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Abstract: The global spread of COVID-19 has complicated the international equilibrium of grain
production and trade. China now faces external shocks in the international grain market and deep-
seated problems associated with the structure of domestic supply. We used a dynamic, computable
general equilibrium (CGE) model to analyse the effects on China’s food security and macroeconomics
under the COVID-19 scenario and four technological progress paths in the agricultural sector. We
showed that the COVID-19 pandemic is disrupting China’s food security in the short term, and critical
quantitative variables such as grain production and grain consumption per capita have declined.
Considering food security and macroeconomic development, labour-saving technological progress
outperformed neutral technological progress, land-saving technological progress, and capital-saving
technological progress in the short run. While land-saving technological progress contributes the
most to the arable land area per capita of wheat and other grains in the long run.

Keywords: COVID-19; technological progress; food security; CGE model

1. Introduction

Coronavirus disease 2019 (COVID-19) has spread globally and disrupted agricultural
production throughout the world [1]. Many countries have adopted extreme measures
to control the spread of the virus, including social distancing, closures of schools and
nonessential businesses, border restrictions, and nationwide quarantines [2]. The lockdown
measures, though essential to decrease the loss of life, are creating massive pressure on
economic operations and adversely affect food security and hunger [3–6]. COVID-19 has
had a significant impact on global agricultural production and international transportation,
sales, and trade, which has exacerbated global market turmoil and the imbalance of supply
and demand [7]. Besides, labour is the primary input factor of agricultural production and
tends to suffer the most during a period of public health concern [8]. The economic and
social impacts, and the likelihood of continuing infections, will play a role over the longer
term, with concomitant effects on the food and agriculture industries [9].

The global target of eliminating hunger is challenging, as even before the COVID-19
pandemic, approximately 1.9 billion people struggled to access food or were worried about
a healthy diet [10,11]. According to the World Bank, a hunger pandemic could quickly
follow the COVID-19 pandemic, doubling severe food insecurity and putting an additional
40–60 million people in extreme poverty [12]. Therefore, it is profoundly necessary to
consider the related issues of food security during the pandemic crisis.

The COVID-19 pandemic has threatened food security in all the affected economies.
China has a large population, and food security is of great significance to China’s
economic development and social stability [13,14]. Before the outbreak of COVID-19,
Mukhopadhyay, et al. [15] pointed out that China’s agricultural productivity was lower
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than the world average, resulting in lower agricultural outputs and tremendous pressure
on China’s food security goals. Moreover, with rapid urbanization, the farmer population
decreased and food insecurity issues have become an obstacle to sustainable development
due to the limitation of arable land and population growth [16]. In February 2020, the
Central Committee of the Communist Party of China issued the “No. 1 Document”, which
clearly stated that “Ensuring food security is always the top priority of governance. Grain
production must be stable, with stable policies, stable arable areas, and stable yields” [17].
In the context of COVID-19, the primary risks to food security are at the national level, since
the combined impacts of COVID-19 disruptions and other existing issues are changing food
security in China. Therefore, it is urgent to understand the challenges posed by COVID-19
from a macro perspective and provide some insights for strengthening the resilience of
food systems over longer time horizons.

In response to the COVID-19 pandemic, promoting agricultural technological progress
is critical for ensuring China’s food security and sustainable agricultural development in
the future. The improvement of technological progress is an important factor contributing
to China’s economic growth [18]. However, analyses of the agriculture sector have seldom
comprehensively explored the effects of technological progress on promoting the advance-
ment and sustainability of food security. In this article, we adopted a recursive dynamic
CGE model to analyse the impact of technological progress on agricultural food security
in the context of the COVID-19 pandemic. The purpose of using a recursive dynamic
CGE model is to estimate how the variables of interest change over time. Changes in
endogenous variables or shocks of exogenous variables caused by consumers, producers,
government, and other agents’ behaviour in the economy can shift one equilibrium status
to another during the time [19]. This study complements existing studies in three aspects.
First, our study introduced the impacts of the COVID-19 shock and focused on the im-
pacts of COVID-19 on agricultural production and food security, including technological
progress. Second, based on a dynamic CGE model, this study incorporates total factor
productivity (TFP), labour-saving, capital-saving, and land-saving technological progress
into a unified research framework. It is more conducive to a macroscopic analysis of the
impact of technological progress on food security. Last but not least, this study built a food
security indicator system to reflect food insecurity better and distinguish which types of
technological progress perform well. This research found that labour-saving technology
affects food security the most and provides some policy recommendations for ensuring
China’s future food security in the context of the current pandemic.

