the
mean performance on a test time series data.

3.2.3. Phase 3: Applying the Predictive Models

Step 3.1: Forecast COVID-19 new cases

)is step requires the information of COVID-19 that
starts on August 15, 2020 and ends on September 18,
2020. )e new COVID-19 cases from August 15, 2020
until September 11, 2020 (4 weeks) were used as input to
forecast the new cases for the subsequent week (Sep-
tember 12, 2020–September 18, 2020).

Step 3.2: Evaluate the models

)en, the forecasting between September 12, 2020 and
September 18, 2020 was computed and compared with
the real values. )e performance of the models was
calculated based on MAPE, RMSE, and RRMSE.

To guide us in evaluating the results, the following re-
search questions were constructed:

RQ1: How good is the performance of the proposed
model in this study compared to the 17 baseline models
in forecasting the new cases of the COVID-19 pan-
demic around the world based on the test data?

RQ2: How good is the performance of the proposed
model in this study compared to the 17 baseline models in
forecasting the new cases of the COVID-19 pandemic
around the world based on the forecast data?

RQ3: How good is the performance of the proposed
model in this study compared to the state-of-the-art?

4. Results and Discussion

)e empirical results of this study are presented in this
section to reply to RQ1–RQ3.

4.1. RQ1 Answer: 5e Performance of the Proposed Model
Compared to the Baseline Models on the Test Data. )e
predicted and actual values between July 18, 2020 and
August 14, 2020 were plotted in 5 different graphs according
to the type of the models. )e values predicted by the
proposed model were plotted in each graph to compare the
trend obtained with other baseline models. Figures 7–11
show the comparison between actual and predicted data for
each type of model compared to the proposed model in
forecasting confirmed cases. From these figures, we observe
that most of the models are following the trend of confirmed
COVID-19 cases on the test data except for SVR model.

To evaluate the performance of each model quantita-
tively, the MAPE, RMSE, and RRMSE for the proposed
model and 17 baseline models in predicting the confirmed
cases of COVID-19 were calculated using equations (7)–(9),
respectively, based on the predicted and actual values be-
tween July 18, 2020 and August 14, 2020. )e mean for each
performance metric was then computed. )e example of the
computed RMSE for the proposed model compared to the
CNN-1D and LSTM models is illustrated in Figure 12. Based
on the mean values of MAPE, RMSE, and RRMSE shown in
Table 3, the proposed model surpassed the 17 baseline
models in forecasting the new confirmed cases with the
minimum error value: MAPE� 0.19, RMSE� 13275.00, and
RRMSE� 5.30. In terms of the RRMSE value that is less than
10%, the proposed model performed excellently in pre-
dicting the confirmed cases of COVID-19. )e RRMSE
values also show that compared to CNN-1D and LSTM
vanilla models, the combination of both models in the
structure of CNN-LSTM increase the performance by de-
creasing the RRMSE value by 1.04% and 1.9%, respectively.

4.2. RQ2 Answer: 5e Performance of the Proposed Approach
Compared to the Baseline Models on the Forecast Data.
Similar to the processes that were conducted on the test data,
the forecasted and actual values between September 12, 2020
and September 18, 2020 were plotted in 5 different graphs
according to the type of the models. )e values forecasted by
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the proposed model were plotted in each graph to compare
the trend obtained with other baseline models. Figures 13–17
show the comparison between actual and forecasted data for
each type of model compared to the proposed model in
forecasting confirmed cases. From these figures, again, we
observe that most of the models are following the trend of
confirmed COVID-19 cases on the forecast data except for
the SVR model.

To evaluate the performance of each model, the MAPE,
RMSE, and RRMSE for the proposed model and 17 baseline
models in forecasting the confirmed cases of COVID-19
were calculated using equations (7)–(9), respectively, based

on the forecasted and actual values between September 12,
2020, and September 18, 2020. )e mean for each perfor-
mance metric was then computed. )e example of the
computed RMSE for the proposed model compared to the
standalone CNN-1D and LSTM models is illustrated in
Figure 18. Based on the values of MAPE, RMSE, and RRMSE
shown in Table 4, the proposed model again outperformed
the 17 baseline models in forecasting the new confirmed
cases with the minimum error value: MAPE� 0.43,
RMSE� 8780.71, and RRMSE� 3.01. )e RRMSE values
show that the proposed hybrid model increases the per-
formance of the standalone CNN-1D and LSTM models by
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Figure 7: Actual and predicted data of the proposed approach compared to deep learning models.
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reducing the RRMSE value by 1.15% and 3%, respectively.
)is result shows the effectiveness of combining both CNN-
1D and LSTM models even on a small size of data.

4.3. RQ3 Answer: 5e Performance of the Proposed Approach
Compared to the State-of-the-Art Approach. Table 5 com-
pares the hybrid models developed in [64] and the current
study. As demonstrated in Table 5, our method performs
better in terms of MAPE and RMSE when forecasting
confirmed viruses globally. As we can see, our approach has

a lower MAPE and RMSE than theirs, although we examined
216 countries compared to theirs which was only seven.

5. Threats to Validity

5.1. 5reats to Construct Validity. )e performance metrics
used in our analysis relate to threats to construct validity. In
this study, 3 evaluation metrics based on statistical measures
of errors were selected: RMSE, MAPE, and RRMSE. )ere
are other measures, such as MAE, R2, root mean squared
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Figure 9: Actual and predicted data of the proposed approach compared to linear models.
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Figure 12: RMSE for the proposed model compared to CNN-1D and LSTM models on the test data. (a) CNN-LSTM: testing
RMSEmean� 13275.0. (b) CNN1D: testing RMSEmean� 15955.0. (c) LSTM: testing RMSEmean� 17512.5.

Table 3: )e average model performance evaluation for forecasting confirmed cases on test data.

Type Models MAPE RMSE RRMSE

Proposed approach CNN-LSTM 0.19 13275.00 5.30

Deep learning
CNN-1D 0.23 15954.97 6.34
LSTM 0.26 17512.45 7.20

Statistical method
ARIMA 0.20 13630.13 5.51

FBProphet 0.33 22326.90 9.25

Linear model
LR 0.35 24150.13 9.82

Ridge 0.34 24786.26 9.65
Lasso 0.35 24143.65 9.82

Ensemble

XGBR 0.30 21267.73 8.51
AdaBoostR 0.30 21065.30 8.39

RFR 0.31 21433.81 8.56
GBR 0.30 21140.69 8.49
ETR 0.28 19210.06 7.73

BaggingR 0.31 21435.07 8.55

Machine learning

GPR 0.33 22461.64 9.18
SVR 0.76 56131.22 21.18
DTR 0.33 22954.19 9.15

KNNR 0.26 18954.48 7.28

)e bold values present the lowest error values of MAPE, RMSE, and RRMSE. )ese values show that the proposed approach outperforms the baseline models
based on the test data.
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Figure 13: Actual and forecasted data of the proposed approach compared to deep-learning models.
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Figure 14: Actual and forecasted data of the proposed approach compared to statistical models.
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Figure 15: Actual and forecasted data of the proposed approach compared to linear models.
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Figure 16: Actual and forecasted data of the proposed approach compared to ensemble models.
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Figure 17: Actual and forecasted data of the proposed approach compared to machine-learning models.
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Figure 18: RMSE for the proposed model compared to CNN-1D and LSTM models on the forecast data. (a) CNN-LSTM: forecasting
RMSEmean� 8780.7. (b) CNN1D: forecasting RMSEmean� 12349.5. (c) LSTM: forecasting RMSEmean� 17257.3.
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relative error (RMSRE), and mean bias error (MBE) that can
be used to evaluate time series forecasters. However, the 3
metrics selected in this study are widely used measures to
evaluate the time series forecasting of the spread of COVID-
19 disease.