The remaining contents are arranged as follows. Section 2 presents a literature review.
Section 3 describes the modelling framework and provides a detailed description of how
the COVID-19 pandemic caused a shock to the economy. Section 4 presents the impacts of
COVID-19 and agricultural technological progress on food security in the short and long
run. Section 5 concludes with policy implications and recommendations for further study.

2. Literature Review

Some recent literature has reported the impact of COVID-19 on agriculture using tra-
ditional research methods, such as qualitative analysis or questionnaire surveys [20–22]. In
China, Pu and Zhong [23] discussed the impact of COVID-19 on China’s agricultural
production and the government’s response measures to mitigate its negative impact.
Deng, et al. [24] collected survey data from 8031 farming households in 27 provinces in
mainland China to provide an empirical basis to help policymakers reduce the negative im-
pact of COVID-19 on food security. In other countries, similar studies have been conducted,
such as a case study in India [25]. The consecutive application of the autoregressive dis-
tributed lag method and Yamamoto’s causality test, and a variance decomposition analysis
of 45 developing economies [6]. However, due to sample limitations and the subjectivity
of the research methods, it is impossible to track the dynamic impact of COVID-19 on
the whole agricultural economy and analyse the effect of the anti-pandemic measures on
agricultural production.
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CGE models are useful for evaluating policy options by identifying the economic
changes through which the direct effects of the COVID-19 outbreak can be revealed [26].
Nechifor, et al. [27] adopted the CGE model with a food security and nutrition (FS&N)
microsimulation module to assess the impacts of COVID-19 on economic and food security
based on the shock paths of the pandemic from the perspectives of labour productiv-
ity, export demand and tourism, remittances, internal demand, and internal trade costs.
Liang, Qin, Jiang, Wang and Shi [8] used a dynamic CGE model to study the impact of
epidemic-affected labour shortages on agricultural production in China. The results show
that agricultural production will be less affected by the local control of the epidemic situa-
tion than previously thought. The output of agricultural products fell by about 2.19%, and
the prices of agricultural products rose slightly. While the national production of agricul-
tural products fell only by 0.1%, prices remained stable. Compared with the nationwide
outbreak, the local spread level has a smaller impact on China’s food security, meaning
China’s policy to combat the epidemic is effective. Other CGE models used to assess the
agricultural impacts of COVID-19 in China include those of Beckman and Countryman [28];
Han, et al. [29]; and Zhang, et al. [30].

How to ensure food security in the context of the COVID-19 pandemic has become
the focus of attention at present. Technological progress can work to alleviate the im-
pact. Total factor productivity (TFP) growth is typically understood as technological
progress [31]. Various inputs can reflect TFP growth, and better-quality inputs being more
productive [32]. It is a phenomenon that Hicks [33] described as biased technological
progress. He stated that the inherent meaning of technological progress is to use more
abundant input factors and save more scarce factors. Progress can be categorised into
four detailed types: capital-saving, labour-saving, land-saving, and TFP progress [34].
Up until the later stages of industrialisation, academic research on biased technological
progress gradually increased [34–36], along with research on different growth patterns in
technological progress between sectors [37–39].

Research has evaluated the effects of technological progress on agricultural production
with a variety of results. For example, using a DEA approach to model the dynamic of
factor inputs, Chen, et al. [40] suggested that capital and land productivity have dominated
China’s wheat production instead of labour-intensive operations. However, Key [41] found
that labour-saving technologies enabled farms in the United States to produce on a larger,
more productive scale. Zhang, et al. [42] analysed the labour-saving and capital-saving
technological progress in China’s food production in different regions with a multi-regional
CGE model. The results showed that labour-saving progress leads to a greater increase in
food production than capital-saving progress. Other research on the agricultural sector
has used the CGE model from the perspective of increased factor productivity [43] and
improvements in land management [12].

However, few studies have used CGE to study the impact of the COVID-19 pan-
demic and technological progress on food security in China. This study went beyond the
limitations mentioned in the literature review, focusing on the impacts of COVID-19 on
agricultural production and food security, combined with technological progress. First, we
incorporated neutral technological progress, labour-saving, capital-saving, and land-saving
progress into a unified research framework of China’s CGE model. Second, we evaluated
the different effects of four types of technological progress on food security in the context of
the COVID-19 pandemic. We designed a new approach to studying progress in agricultural
technology during public health crises. Specifically, our study introduced the COVID-19
impact and agricultural technological progress into the model, focusing on the technologi-
cal growth of different paths and constructing an indicator system for testing food security
to achieve high-quality sustainable development.
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3. CGE Modelling Framework and Data Input
3.1. CGE Model

The CGE model was initially developed by Johansen [44]. It is used to study the
overall economy and its response to changes in external shocks, and the supporting data
are in the form of a social accounting matrix (SAM) table. We adopted a dynamic CGE
model to simulate the COVID-19 shocks and evaluate the long-term and short-term im-
pacts of different types of technological progress on food security and macroeconomic
effects. As shown in Figure 1, the model includes production, expenditure and income,
investment, trade, closure, and dynamic modules. The CGE model equations are presented
in Appendix A.

Figure 1. Framework of the CGE model.

The production module describes the relationship between factor inputs and domestic
outputs. According to the substitution relationship between inputs, it is usually divided into
three categories: Leontief production technology, Cobb–Douglas production technology,
and constant elasticity of substitution (CES)production technology. This model assumes
that the market is completely competitive and that production decisions are made following
the principle of cost minimization. To reflect and solve the more complex substitution
relationship between multiple inputs, the production module uses a multi-level nested
form (See Figure 2). The intermediate input and compound factors (value-added) solve the
first level of nesting through the CES function. The second layer comprises the following
two parts. The first part is the compounding of intermediate inputs through the Leontief
(LT) function, and the second part is the compounding of capital, labour, and land factors
through the CES function.

Households and the government maximize their utility from the consumption of the
final goods by following a Cobb–Douglas utility function in the income and expenditure
module. Household income is used for consumption or savings and is derived from
compensation of all primary factors and transfers from the government. The government’s
income is composed of various taxes and transfer payments from the rest of the world, and
its expenditures include purchases, transfer payments, and the surplus.

International trade is a significant module of this model. Armington’s assump-
tion is applied to combine imported goods with domestic goods, representing imper-
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fect substitution with different elasticities. At the same time, the total domestic out-
put is distributed between domestic use and exports through a constant elasticity of
transformation (CET) function.

Figure 2. The nesting structure of the production module.

This model was used to simulate the dynamic trends in agricultural economic growth
and food security brought about by technological progress and macroeconomic changes
from 2020 to 2030. To achieve this goal, we used a recursive dynamic mechanism that
operates through the dynamic changes of labour force growth and capital accumulation to
achieve the equilibrium of the new model. The data on the growth rate have been taken
from the “World Population Outlook 2017”, released by the Population Division of the
United Nations Department of Economic and Social Affairs [45].

To gain a unique solution, the CGE model needs to set the micro-closure and macro-
closure to ensure that the constraining conditions are consistent with the number of en-
dogenous variables. We obtain the equilibrium price under market equilibrium conditions,
which represents the solution of the nonlinear equation system. The nonlinear equation
system includes the intermediate and final demand equations, the expenditure and income
equations of households and the government, savings and investment equations, and
trade balance equations. We used neo-classical closure, setting closures in the commodity
markets, the factor markets, institutional income and expenditure, trade markets, and
investment savings.

3.2. Data Input

The CGE model has the following two parts: equations describing the model variables
and a database consistent with the model equations. The database usually consists of
a table of transaction values that are presented as an input–output table or as a social
accounting matrix (SAM). The SAM table is a general equilibrium data system that links
all the basic accounting identities, namely production activities, factor and commodity
markets, institutions (firms, households, and the government), foreign trade (rest of the
world, ROW), and other accounts (markets for loanable funds), to capture the circular
interdependence of the nationwide economic system [46].

Here, we constructed China’s social accounting matrix (SAM table) for 2017 based
on the research requirements. The data were taken from the National Input–Output Table
of 149 Sectors 2017, China Fiscal Yearbook 2018, China Tax Yearbook 2018, China Rural
Statistics Yearbook 2018, China Trade and Foreign Economic Statistics Yearbook, and the
Compilation of National Agricultural Product Cost and Profit Data 2018 (The construction
of the SAM table is according to the guidelines provided in February 2020 by the Center of
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Economic Systems Simulation Research in China). The SAM table constructed in this study
includes sectors, commodities, factors (labour, capital, and land), institutions (residents
and the government), the rest of the world, and investment and savings. In order to
study China’s main food products precisely, we established the following settings in the
production activity account and the factor account. First, in the activity and commodity
accounts, the agricultural product sector was explicitly divided into rice, wheat, other
grains, vegetables and nuts, oilseed crops, sugarcane, plant fibre, and other crops. Second,
in the factor account, a land account was added, based on the arable area of the main crops.
The land factor input was calculated on the basis of the land rents and arable land area and
then deducted proportionally from capital investment.

3.3. Food Security Indicator

Due to the complexity of food security issues, it is not easy to measure food security
with a single indicator. This study refers to the research of Ma, et al. [47], and Fan [48]. From
the perspectives of quantity security, economic security, and resource security, we used
six indicators to examine the level of China’s food security under different technological
progress paths in the context of COVID-19 to meet the goals of the new era of food security.
The six indicators are shown in Table 1 below.

Table 1. Food security indicators.