5.2. 5reats to Internal Validity. )e risks are primarily
concerned with the unregulated internal variables that may
affect the results of the experiment. )e key internal threat is
the possible faults during the implementation of our process.
We used seven machine-learning techniques obtained from
sci-kit-learn libraries, one from the xgboost library, five from
ensemble library, one from the fbprohet library, two from the
Keras library, and one from the Statsmodels library, to reduce
this hazard. )e best hyperparameter values for each module
were set automatically using an established Optuna
framework.

5.3. 5reats to External Validity. External validity threats are
related to the possibility of generalizing our findings. )e
experiments conducted in this study used the COVID-19
dataset from 4/1/2020 to 24/9/2020. )e performance of the
predictive models used in this study depends on how the
dataset is split into train and test data. Different results can
be generated by using different timelines of COVID-19 data.

6. Conclusions and Future Work

In this research, a novel hybrid forecasting model termed
CNN–LSTM was presented for predicting the global number
of COVID-19 infection cases. )e proposed CNN–LSTM
model was compared against 17 baseline models, including
two deep-learning models, two statistical techniques, three
linear models, five ensemble learning models, and five
machine-learning models. )ree performance measures
were used to evaluate and compare forecasting performance:
MAPE, RMSE, and RRMSE.

)e primary finding of this research is that, when
compared to 17 baseline time series forecasting models, our
proposed CNN-LSTM model outperformed them all with
the lowest average MAPE, RMSE, and RRMSE values on
both test and forecast data. Finally, we note that although
solo CNN and LSTM models perform well and efficiently for
predicting verified COVID-19 instances time series, com-
bining both models in the proposed CNN-LSTM encoder-
decoder structure significantly improves forecasting per-
formance. In addition, we demonstrated that the suggested
model produced acceptable predicting results even when just
a limited quantity of data was available.

Ultimately, the proposed CNN-LSTM model takes an
efficient step in dealing with noise in the input data and using
the internal representation of the time series through con-
volutional layers. )e LSTM and dense layers are then used to

Table 4: )e average model performance evaluation for forecasting confirmed cases on forecast data.

Type Models MAPE RMSE RRMSE

Proposed approach CNN-LSTM 0.43 8780.71 3.01

Deep learning
CNN-1D 0.59 12349.46 4.16
LSTM 0.86 17257.32 6.01

Statistical method
ARIMA 0.82 16156.94 5.73

FBProphet 0.83 17223.50 5.82

Linear model
LR 1.70 34688.47 11.88

Ridge 1.31 27657.47 9.20
Lasso 1.70 34669.07 11.88

Ensemble

XGBR 1.40 28970.67 9.83
AdaBoostR 1.66 33822.49 11.63

RFR 1.64 33395.34 11.51
GBR 1.73 34770.86 12.12
ETR 1.50 30593.47 10.47

BaggingR 1.64 33337.85 11.48

Machine learning

GPR 1.65 33878.38 11.58
SVR 1.35 27944.14 9.48
DTR 1.75 35680.97 12.24

KNNR 1.55 31464.57 10.82

)e bold values present the lowest error values of MAPE, RMSE, and RRMSE. )ese values show that the proposed approach outperforms the baseline models
based on the forecast data.

Table 5: Comparison between [64] and this work.

Study Predictive model Dataset MAPE RMSE

)is study CNN-LSTM Confirmed cases for the whole world from January 4, 2020 to September 24, 2020 0.19 13275.00

Dairi et al. [64] LSTM-CNN Confirmed cases for 7 countries from January 22 to September 6, 2020. 2.36 28820.00

)e bold values show the lower values of MAPE and RMSE, which is better than [64].
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exploit the produced features to detect short- and long-term
relationships in the time series and give a precise forecast.

However, there is still opportunity to improve the fore-
casting accuracy of the COVID-19 application. In the future, by
adding more data and external factors to the COVID-19
datasets, such as changes in season, vaccination plan, and
additional lockdowns, other resampling and restructuring
forecasting methods will be used to further improve the ac-
curacy of the COVID-19 forecasting system. In addition, an
uncertainty management strategy should be developed in order
to quantify uncertainty and provide users with more relevant
information on the COVID-19 pandemic.
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