Indicator Variable The Nature of Indicators

Grain output Xa Positive
Arable land area per capita LDDa/POP Positive

Grain consumption per capita QCc/POP Positive
Grain price PCc Positive

Import dependence QMc/(QDc + QMc) Negative
Grain output per hectare Xa/LDDa Positive

Here, Xa is the total output of sector a; LDDa/POP is the land area per capita of
sector a; QCc/POP indicates all products c consumed per capita in the domestic market,
including domestic production and imports; POP is the population; PCc is the price at
which consumers purchase product c. QMc/(QDc + QMc) indicates the proportion of
the imported volume of product c within total domestic consumption, where QMc is the
imported volume of product c, and QDc is the domestic output of product c used for the
domestic market. Xa/LDDa is negative, which means that the larger it is, the greater the
possibility of food security.

4. Scenario Settings

The cumulative impact of the COVID-19 epidemic has put the entire world under
threat of food security and nutritional deficiencies, particularly in countries with large
populations [49]. As the world’s largest food consumer, China continues to hold a leading
position in the global food supply chain [50]. In order to prevent the large-scale spread
of the epidemic, the Chinese government has implemented a strict lockdown policy since
the outbreak of COVID-19 to restrict the mobility of people. COVID-19 and its mitigation
measures have affected agriculture in the following two relevant aspects: the supply and
demand for food (See in Figure 3). On the one hand, direct and indirect effects of sickness
and death have caused a reduction in labour supply and wage income, thus disrupting the
planting and harvesting of agricultural commodities. On the other hand, these restrictions
lead to a lag in the transportation of agricultural products. A sudden decline in the demand
for agricultural products resulted in a large amount of unsellable seasonal perishable
vegetables and fruits due to the closure of local restaurants and markets [51]. If such
problems cannot be properly resolved, farmers will not be able to receive any profit from
the current harvest (i.e., foods are backlogged in the farmland and will not even be picked),
causing lower reinvestment in the next spring’s planning.



Sustainability 2022, 14, 1842 7 of 18

Figure 3. The COVID-19 impact on food security and China economy.

We refer to the methods of Dixon, et al. [52] and McKibbin and Fernando [53] to
establish three main impact paths of the COVID-19 pandemic.

λ The shocks to the labour supply.
λ The shocks to the output of sectors.
λ The shocks to the international trade.

4.1. Shocks to the Labour Supply

The epidemic and quarantine policies have caused a decline in the labour supply.
According to the latest data released by the National Health and Construction Commission,
82,067 cases have been cured by 31 December 2020, but a total of 4634 people have died [54].
It is assumed that the total time lost for diagnosis and treatment of the cured population
is 4 weeks. Besides, according to data released by the National Bureau of Statistics, the
national urban unemployment rate rose by 0.5% on average compared to last year. The
workforce at the legal age in 2020 was 929 million, and the labour participation rate was
65%. Suppose that the average working hours of employees in enterprises across China is
47 h a week, and 50 weeks a year.

ρLS =
∑ LSaffect ∗ HOURaffect + ∑ LSloss ∗ HOURloss

LS ∗HOURtotal
·100% (1)

Among them, ρLS represents the percentage of labour supply affected by the pandemic,
LSaffect represents the labour force affected by treatment and lockdown during COVID-19,
LSloss means the dead and unemployment cases caused by COVID-19, respectively. Hence,
the percentage of labour supply has decreased by approximately 2.26%.

4.2. Shocks to the Output of Sectors

The total factor productivity is changed by setting the disaster variable ϕ(PS), thereby
affecting the output [55]. According to the latest economic data released by the National
Bureau of Statistics, the negative impact of the pandemic on China growth in 2020 was
massive, with only a 2.3% gross domestic product (GDP) growth, while GDP growth was
6.0% in 2019 [56].

ϕ(PS) =

(
1−

X∗i
X0

i

)
∗ 100% (2)

Among them, X0
i represents the expected output value of industry I in 2020 without

the impact of the COVID-19 pandemic, and X∗i represents the actual output value in 2020.
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We combine 2020’s GDP with the World Bank’s forecast of China’s 2020 GDP issued by the
National Bureau of Statistics to obtain the hypothetical GDP and simulate each industry’s
GDP in 2020 [56]. It is calculated that the output efficiency of the primary industry decreased
by 4.9%, the output efficiency of the secondary industry decreased by 3.8%, and that of the
tertiary industry decreased by 3.5% compared with non-COVID levels.

4.3. Shocks to the International Trade

The export demand has been impacted by the economic slowdown of all China’s major
trading partners and strict restrictions on international travel. It shows that the world’s
economic growth in 2020 dropped by 4.3%, compared with 2019 (2.9%). The negative
change is more than 7%. According to the weighted average of China’s industry export
to each country and their actual economic development, we can estimate the changes in
industry export demand. The decrease rate of the agriculture sector is 9.36% compared
with the non-COVID level. The percentage change of imports is −7.67% in the agriculture
sector, −28.04% in the mining sector, and 2.31% in the manufacturing sector.

4.4. Technological Progress

According to the characteristics of agricultural development, technological progress is
divided into labour-saving technological progress, capital-saving technological progress,
land-saving technological progress, and TFP growth. We draw on the method used by
Acemoglu [34] to set technical coefficients. Here, we assumed that technological progress is
cost neutral, which means the total technical cost remains unchanged, and only the cost
allocation is changed in different paths of technological progress.

V(PS) = AV(PS) ∗ [∑
f

γ( f , PS) ∗ θ( f ) ∗ v′( f , PS)ρ(PS)
]

1
ρ(PS) (3)

where, V(PS) is the bundle of the added value of industries, v′( f , PS) represents the input
of factor F in industries, AV(PS) is total factor productivity, and γ( f , PS) is the share
parameter of factor F used by industries in the CES function. ρ(PS) is the substitution
coefficient between factors. We use θ f to represent the biased technological progress rate of
factor f. Therefore, we simulated the progress of agricultural technology in four different
situations by changing AV(PS) and θ( f ). In this study, we established the following types
of technological progress: SET1 is labour-saving technological progress by 2%; SET2 is
capital-saving technological progress by 2%; SET3 is land-saving technological progress by
2%; SET4 is neutral technological progress by 2%.

5. Result Analysis
5.1. The Impact of the COVID-19 Pandemic on Food Security

As shown in Table 2, the pandemic has impacted China’s food security in the short
term. Compared with the result of the BAU scenario without COVID-19, from the perspec-
tive of time, the epidemic’s impact has a certain degree of delay. It broke out in 2020, and
the fluctuations of various indicators will peak in 2021 and ease in 2022. It can be seen that
there will not be severe food security problems in the short-term since China has a very
high rate of cereal sufficiency. Until 2025, the rate of change compared with BAU will be
small (below 0.01%). This means, that without the influence of external shocks (such as
government subsidies, food policies, technical support, etc.), the epidemic’s impact on
China’s food security indicators will continue for 3–5 years. We found that these effects are
mainly caused by some highly import-dependent agricultural products, such as soybeans,
which is in line with the conclusions of Yao, et al. [57].

Specifically, under the COVID-19 shock, the trends in food security indicators such
as rice, wheat, and other grains are almost the same. Compared with other indicators,
the rate of change in arable land is the smallest. The reason for this, in our view, is that
arable land is difficult to adjust because of the impact of external shocks in the short
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term. The output of rice, wheat, and other grains in 2020 decreased by 1.89%, 2.08%, and
0.93% annually. The loss is more severe than the conclusions of NHC [54], since they only
studied the impact of epidemic-affected labour shortages without the loss of productivity.
Grain consumption per capita decreased by 1.90%, 2.13%, and 1.01%, arising from the
strict lockdown and the sudden shutdown of restaurants, local markets, and caterers.
Besides, grain prices increased by 4.03%, 1.69%, and 1.40% due to the shortage of grain
supply; import dependence decreased by 5.41%, 2.36%, and 1.97%; the grain output per
hectare dropped by 2.23%, 2.88%, and 2.96%. In general, the indicators of rice, wheat, and
other grains showed a downward trend during 2020–2022 due to COVID-19 without any
policy implementation.

Table 2. The impact of the COVID-19 epidemic on food security indicators compared with BAU (%).

Indicator Sector 2020 2021 2022

Grain output
Rice −1.89 −4.23 −1.38

Wheat −2.08 −3.66 −1.19
Other grains −0.93 −3.96 −1.29

Arable land area
per capita

Rice 0.34 −0.99 −0.32
Wheat 0.82 −0.12 −0.04

Other grains 2.08 −0.56 −0.18

Grain consumption
per capita

Rice −1.90 −4.23 −1.38
Wheat −2.13 −3.70 −1.20

Other grains −1.01 −4.09 −1.33

Grain price
Rice 4.03 3.18 1.02

Wheat 1.69 2.18 0.70
Other grains 1.40 2.56 0.82

Import dependence
Rice −5.41 −4.05 −1.35

Wheat −2.36 −3.02 −0.99
Other grains −1.97 −3.53 −1.16

Grain output per
hectare

Rice −2.23 −3.27 −1.06
Wheat −2.88 −3.54 −1.15

Other grains −2.96 −3.42 −1.11

5.2. The Impact of Technological Progress on Food Security

It is necessary to study the mitigating effects of technological progress on food insecu-
rity caused by COVID-19 and explore more targeted food security countermeasures. For
example, in Figure 4a, under the implementation of labour-saving technological progress
(Scenario SET1), the average annual growth in output of rice, wheat, and other grains in
the short term is 3.40%, 3.49%, and 3.41%, respectively. In the SET3 scenario, the results are
very similar to those of SET2. Labour-saving progress (SET1) appears to lead to a greater
increase in food production than capital-saving and land-saving progress (SET2 and SET3)
in Figure 4b,c,e,f. This result is consistent with Antonelli and Quatraro [58]’s opinion
that factor-saving technological progress that matches the factor endowment structure can
enhance agricultural output and TFP. China’s farming area is smaller than that of some
developed countries, such as the USA and France, but has a larger population. Hence,
labour-saving technological progress can lead to higher marginal outputs. However, we can
see from Figure 4d, that the average annual growth in rice prices is 0.57% in the short term.

In the short term, labour-saving technological progress has an apparent guarantee
of food security. However, labour-saving technological progress also leads to increased
grain prices due to increased wage rates and capital returns. It cannot offset the price
shock in the foreign market and cannot reduce import dependence compared with the
other three types of technological progress. The impact of all-factor technological progress
is second only to that of labour-saving technological progress, which can increase grain
outputs in the short term and reduce fluctuations in grain prices. However, capital-saving
technological progress has little effect on output and has almost no impact on grain prices,
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import dependence, and grain output per hectare. Land-saving technology increases the
grain output per hectare and reduces the dependence on imported foreign grain. However,
the effect is limited in the short run.

Figure 4. The average annual rate of food security in the short term under different scenarios (%).
(a) Grain output. (b) Arable land area per capita. (c) Grain consumption per capita. (d) Grain price.
(e) Import dependence. (f) Grain output per hectare. The short term refers to the average annual rate
of change in various food security indicators from 2020 to 2022.

We are trying to discuss the effects of different technological advancements over
a more extended period of time (2020–2030). From a long-term perspective, the positive
contribution of the four technological advances to output are greater than that of the
short-term technological advances. For example, as to rice output, labour technological
progress (L-SET1) contributes 4.76% to grain output growth, slightly ahead of the other
three technological advancements. The difference is narrowing, and they remain between
4.75% and 4.76%. However, in the long run, the contribution of land-saving technological
progress to the arable land area per capita of wheat and other grains is 4.57% and 4.56%,
respectively, which is much higher than the other three technological advancements. In
our view, land-saving technological progress leads to increased marginal output and
comparatively low land rent. Land use is easy to expand in the long term (See Figure A1,
Appendix B).
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5.3. Macroeconomic Indicator Analysis

It can be seen from Table 3 that different kinds of technological progress have different
impacts on GDP. Labour-saving technological progress contributes the most to GDP growth,
followed by all-factor technological progress. In contrast, capital-saving and land-based
technological progress have a weak impact on GDP. The cost-effectiveness created by
technological progress has increased the consumption of agricultural products by various
institutions and departments. Besides this, it has also created a competitive advantage and
expanded the total net export volume. Improvements in grain production efficiency affect
overall consumption, mainly manifested through labour-saving technological progress.
Technological advancement has the most significant effect on stimulating residents’ con-
sumption; however, it provides little stimulus to government departments’ consumption.
Within government consumption, the agricultural sector and its upstream and downstream
sectors account for a small proportion (about 0.22%).

Table 3. Changes in GDP and CPI under four types of technological progress (%).

Scenarios
Short-Run Long-Run

SET1 SET2 SET3 SET4 SET1 SET2 SET3 SET4

GDP 0.378 0.005 0.022 0.053 0.400 0.006 0.042 0.061
CPI 0.305 0.004 0.033 0.020 0.313 0.004 0.018 0.018

Note: The short run means the average level of 2020–2022, and the long run is that of 2020–2030.

With four types of technological progress in the agricultural sector, labour-saving
technological progress contributes 0.31% to the increase in the consumer price index (CPI)
in the short term and 0.31% in the long term (see Table 3). Other types of technological
progress have little impact on the CPI. The underlying reason is that increases in production
costs are caused by factor prices, which lead to an increase in the CPI. In the short term,
improving labour-saving technology will initially reduce labour prices and increase labour
demand and production. However, the capital stock is fixed in the short term, and the
expansion of production will increase the capital price. In the long run, capital is adjusted
following economic growth, and the capital price will decrease compared with that in the
short term. Therefore, the long-term increase in CPI triggered by factor prices is slightly
smaller than that in the short term. Overall, the macroeconomic effects of labour-saving
technological progress are the best, followed by those of all-factor technological progress,
land-saving, and capital-based technological progress.

As shown in Figure 5, technological progress increased imports and exports, especially
labour-saving technological progress. In the short term, compared with the BAU scenario,
imports increased by 0.65% annually and exports increased by 0.08%. In the long run,
imports and exports increased by 0.66% and 0.11%, respectively. Due to technological
progress in the agricultural sector, the grain produced in China will be more competitive
with the same goods in the international market, resulting in a decrease in import demand.
However, the results show that all four types of technological progress would increase
total imports. The reason may be that the cost reductions brought about by technological
improvements would lead to an expansion of production, which would require more
intermediate inputs. To meet the input needs of production, the demand for imports
may increase.

Simultaneously, technological progress in the agricultural sector will cause the price of
intermediate inputs to fall, thereby reducing the production costs of downstream industries
and improving competitiveness in the international market. In particular, the improvement
of labour-saving technology has a greater positive impact on exports, especially in the
early stages of technological progress. It means that although the effect of labour-saving
technological progress is affected by the increase in factor costs, it will not reduce the
competitiveness of China’s grain in the world market. As mentioned, capital and labour
become expensive in the short term, but the impact on exports is negligible. The impact will
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be even less in the long run because the spillover effects brought about by technological
progress will offset the negative effects of increasing production costs. However, techno-
logical progress will generally increase imports more than exports but will not reverse the
current trade surplus, and have a positive impact on China’s trade, but the impact is slight.

Figure 5. Macro effects under the four types of technological progress compared with BAU. (a) The
short term refers to 2020 to 2022. (b) The long term refers to 2020 to 2030.

6. Conclusions and Suggestions

On the basis of the dynamic CGE model and China’s SAM table for 2017, we esti-
mated the impact of four types of technological progress on China’s food security and
macroeconomics in the context of the COVID-19 pandemic. We found a number of results.

First, COVID-19 has had major negative impacts on China’s food security in the short
term. The output of rice, wheat, and other grains in 2020 decreased by 1.89%, 2.08%,
and 0.93% annually compared with non-COVID. The loss is more severe than that in the
conclusions of NHC [54], since they only studied the impact of epidemic-affected labour
shortages without the loss of productivity. Moreover, without external shocks (such as
government subsidies, food policies, technical support, etc.), the epidemic’s impact on
China’s food security indicators will continue for 3–5 years.
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Second, labour-saving technological progress is the best for ensuring food security and
can ensure the steady development of China’s food production, which is in line with the
conclusions of Zhang, Sun, Wu and Deng [42]. Neutral technological progress is the second-
best for ensuring food security, while capital-saving and land-saving technological progress
have little effect. To sum up, labour-saving technological progress is the best contributor
to the macroeconomic effects, followed by neutral technological progress, land-saving
technological progress, and capital-saving technological progress in the short run. While in
the long run, the contribution of the four technological progresses to output is greater than
that of the short-term technological advances. Labour technological progress is slightly
ahead of the other three technological advancements in grain output. However, as to arable
land area per capita in wheat and other grains, land productivity’s contribution is much
higher than the other three technological advancements. The conclusions are similar to
those of Chen, Oxley, Xu, Wang and Ma [40], who found that capital and land productivity
have dominated China’s wheat production instead of labour-intensive operations. In the
short term, our results indicated that increasing labour productivity is a leading contributor
to China’s agriculture because of the shortage in the labour force during the pandemic.

To cope with the current and future events facing China, this study proposes the
following policy suggestions: First, we must recognize that supply-side structural reforms
are the essential foundation to improving the labour productivity that is essential to China’s
food security. Investment in training for the agricultural sector will also enhance the spe-
cialised expertise that will enable China’s agricultural sector to compete globally and will
enable professional farmers to restore abandoned farmland to productivity. Second, when
the international grain market is unstable, the government needs to adopt active trade
measures to deal with the new trade barriers caused by the COVID-19 epidemic to prevent
the risk of possible upward future price trends in the international agricultural products
market. Finally, to realize the new development pattern with the main domestic market
cycle and the mutual promotion of the domestic and international double market cycles, it
is necessary for the government to ensure the self-reliance, independent development, and
import dependence of the agricultural sector and reduce the dependence on imported agri-
cultural products through the reforms of agriculture, farmers, and rural areas to stimulate
grain production and explore the potential of domestic grain production.

However, the limitation of this article is that technological progress here refers to
exogenous factor-saving productivity. For more microscopic practices of technological
progress, the model needs more variables and data to define and measure such technological
improvement. In the future, some attempts will need to be combined with microeconomics,
like linking with specific tech. It will be a challenging but interesting attempt. Besides,
some government policy support can be a good topic for future research.
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Appendix A

CGE Model equations
Production module
Production function for goods

X(PS) = AP(PS) ∗
[

β(PS)∗U(PS) ρ(PS) + γ(PS)∗V(PS) ρ(PS)
] 1

ρ(PS) (A1)

Production function for intermediate inputs

U(PS) = ∑
CC

ut(CC, PS) ∗ XX(CC, PS) (A2)

Value-added function

V(PS) = AV(PS) ∗ [∑
f

γ( f , PS) ∗ v′( f , PS))ρ(PS)
]

1
ρ(PS) (A3)

Income and expenditure module
Household
Household income

HY = W ∗ LS + R ∗ KS + PLAND ∗ LANDS + trans fgovh (A4)

Household consumption

HE = shrhcc ∗ (1− th) ∗ HY (A5)

Household saving
HS = (1− shrhcc) ∗ (1− th)·HY (A6)

Government
Government income

GY = PT + DVAT + TARF + IMCT + IMVAT + DCT + DT (A7)

Government expenditure for commodities demand

GC = shrgcc ∗
(
YG− trans f rgh

)
(A8)

Government saving

GS = (1− shrgcc) ∗
(
YG− trans f rgh

)
(A9)

Trade Module
Armington function between imports and domestic goods

QC(CC) = AA(CC) ∗
[
δ(CC) ∗QD(CC)ρ(CC) + (1− δ(CC)) ∗ IMP(CC)ρ(CC)

] 1
ρ(CC) (A10)

CET function between exports and domestic goods

Q(CC) = AT(CC) ∗
[
ε(CC)·QD(CC)ρ(CC) + (1− ε(CC)) ∗ EXP(CC)ρ(CC)

] 1
ρ(CC) (A11)

Dynamic module
Capital stock growth

KS(TH + 1) = (1− dep) ∗ KS(TH) + NINV(TH) (A12)
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Labor supply growth

LS(TH + 1) = (1 + gpop(TH)) ∗ LS(TH) (A13)

Close module
Commodity market balance

Q(CC) = ∑
PS

XX(PS, CC) + HC(CC) + GC(CC) + INV(CC) + SC(CC) (A14)

Factor markets balance
LS = LD (A15)

KS = KD (A16)

Saving/investment balance

INV = HS + GS (A17)

Trade closure
PEXP·EXP = PIMP ∗ IMP + INVF (A18)

Technological change
Value added function
According to Acemoglu (2007), we use θ( f ) to represent the biased technological

progress rate of factor f. Therefore, we simulated the progress of agricultural technology in
four different simulations by changing AV(PS) and θ( f ).

V(PS) = AV(PS) ∗ [∑
f

γ( f , PS) ∗ θ( f ) ∗ v′( f , PS))ρ(PS)
]

1
ρ(PS) (A19)

Table A1. Definition of the variables in equations.

Variables Descriptions Variables Descriptions

X(PS) Domestic Output DT Individual Income Tax

V(PS) Capital and labor input QC Quantity of Composite commodity supplied to or consumed in
domestic market

U(PS) Intermediate input QD Quantity of domestically-produced commodity sold in
domestic market

XX(PS,CC) Intermediate input matrix Q Quantity of domestically-produced commodity
KD Capital demand IMP Import
LS Labour supply EXP Export
LD Labour demand PEXP Price of export

Land Land input PIMP Price of import
R Capital price EXR Exchange rate
W Wage rate INVF Foreign investment

Pland Price of land AP(PS) Scaling parameter of CES production function for producer
HY Household income AV(PS) Scaling parameter of CES function of factor inputs
HC Household consumption AA(CC) Scaling parameter of Armington function
HS Household saving AT(CC) Scaling parameter of Transformation function

trans fgovh Expenditure of the government transfers β(PS) Substitution rate of intermedia input
GY Government income γ(PS) Substitution rate of value-added input
GC Government consumption ρ(PS) Substitution elasticity
GS Government saving δ(CC) Substitution rate of Armington assumption
PT Production tax ε(CC) Substitution rate of transformation assumption

DVAT Domestic VAT ut(CC, PS) Table of intermediate inputs or uses
TARF Import tariffs γ( f , PS) Substitution rate of factor input

IMCT Income from consumption tax on
imported commodities shrhcc Composition of household consumption

IMVAT Income from VAT on imported goods th Proportion of government transfer to household

DCT Income from consumption tax on
domestic goods shrgcc Composition of government consumption
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Appendix B

Figure A1. The average annual rate of food security in long run under different scenarios. (a) Grain
output. (b) Arable land area per capita. (c) Grain consumption per capita. (d) Grain price. (e) Import
dependence. (f) Grain output per hectare. The short term refers to the average annual rate of change
in various food security indicators from 2020 to 2030.
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